blob: 8562dd82bd630f7872f5f3f22f34f1f65e567ded [file] [log] [blame]
#include <errno.h>
#include <dm.h>
#include <i2c.h>
#include <log.h>
#include <time.h>
#include <asm/arch/nexell.h>
#include <asm/arch/reset.h>
#include <asm/arch/clk.h>
#include <asm/arch/nx_gpio.h>
#include <asm/global_data.h>
#include <linux/delay.h>
#define I2C_WRITE 0
#define I2C_READ 1
#define I2CSTAT_MTM 0xC0 /* Master Transmit Mode */
#define I2CSTAT_MRM 0x80 /* Master Receive Mode */
#define I2CSTAT_BSY 0x20 /* Read: Bus Busy */
#define I2CSTAT_SS 0x20 /* Write: START (1) / STOP (0) */
#define I2CSTAT_RXTXEN 0x10 /* Rx/Tx enable */
#define I2CSTAT_ABT 0x08 /* Arbitration bit */
#define I2CSTAT_NACK 0x01 /* Nack bit */
#define I2CCON_IRCLR 0x100 /* Interrupt Clear bit */
#define I2CCON_ACKGEN 0x80 /* Acknowledge generation */
#define I2CCON_TCP256 0x40 /* Tx-clock prescaler: 16 (0) / 256 (1) */
#define I2CCON_IRENB 0x20 /* Interrupt Enable bit */
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
#define I2CCON_TCDMSK 0x0F /* I2C-bus transmit clock divider bit mask */
#ifdef CONFIG_ARCH_S5P6818
#define SDADLY_CLKSTEP 5 /* SDA delay: Reg. val. is multiple of 5 clks */
#define SDADLY_MAX 3 /* SDA delay: Max. reg. value is 3 */
#define I2CLC_FILTER 0x04 /* SDA filter on */
#else
#define STOPCON_CLR 0x01 /* Clock Line Release */
#define STOPCON_DLR 0x02 /* Data Line Release */
#define STOPCON_NAG 0x04 /* not-ackn. generation and data shift cont. */
#endif
#define I2C_TIMEOUT_MS 10 /* 10 ms */
#define I2C_M_NOSTOP 0x100
#define MAX_I2C_NUM 3
#define DEFAULT_SPEED 100000 /* default I2C speed [Hz] */
DECLARE_GLOBAL_DATA_PTR;
struct nx_i2c_regs {
uint iiccon;
uint iicstat;
uint iicadd;
uint iicds;
#ifdef CONFIG_ARCH_S5P6818
/* S5P6818: Offset 0x10 is Line Control Register (SDA-delay, Filter) */
uint iiclc;
#else
/* S5P4418: Offset 0x10 is Stop Control Register */
uint iicstopcon;
#endif
};
struct nx_i2c_bus {
uint bus_num;
struct nx_i2c_regs *regs;
uint speed;
uint target_speed;
#ifdef CONFIG_ARCH_S5P6818
uint sda_delay;
#else
/* setup time for Stop condition [us] */
uint tsu_stop;
#endif
};
/* s5pxx18 i2c must be reset before enabled */
static void i2c_reset(int ch)
{
int rst_id = RESET_ID_I2C0 + ch;
nx_rstcon_setrst(rst_id, 0);
nx_rstcon_setrst(rst_id, 1);
}
static uint i2c_get_clkrate(struct nx_i2c_bus *bus)
{
struct clk *clk;
int index = bus->bus_num;
char name[50] = {0, };
sprintf(name, "%s.%d", DEV_NAME_I2C, index);
clk = clk_get((const char *)name);
if (!clk)
return -1;
return clk_get_rate(clk);
}
static uint i2c_set_clk(struct nx_i2c_bus *bus, uint enb)
{
struct clk *clk;
char name[50];
sprintf(name, "%s.%d", DEV_NAME_I2C, bus->bus_num);
clk = clk_get((const char *)name);
if (!clk) {
debug("%s(): clk_get(%s) error!\n",
__func__, (const char *)name);
return -EINVAL;
}
clk_disable(clk);
if (enb)
clk_enable(clk);
return 0;
}
#ifdef CONFIG_ARCH_S5P6818
/* Set SDA line delay, not available at S5P4418 */
static int nx_i2c_set_sda_delay(struct nx_i2c_bus *bus)
{
struct nx_i2c_regs *i2c = bus->regs;
uint pclk = 0;
uint t_pclk = 0;
uint delay = 0;
/* get input clock of the I2C-controller */
pclk = i2c_get_clkrate(bus);
if (bus->sda_delay) {
/* t_pclk = period time of one pclk [ns] */
t_pclk = DIV_ROUND_UP(1000, pclk / 1000000);
/* delay = number of pclks required for sda_delay [ns] */
delay = DIV_ROUND_UP(bus->sda_delay, t_pclk);
/* delay = register value (step of 5 clocks) */
delay = DIV_ROUND_UP(delay, SDADLY_CLKSTEP);
/* max. possible register value = 3 */
if (delay > SDADLY_MAX) {
delay = SDADLY_MAX;
debug("%s(): sda-delay des.: %dns, sat. to max.: %dns (granularity: %dns)\n",
__func__, bus->sda_delay, t_pclk * delay * SDADLY_CLKSTEP,
t_pclk * SDADLY_CLKSTEP);
} else {
debug("%s(): sda-delay des.: %dns, act.: %dns (granularity: %dns)\n",
__func__, bus->sda_delay, t_pclk * delay * SDADLY_CLKSTEP,
t_pclk * SDADLY_CLKSTEP);
}
delay |= I2CLC_FILTER;
} else {
delay = 0;
debug("%s(): sda-delay = 0\n", __func__);
}
delay &= 0x7;
writel(delay, &i2c->iiclc);
return 0;
}
#endif
static int nx_i2c_set_bus_speed(struct udevice *dev, uint speed)
{
struct nx_i2c_bus *bus = dev_get_priv(dev);
struct nx_i2c_regs *i2c = bus->regs;
unsigned long pclk, pres = 16, div;
if (i2c_set_clk(bus, 1))
return -EINVAL;
/* get input clock of the I2C-controller */
pclk = i2c_get_clkrate(bus);
/* calculate prescaler and divisor values */
if ((pclk / pres / (16 + 1)) > speed)
/* prescaler value 16 is too less --> set to 256 */
pres = 256;
div = 0;
/* actual divider = div + 1 */
while ((pclk / pres / (div + 1)) > speed)
div++;
if (div > 0xF) {
debug("%s(): pres==%ld, div==0x%lx is saturated to 0xF !)\n",
__func__, pres, div);
div = 0xF;
} else {
debug("%s(): pres==%ld, div==0x%lx)\n", __func__, pres, div);
}
/* set Tx-clock divisor and prescaler values */
writel((div & I2CCON_TCDMSK) | ((pres == 256) ? I2CCON_TCP256 : 0),
&i2c->iiccon);
/* init to SLAVE REVEIVE and set slaveaddr */
writel(0, &i2c->iicstat);
writel(0x00, &i2c->iicadd);
/* program Master Transmit (and implicit STOP) */
writel(I2CSTAT_MTM | I2CSTAT_RXTXEN, &i2c->iicstat);
/* calculate actual I2C speed [Hz] */
bus->speed = pclk / ((div + 1) * pres);
debug("%s(): speed des.: %dHz, act.: %dHz\n",
__func__, speed, bus->speed);
#ifdef CONFIG_ARCH_S5P6818
nx_i2c_set_sda_delay(bus);
#else
/* setup time for Stop condition [us], min. 4us @ 100kHz I2C-clock */
bus->tsu_stop = DIV_ROUND_UP(400, bus->speed / 1000);
#endif
if (i2c_set_clk(bus, 0))
return -EINVAL;
return 0;
}
static void i2c_process_node(struct udevice *dev)
{
struct nx_i2c_bus *bus = dev_get_priv(dev);
bus->target_speed = dev_read_s32_default(dev, "clock-frequency",
DEFAULT_SPEED);
#ifdef CONFIG_ARCH_S5P6818
bus->sda_delay = dev_read_s32_default(dev, "i2c-sda-delay-ns", 0);
#endif
}
static int nx_i2c_probe(struct udevice *dev)
{
struct nx_i2c_bus *bus = dev_get_priv(dev);
fdt_addr_t addr;
/* get regs = i2c base address */
addr = devfdt_get_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
bus->regs = (struct nx_i2c_regs *)addr;
bus->bus_num = dev_seq(dev);
/* i2c node parsing */
i2c_process_node(dev);
if (!bus->target_speed)
return -ENODEV;
/* reset */
i2c_reset(bus->bus_num);
return 0;
}
/* i2c bus busy check */
static int i2c_is_busy(struct nx_i2c_regs *i2c)
{
ulong start_time;
start_time = get_timer(0);
while (readl(&i2c->iicstat) & I2CSTAT_BSY) {
if (get_timer(start_time) > I2C_TIMEOUT_MS) {
debug("Timeout\n");
return -EBUSY;
}
}
return 0;
}
/* irq enable/disable functions */
static void i2c_enable_irq(struct nx_i2c_regs *i2c)
{
unsigned int reg;
reg = readl(&i2c->iiccon);
reg |= I2CCON_IRENB;
writel(reg, &i2c->iiccon);
}
/* irq clear function */
static void i2c_clear_irq(struct nx_i2c_regs *i2c)
{
unsigned int reg;
reg = readl(&i2c->iiccon);
/* reset interrupt pending flag */
reg &= ~(I2CCON_IRPND);
/*
* Interrupt must also be cleared!
* Otherwise linux boot may hang after:
* [ 0.436000] NetLabel: unlabeled traffic allowed by default
* Next would be:
* [ 0.442000] clocksource: Switched to clocksource source timer
*/
reg |= I2CCON_IRCLR;
writel(reg, &i2c->iiccon);
}
/* ack enable functions */
static void i2c_enable_ack(struct nx_i2c_regs *i2c)
{
unsigned int reg;
reg = readl(&i2c->iiccon);
reg |= I2CCON_ACKGEN;
writel(reg, &i2c->iiccon);
}
static void i2c_send_stop(struct nx_i2c_bus *bus)
{
struct nx_i2c_regs *i2c = bus->regs;
if (IS_ENABLED(CONFIG_ARCH_S5P6818)) {
unsigned int reg;
reg = readl(&i2c->iicstat);
reg |= I2CSTAT_MRM | I2CSTAT_RXTXEN;
reg &= (~I2CSTAT_SS);
writel(reg, &i2c->iicstat);
i2c_clear_irq(i2c);
} else { /* S5P4418 */
writel(STOPCON_NAG, &i2c->iicstopcon);
i2c_clear_irq(i2c);
/*
* Clock Line Release --> SDC changes from Low to High and
* SDA from High to Low
*/
writel(STOPCON_CLR, &i2c->iicstopcon);
/* Hold SDA Low (Setup Time for Stop condition) */
udelay(bus->tsu_stop);
i2c_clear_irq(i2c);
/* Master Receive Mode Stop --> SDA becomes High */
writel(I2CSTAT_MRM, &i2c->iicstat);
}
}
static int wait_for_xfer(struct nx_i2c_regs *i2c)
{
unsigned long start_time = get_timer(0);
do {
if (readl(&i2c->iiccon) & I2CCON_IRPND)
/* return -EREMOTEIO if not Acknowledged, otherwise 0 */
return (readl(&i2c->iicstat) & I2CSTAT_NACK) ?
-EREMOTEIO : 0;
} while (get_timer(start_time) < I2C_TIMEOUT_MS);
return -ETIMEDOUT;
}
static int i2c_transfer(struct nx_i2c_regs *i2c,
uchar cmd_type,
uchar chip_addr,
uchar addr[],
uchar addr_len,
uchar data[],
unsigned short data_len,
uint seq)
{
uint status;
int i = 0, result;
/* Note: data_len = 0 is supported for "probe_chip" */
i2c_enable_irq(i2c);
i2c_enable_ack(i2c);
/* Get the slave chip address going */
/* Enable Rx/Tx */
writel(I2CSTAT_RXTXEN, &i2c->iicstat);
writel(chip_addr, &i2c->iicds);
status = I2CSTAT_RXTXEN | I2CSTAT_SS;
if (cmd_type == I2C_WRITE || (addr && addr_len))
status |= I2CSTAT_MTM;
else
status |= I2CSTAT_MRM;
writel(status, &i2c->iicstat);
if (seq)
i2c_clear_irq(i2c);
/* Wait for chip address to transmit. */
result = wait_for_xfer(i2c);
if (result) {
debug("%s: transmitting chip address failed\n", __func__);
goto bailout;
}
/* If register address needs to be transmitted - do it now. */
if (addr && addr_len) { /* register addr */
while ((i < addr_len) && !result) {
writel(addr[i++], &i2c->iicds);
i2c_clear_irq(i2c);
result = wait_for_xfer(i2c);
}
i = 0;
if (result) {
debug("%s: transmitting register address failed\n",
__func__);
goto bailout;
}
}
switch (cmd_type) {
case I2C_WRITE:
while ((i < data_len) && !result) {
writel(data[i++], &i2c->iicds);
i2c_clear_irq(i2c);
result = wait_for_xfer(i2c);
}
break;
case I2C_READ:
if (addr && addr_len) {
/*
* Register address has been sent, now send slave chip
* address again to start the actual read transaction.
*/
writel(chip_addr, &i2c->iicds);
/* Generate a re-START. */
writel(I2CSTAT_MRM | I2CSTAT_RXTXEN |
I2CSTAT_SS, &i2c->iicstat);
i2c_clear_irq(i2c);
result = wait_for_xfer(i2c);
if (result) {
debug("%s: I2C_READ: sending chip addr. failed\n",
__func__);
goto bailout;
}
}
while ((i < data_len) && !result) {
/* disable ACK for final READ */
if (i == data_len - 1)
clrbits_le32(&i2c->iiccon, I2CCON_ACKGEN);
i2c_clear_irq(i2c);
result = wait_for_xfer(i2c);
data[i++] = readb(&i2c->iicds);
}
if (result == -EREMOTEIO)
/* Not Acknowledged --> normal terminated read. */
result = 0;
else if (result == -ETIMEDOUT)
debug("%s: I2C_READ: time out\n", __func__);
else
debug("%s: I2C_READ: read not terminated with NACK\n",
__func__);
break;
default:
debug("%s: bad call\n", __func__);
result = -EINVAL;
break;
}
bailout:
return result;
}
static int nx_i2c_read(struct udevice *dev, uchar chip_addr, uint addr,
uint alen, uchar *buffer, uint len, uint seq)
{
struct nx_i2c_bus *i2c;
uchar xaddr[4];
int ret;
i2c = dev_get_priv(dev);
if (!i2c)
return -EFAULT;
if (alen > 4) {
debug("I2C read: addr len %d not supported\n", alen);
return -EADDRNOTAVAIL;
}
if (alen > 0)
xaddr[0] = (addr >> 24) & 0xFF;
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
ret = i2c_transfer(i2c->regs, I2C_READ, chip_addr << 1,
&xaddr[4 - alen], alen, buffer, len, seq);
if (ret) {
debug("I2C read failed %d\n", ret);
return -EIO;
}
return 0;
}
static int nx_i2c_write(struct udevice *dev, uchar chip_addr, uint addr,
uint alen, uchar *buffer, uint len, uint seq)
{
struct nx_i2c_bus *i2c;
uchar xaddr[4];
int ret;
i2c = dev_get_priv(dev);
if (!i2c)
return -EFAULT;
if (alen > 4) {
debug("I2C write: addr len %d not supported\n", alen);
return -EINVAL;
}
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
ret = i2c_transfer(i2c->regs, I2C_WRITE, chip_addr << 1,
&xaddr[4 - alen], alen, buffer, len, seq);
if (ret) {
debug("I2C write failed %d\n", ret);
return -EIO;
}
return 0;
}
static int nx_i2c_xfer(struct udevice *dev, struct i2c_msg *msg, int nmsgs)
{
struct nx_i2c_bus *bus = dev_get_priv(dev);
struct nx_i2c_regs *i2c = bus->regs;
int ret;
int i;
/* The power loss by the clock, only during on/off. */
ret = i2c_set_clk(bus, 1);
if (!ret)
/* Bus State(Busy) check */
ret = i2c_is_busy(i2c);
if (!ret) {
for (i = 0; i < nmsgs; msg++, i++) {
if (msg->flags & I2C_M_RD) {
ret = nx_i2c_read(dev, msg->addr, 0, 0,
msg->buf, msg->len, i);
} else {
ret = nx_i2c_write(dev, msg->addr, 0, 0,
msg->buf, msg->len, i);
}
if (ret) {
debug("i2c_xfer: error sending\n");
ret = -EREMOTEIO;
}
}
i2c_send_stop(bus);
if (i2c_set_clk(bus, 0))
ret = -EINVAL;
}
return ret;
};
static int nx_i2c_probe_chip(struct udevice *dev, u32 chip_addr,
u32 chip_flags)
{
int ret;
struct nx_i2c_bus *bus = dev_get_priv(dev);
ret = i2c_set_clk(bus, 1);
if (!ret) {
/*
* Send Chip Address only
* --> I2C transfer with data length and address length = 0.
* If there is a Slave, i2c_transfer() returns 0 (acknowledge
* transfer).
* I2C_WRITE must be used in order Master Transmit Mode is
* selected. Otherwise (in Master Receive Mode, I2C_READ)
* sending the stop condition below is not working (SDA does
* not transit to High).
*/
ret = i2c_transfer(bus->regs, I2C_WRITE, (uchar)chip_addr << 1,
NULL, 0, NULL, 0, 0);
i2c_send_stop(bus);
if (i2c_set_clk(bus, 0))
ret = -EINVAL;
}
return ret;
}
static const struct dm_i2c_ops nx_i2c_ops = {
.xfer = nx_i2c_xfer,
.probe_chip = nx_i2c_probe_chip,
.set_bus_speed = nx_i2c_set_bus_speed,
};
static const struct udevice_id nx_i2c_ids[] = {
{ .compatible = "nexell,s5pxx18-i2c" },
{ }
};
U_BOOT_DRIVER(i2c_nexell) = {
.name = "i2c_nexell",
.id = UCLASS_I2C,
.of_match = nx_i2c_ids,
.probe = nx_i2c_probe,
.priv_auto = sizeof(struct nx_i2c_bus),
.ops = &nx_i2c_ops,
};