| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) Excito Elektronik i Skåne AB, 2010. |
| * Author: Tor Krill <tor@excito.com> |
| * |
| * Copyright (C) 2015, 2019 Stefan Roese <sr@denx.de> |
| */ |
| |
| /* |
| * This driver supports the SATA controller of some Mavell SoC's. |
| * Here a (most likely incomplete) list of the supported SoC's: |
| * - Kirkwood |
| * - Armada 370 |
| * - Armada XP |
| * |
| * This driver implementation is an alternative to the already available |
| * driver via the "ide" commands interface (drivers/block/mvsata_ide.c). |
| * But this driver only supports PIO mode and as this new driver also |
| * supports transfer via DMA, its much faster. |
| * |
| * Please note, that the newer SoC's (e.g. Armada 38x) are not supported |
| * by this driver. As they have an AHCI compatible SATA controller |
| * integrated. |
| */ |
| |
| /* |
| * TODO: |
| * Better error recovery |
| * No support for using PRDs (Thus max 64KB transfers) |
| * No NCQ support |
| * No port multiplier support |
| */ |
| |
| #include <ahci.h> |
| #include <blk.h> |
| #include <bootdev.h> |
| #include <cpu_func.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <asm/cache.h> |
| #include <asm/global_data.h> |
| #include <dm/device-internal.h> |
| #include <dm/lists.h> |
| #include <fis.h> |
| #include <libata.h> |
| #include <malloc.h> |
| #include <sata.h> |
| #include <time.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <linux/mbus.h> |
| |
| #include <asm/arch/soc.h> |
| #if defined(CONFIG_ARCH_KIRKWOOD) |
| #define SATAHC_BASE KW_SATA_BASE |
| #else |
| #define SATAHC_BASE MVEBU_AXP_SATA_BASE |
| #endif |
| |
| #define SATA0_BASE (SATAHC_BASE + 0x2000) |
| #define SATA1_BASE (SATAHC_BASE + 0x4000) |
| |
| /* EDMA registers */ |
| #define EDMA_CFG 0x000 |
| #define EDMA_CFG_NCQ (1 << 5) |
| #define EDMA_CFG_EQUE (1 << 9) |
| #define EDMA_TIMER 0x004 |
| #define EDMA_IECR 0x008 |
| #define EDMA_IEMR 0x00c |
| #define EDMA_RQBA_HI 0x010 |
| #define EDMA_RQIPR 0x014 |
| #define EDMA_RQIPR_IPMASK (0x1f << 5) |
| #define EDMA_RQIPR_IPSHIFT 5 |
| #define EDMA_RQOPR 0x018 |
| #define EDMA_RQOPR_OPMASK (0x1f << 5) |
| #define EDMA_RQOPR_OPSHIFT 5 |
| #define EDMA_RSBA_HI 0x01c |
| #define EDMA_RSIPR 0x020 |
| #define EDMA_RSIPR_IPMASK (0x1f << 3) |
| #define EDMA_RSIPR_IPSHIFT 3 |
| #define EDMA_RSOPR 0x024 |
| #define EDMA_RSOPR_OPMASK (0x1f << 3) |
| #define EDMA_RSOPR_OPSHIFT 3 |
| #define EDMA_CMD 0x028 |
| #define EDMA_CMD_ENEDMA (0x01 << 0) |
| #define EDMA_CMD_DISEDMA (0x01 << 1) |
| #define EDMA_CMD_ATARST (0x01 << 2) |
| #define EDMA_CMD_FREEZE (0x01 << 4) |
| #define EDMA_TEST_CTL 0x02c |
| #define EDMA_STATUS 0x030 |
| #define EDMA_IORTO 0x034 |
| #define EDMA_CDTR 0x040 |
| #define EDMA_HLTCND 0x060 |
| #define EDMA_NTSR 0x094 |
| |
| /* Basic DMA registers */ |
| #define BDMA_CMD 0x224 |
| #define BDMA_STATUS 0x228 |
| #define BDMA_DTLB 0x22c |
| #define BDMA_DTHB 0x230 |
| #define BDMA_DRL 0x234 |
| #define BDMA_DRH 0x238 |
| |
| /* SATA Interface registers */ |
| #define SIR_ICFG 0x050 |
| #define SIR_CFG_GEN2EN (0x1 << 7) |
| #define SIR_PLL_CFG 0x054 |
| #define SIR_SSTATUS 0x300 |
| #define SSTATUS_DET_MASK (0x0f << 0) |
| #define SIR_SERROR 0x304 |
| #define SIR_SCONTROL 0x308 |
| #define SIR_SCONTROL_DETEN (0x01 << 0) |
| #define SIR_LTMODE 0x30c |
| #define SIR_LTMODE_NELBE (0x01 << 7) |
| #define SIR_PHYMODE3 0x310 |
| #define SIR_PHYMODE4 0x314 |
| #define SIR_PHYMODE1 0x32c |
| #define SIR_PHYMODE2 0x330 |
| #define SIR_BIST_CTRL 0x334 |
| #define SIR_BIST_DW1 0x338 |
| #define SIR_BIST_DW2 0x33c |
| #define SIR_SERR_IRQ_MASK 0x340 |
| #define SIR_SATA_IFCTRL 0x344 |
| #define SIR_SATA_TESTCTRL 0x348 |
| #define SIR_SATA_IFSTATUS 0x34c |
| #define SIR_VEND_UNIQ 0x35c |
| #define SIR_FIS_CFG 0x360 |
| #define SIR_FIS_IRQ_CAUSE 0x364 |
| #define SIR_FIS_IRQ_MASK 0x368 |
| #define SIR_FIS_DWORD0 0x370 |
| #define SIR_FIS_DWORD1 0x374 |
| #define SIR_FIS_DWORD2 0x378 |
| #define SIR_FIS_DWORD3 0x37c |
| #define SIR_FIS_DWORD4 0x380 |
| #define SIR_FIS_DWORD5 0x384 |
| #define SIR_FIS_DWORD6 0x388 |
| #define SIR_PHYM9_GEN2 0x398 |
| #define SIR_PHYM9_GEN1 0x39c |
| #define SIR_PHY_CFG 0x3a0 |
| #define SIR_PHYCTL 0x3a4 |
| #define SIR_PHYM10 0x3a8 |
| #define SIR_PHYM12 0x3b0 |
| |
| /* Shadow registers */ |
| #define PIO_DATA 0x100 |
| #define PIO_ERR_FEATURES 0x104 |
| #define PIO_SECTOR_COUNT 0x108 |
| #define PIO_LBA_LOW 0x10c |
| #define PIO_LBA_MID 0x110 |
| #define PIO_LBA_HI 0x114 |
| #define PIO_DEVICE 0x118 |
| #define PIO_CMD_STATUS 0x11c |
| #define PIO_STATUS_ERR (0x01 << 0) |
| #define PIO_STATUS_DRQ (0x01 << 3) |
| #define PIO_STATUS_DF (0x01 << 5) |
| #define PIO_STATUS_DRDY (0x01 << 6) |
| #define PIO_STATUS_BSY (0x01 << 7) |
| #define PIO_CTRL_ALTSTAT 0x120 |
| |
| /* SATAHC arbiter registers */ |
| #define SATAHC_CFG 0x000 |
| #define SATAHC_RQOP 0x004 |
| #define SATAHC_RQIP 0x008 |
| #define SATAHC_ICT 0x00c |
| #define SATAHC_ITT 0x010 |
| #define SATAHC_ICR 0x014 |
| #define SATAHC_ICR_PORT0 (0x01 << 0) |
| #define SATAHC_ICR_PORT1 (0x01 << 1) |
| #define SATAHC_MIC 0x020 |
| #define SATAHC_MIM 0x024 |
| #define SATAHC_LED_CFG 0x02c |
| |
| #define REQUEST_QUEUE_SIZE 32 |
| #define RESPONSE_QUEUE_SIZE REQUEST_QUEUE_SIZE |
| |
| struct crqb { |
| u32 dtb_low; /* DW0 */ |
| u32 dtb_high; /* DW1 */ |
| u32 control_flags; /* DW2 */ |
| u32 drb_count; /* DW3 */ |
| u32 ata_cmd_feat; /* DW4 */ |
| u32 ata_addr; /* DW5 */ |
| u32 ata_addr_exp; /* DW6 */ |
| u32 ata_sect_count; /* DW7 */ |
| }; |
| |
| #define CRQB_ALIGN 0x400 |
| |
| #define CRQB_CNTRLFLAGS_DIR (0x01 << 0) |
| #define CRQB_CNTRLFLAGS_DQTAGMASK (0x1f << 1) |
| #define CRQB_CNTRLFLAGS_DQTAGSHIFT 1 |
| #define CRQB_CNTRLFLAGS_PMPORTMASK (0x0f << 12) |
| #define CRQB_CNTRLFLAGS_PMPORTSHIFT 12 |
| #define CRQB_CNTRLFLAGS_PRDMODE (0x01 << 16) |
| #define CRQB_CNTRLFLAGS_HQTAGMASK (0x1f << 17) |
| #define CRQB_CNTRLFLAGS_HQTAGSHIFT 17 |
| |
| #define CRQB_CMDFEAT_CMDMASK (0xff << 16) |
| #define CRQB_CMDFEAT_CMDSHIFT 16 |
| #define CRQB_CMDFEAT_FEATMASK (0xff << 16) |
| #define CRQB_CMDFEAT_FEATSHIFT 24 |
| |
| #define CRQB_ADDR_LBA_LOWMASK (0xff << 0) |
| #define CRQB_ADDR_LBA_LOWSHIFT 0 |
| #define CRQB_ADDR_LBA_MIDMASK (0xff << 8) |
| #define CRQB_ADDR_LBA_MIDSHIFT 8 |
| #define CRQB_ADDR_LBA_HIGHMASK (0xff << 16) |
| #define CRQB_ADDR_LBA_HIGHSHIFT 16 |
| #define CRQB_ADDR_DEVICE_MASK (0xff << 24) |
| #define CRQB_ADDR_DEVICE_SHIFT 24 |
| |
| #define CRQB_ADDR_LBA_LOW_EXP_MASK (0xff << 0) |
| #define CRQB_ADDR_LBA_LOW_EXP_SHIFT 0 |
| #define CRQB_ADDR_LBA_MID_EXP_MASK (0xff << 8) |
| #define CRQB_ADDR_LBA_MID_EXP_SHIFT 8 |
| #define CRQB_ADDR_LBA_HIGH_EXP_MASK (0xff << 16) |
| #define CRQB_ADDR_LBA_HIGH_EXP_SHIFT 16 |
| #define CRQB_ADDR_FEATURE_EXP_MASK (0xff << 24) |
| #define CRQB_ADDR_FEATURE_EXP_SHIFT 24 |
| |
| #define CRQB_SECTCOUNT_COUNT_MASK (0xff << 0) |
| #define CRQB_SECTCOUNT_COUNT_SHIFT 0 |
| #define CRQB_SECTCOUNT_COUNT_EXP_MASK (0xff << 8) |
| #define CRQB_SECTCOUNT_COUNT_EXP_SHIFT 8 |
| |
| #define MVSATA_WIN_CONTROL(w) (SATAHC_BASE + 0x30 + ((w) << 4)) |
| #define MVSATA_WIN_BASE(w) (SATAHC_BASE + 0x34 + ((w) << 4)) |
| |
| struct eprd { |
| u32 phyaddr_low; |
| u32 bytecount_eot; |
| u32 phyaddr_hi; |
| u32 reserved; |
| }; |
| |
| #define EPRD_PHYADDR_MASK 0xfffffffe |
| #define EPRD_BYTECOUNT_MASK 0x0000ffff |
| #define EPRD_EOT (0x01 << 31) |
| |
| struct crpb { |
| u32 id; |
| u32 flags; |
| u32 timestamp; |
| }; |
| |
| #define CRPB_ALIGN 0x100 |
| |
| #define READ_CMD 0 |
| #define WRITE_CMD 1 |
| |
| /* |
| * Since we don't use PRDs yet max transfer size |
| * is 64KB |
| */ |
| #define MV_ATA_MAX_SECTORS (65535 / ATA_SECT_SIZE) |
| |
| /* Keep track if hw is initialized or not */ |
| static u32 hw_init; |
| |
| struct mv_priv { |
| char name[12]; |
| u32 link; |
| u32 regbase; |
| u32 queue_depth; |
| u16 pio; |
| u16 mwdma; |
| u16 udma; |
| int dev_nr; |
| |
| void *crqb_alloc; |
| struct crqb *request; |
| |
| void *crpb_alloc; |
| struct crpb *response; |
| }; |
| |
| static int ata_wait_register(u32 *addr, u32 mask, u32 val, u32 timeout_msec) |
| { |
| ulong start; |
| |
| start = get_timer(0); |
| do { |
| if ((in_le32(addr) & mask) == val) |
| return 0; |
| } while (get_timer(start) < timeout_msec); |
| |
| return -ETIMEDOUT; |
| } |
| |
| /* Cut from sata_mv in linux kernel */ |
| static int mv_stop_edma_engine(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| int i; |
| |
| /* Disable eDMA. The disable bit auto clears. */ |
| out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_DISEDMA); |
| |
| /* Wait for the chip to confirm eDMA is off. */ |
| for (i = 10000; i > 0; i--) { |
| u32 reg = in_le32(priv->regbase + EDMA_CMD); |
| if (!(reg & EDMA_CMD_ENEDMA)) { |
| debug("EDMA stop on port %d succesful\n", port); |
| return 0; |
| } |
| udelay(10); |
| } |
| debug("EDMA stop on port %d failed\n", port); |
| return -1; |
| } |
| |
| static int mv_start_edma_engine(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| /* Check preconditions */ |
| tmp = in_le32(priv->regbase + SIR_SSTATUS); |
| if ((tmp & SSTATUS_DET_MASK) != 0x03) { |
| printf("Device error on port: %d\n", port); |
| return -1; |
| } |
| |
| tmp = in_le32(priv->regbase + PIO_CMD_STATUS); |
| if (tmp & (ATA_BUSY | ATA_DRQ)) { |
| printf("Device not ready on port: %d\n", port); |
| return -1; |
| } |
| |
| /* Clear interrupt cause */ |
| out_le32(priv->regbase + EDMA_IECR, 0x0); |
| |
| tmp = in_le32(SATAHC_BASE + SATAHC_ICR); |
| tmp &= ~(port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1); |
| out_le32(SATAHC_BASE + SATAHC_ICR, tmp); |
| |
| /* Configure edma operation */ |
| tmp = in_le32(priv->regbase + EDMA_CFG); |
| tmp &= ~EDMA_CFG_NCQ; /* No NCQ */ |
| tmp &= ~EDMA_CFG_EQUE; /* Dont queue operations */ |
| out_le32(priv->regbase + EDMA_CFG, tmp); |
| |
| out_le32(priv->regbase + SIR_FIS_IRQ_CAUSE, 0x0); |
| |
| /* Configure fis, set all to no-wait for now */ |
| out_le32(priv->regbase + SIR_FIS_CFG, 0x0); |
| |
| /* Setup request queue */ |
| out_le32(priv->regbase + EDMA_RQBA_HI, 0x0); |
| out_le32(priv->regbase + EDMA_RQIPR, priv->request); |
| out_le32(priv->regbase + EDMA_RQOPR, 0x0); |
| |
| /* Setup response queue */ |
| out_le32(priv->regbase + EDMA_RSBA_HI, 0x0); |
| out_le32(priv->regbase + EDMA_RSOPR, priv->response); |
| out_le32(priv->regbase + EDMA_RSIPR, 0x0); |
| |
| /* Start edma */ |
| out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ENEDMA); |
| |
| return 0; |
| } |
| |
| static int mv_reset_channel(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| |
| /* Make sure edma is stopped */ |
| mv_stop_edma_engine(dev, port); |
| |
| out_le32(priv->regbase + EDMA_CMD, EDMA_CMD_ATARST); |
| udelay(25); /* allow reset propagation */ |
| out_le32(priv->regbase + EDMA_CMD, 0); |
| mdelay(10); |
| |
| return 0; |
| } |
| |
| static void mv_reset_port(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| |
| mv_reset_channel(dev, port); |
| |
| out_le32(priv->regbase + EDMA_CMD, 0x0); |
| out_le32(priv->regbase + EDMA_CFG, 0x101f); |
| out_le32(priv->regbase + EDMA_IECR, 0x0); |
| out_le32(priv->regbase + EDMA_IEMR, 0x0); |
| out_le32(priv->regbase + EDMA_RQBA_HI, 0x0); |
| out_le32(priv->regbase + EDMA_RQIPR, 0x0); |
| out_le32(priv->regbase + EDMA_RQOPR, 0x0); |
| out_le32(priv->regbase + EDMA_RSBA_HI, 0x0); |
| out_le32(priv->regbase + EDMA_RSIPR, 0x0); |
| out_le32(priv->regbase + EDMA_RSOPR, 0x0); |
| out_le32(priv->regbase + EDMA_IORTO, 0xfa); |
| } |
| |
| static void mv_reset_one_hc(void) |
| { |
| out_le32(SATAHC_BASE + SATAHC_ICT, 0x00); |
| out_le32(SATAHC_BASE + SATAHC_ITT, 0x00); |
| out_le32(SATAHC_BASE + SATAHC_ICR, 0x00); |
| } |
| |
| static int probe_port(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| int tries, tries2, set15 = 0; |
| u32 tmp; |
| |
| debug("Probe port: %d\n", port); |
| |
| for (tries = 0; tries < 2; tries++) { |
| /* Clear SError */ |
| out_le32(priv->regbase + SIR_SERROR, 0x0); |
| |
| /* trigger com-init */ |
| tmp = in_le32(priv->regbase + SIR_SCONTROL); |
| tmp = (tmp & 0x0f0) | 0x300 | SIR_SCONTROL_DETEN; |
| out_le32(priv->regbase + SIR_SCONTROL, tmp); |
| |
| mdelay(1); |
| |
| tmp = in_le32(priv->regbase + SIR_SCONTROL); |
| tries2 = 5; |
| do { |
| tmp = (tmp & 0x0f0) | 0x300; |
| out_le32(priv->regbase + SIR_SCONTROL, tmp); |
| mdelay(10); |
| tmp = in_le32(priv->regbase + SIR_SCONTROL); |
| } while ((tmp & 0xf0f) != 0x300 && tries2--); |
| |
| mdelay(10); |
| |
| for (tries2 = 0; tries2 < 200; tries2++) { |
| tmp = in_le32(priv->regbase + SIR_SSTATUS); |
| if ((tmp & SSTATUS_DET_MASK) == 0x03) { |
| debug("Found device on port\n"); |
| return 0; |
| } |
| mdelay(1); |
| } |
| |
| if ((tmp & SSTATUS_DET_MASK) == 0) { |
| debug("No device attached on port %d\n", port); |
| return -ENODEV; |
| } |
| |
| if (!set15) { |
| /* Try on 1.5Gb/S */ |
| debug("Try 1.5Gb link\n"); |
| set15 = 1; |
| out_le32(priv->regbase + SIR_SCONTROL, 0x304); |
| |
| tmp = in_le32(priv->regbase + SIR_ICFG); |
| tmp &= ~SIR_CFG_GEN2EN; |
| out_le32(priv->regbase + SIR_ICFG, tmp); |
| |
| mv_reset_channel(dev, port); |
| } |
| } |
| |
| debug("Failed to probe port\n"); |
| return -1; |
| } |
| |
| /* Get request queue in pointer */ |
| static int get_reqip(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| tmp = in_le32(priv->regbase + EDMA_RQIPR) & EDMA_RQIPR_IPMASK; |
| tmp = tmp >> EDMA_RQIPR_IPSHIFT; |
| |
| return tmp; |
| } |
| |
| static void set_reqip(struct udevice *dev, int port, int reqin) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| tmp = in_le32(priv->regbase + EDMA_RQIPR) & ~EDMA_RQIPR_IPMASK; |
| tmp |= ((reqin << EDMA_RQIPR_IPSHIFT) & EDMA_RQIPR_IPMASK); |
| out_le32(priv->regbase + EDMA_RQIPR, tmp); |
| } |
| |
| /* Get next available slot, ignoring possible overwrite */ |
| static int get_next_reqip(struct udevice *dev, int port) |
| { |
| int slot = get_reqip(dev, port); |
| slot = (slot + 1) % REQUEST_QUEUE_SIZE; |
| return slot; |
| } |
| |
| /* Get response queue in pointer */ |
| static int get_rspip(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| tmp = in_le32(priv->regbase + EDMA_RSIPR) & EDMA_RSIPR_IPMASK; |
| tmp = tmp >> EDMA_RSIPR_IPSHIFT; |
| |
| return tmp; |
| } |
| |
| /* Get response queue out pointer */ |
| static int get_rspop(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| tmp = in_le32(priv->regbase + EDMA_RSOPR) & EDMA_RSOPR_OPMASK; |
| tmp = tmp >> EDMA_RSOPR_OPSHIFT; |
| return tmp; |
| } |
| |
| /* Get next response queue pointer */ |
| static int get_next_rspop(struct udevice *dev, int port) |
| { |
| return (get_rspop(dev, port) + 1) % RESPONSE_QUEUE_SIZE; |
| } |
| |
| /* Set response queue pointer */ |
| static void set_rspop(struct udevice *dev, int port, int reqin) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| u32 tmp; |
| |
| tmp = in_le32(priv->regbase + EDMA_RSOPR) & ~EDMA_RSOPR_OPMASK; |
| tmp |= ((reqin << EDMA_RSOPR_OPSHIFT) & EDMA_RSOPR_OPMASK); |
| |
| out_le32(priv->regbase + EDMA_RSOPR, tmp); |
| } |
| |
| static int wait_dma_completion(struct udevice *dev, int port, int index, |
| u32 timeout_msec) |
| { |
| u32 tmp, res; |
| |
| tmp = port == 0 ? SATAHC_ICR_PORT0 : SATAHC_ICR_PORT1; |
| res = ata_wait_register((u32 *)(SATAHC_BASE + SATAHC_ICR), tmp, |
| tmp, timeout_msec); |
| if (res) |
| printf("Failed to wait for completion on port %d\n", port); |
| |
| return res; |
| } |
| |
| static void process_responses(struct udevice *dev, int port) |
| { |
| #ifdef DEBUG |
| struct mv_priv *priv = dev_get_plat(dev); |
| #endif |
| u32 tmp; |
| u32 outind = get_rspop(dev, port); |
| |
| /* Ack interrupts */ |
| tmp = in_le32(SATAHC_BASE + SATAHC_ICR); |
| if (port == 0) |
| tmp &= ~(BIT(0) | BIT(8)); |
| else |
| tmp &= ~(BIT(1) | BIT(9)); |
| tmp &= ~(BIT(4)); |
| out_le32(SATAHC_BASE + SATAHC_ICR, tmp); |
| |
| while (get_rspip(dev, port) != outind) { |
| #ifdef DEBUG |
| debug("Response index %d flags %08x on port %d\n", outind, |
| priv->response[outind].flags, port); |
| #endif |
| outind = get_next_rspop(dev, port); |
| set_rspop(dev, port, outind); |
| } |
| } |
| |
| static int mv_ata_exec_ata_cmd(struct udevice *dev, int port, |
| struct sata_fis_h2d *cfis, |
| u8 *buffer, u32 len, u32 iswrite) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| struct crqb *req; |
| int slot; |
| u32 start; |
| |
| if (len >= 64 * 1024) { |
| printf("We only support <64K transfers for now\n"); |
| return -1; |
| } |
| |
| /* Initialize request */ |
| slot = get_reqip(dev, port); |
| memset(&priv->request[slot], 0, sizeof(struct crqb)); |
| req = &priv->request[slot]; |
| |
| req->dtb_low = (u32)buffer; |
| |
| /* Dont use PRDs */ |
| req->control_flags = CRQB_CNTRLFLAGS_PRDMODE; |
| req->control_flags |= iswrite ? 0 : CRQB_CNTRLFLAGS_DIR; |
| req->control_flags |= |
| ((cfis->pm_port_c << CRQB_CNTRLFLAGS_PMPORTSHIFT) |
| & CRQB_CNTRLFLAGS_PMPORTMASK); |
| |
| req->drb_count = len; |
| |
| req->ata_cmd_feat = (cfis->command << CRQB_CMDFEAT_CMDSHIFT) & |
| CRQB_CMDFEAT_CMDMASK; |
| req->ata_cmd_feat |= (cfis->features << CRQB_CMDFEAT_FEATSHIFT) & |
| CRQB_CMDFEAT_FEATMASK; |
| |
| req->ata_addr = (cfis->lba_low << CRQB_ADDR_LBA_LOWSHIFT) & |
| CRQB_ADDR_LBA_LOWMASK; |
| req->ata_addr |= (cfis->lba_mid << CRQB_ADDR_LBA_MIDSHIFT) & |
| CRQB_ADDR_LBA_MIDMASK; |
| req->ata_addr |= (cfis->lba_high << CRQB_ADDR_LBA_HIGHSHIFT) & |
| CRQB_ADDR_LBA_HIGHMASK; |
| req->ata_addr |= (cfis->device << CRQB_ADDR_DEVICE_SHIFT) & |
| CRQB_ADDR_DEVICE_MASK; |
| |
| req->ata_addr_exp = (cfis->lba_low_exp << CRQB_ADDR_LBA_LOW_EXP_SHIFT) & |
| CRQB_ADDR_LBA_LOW_EXP_MASK; |
| req->ata_addr_exp |= |
| (cfis->lba_mid_exp << CRQB_ADDR_LBA_MID_EXP_SHIFT) & |
| CRQB_ADDR_LBA_MID_EXP_MASK; |
| req->ata_addr_exp |= |
| (cfis->lba_high_exp << CRQB_ADDR_LBA_HIGH_EXP_SHIFT) & |
| CRQB_ADDR_LBA_HIGH_EXP_MASK; |
| req->ata_addr_exp |= |
| (cfis->features_exp << CRQB_ADDR_FEATURE_EXP_SHIFT) & |
| CRQB_ADDR_FEATURE_EXP_MASK; |
| |
| req->ata_sect_count = |
| (cfis->sector_count << CRQB_SECTCOUNT_COUNT_SHIFT) & |
| CRQB_SECTCOUNT_COUNT_MASK; |
| req->ata_sect_count |= |
| (cfis->sector_count_exp << CRQB_SECTCOUNT_COUNT_EXP_SHIFT) & |
| CRQB_SECTCOUNT_COUNT_EXP_MASK; |
| |
| /* Flush data */ |
| start = (u32)req & ~(ARCH_DMA_MINALIGN - 1); |
| flush_dcache_range(start, |
| start + ALIGN(sizeof(*req), ARCH_DMA_MINALIGN)); |
| |
| /* Trigger operation */ |
| slot = get_next_reqip(dev, port); |
| set_reqip(dev, port, slot); |
| |
| /* Wait for completion */ |
| if (wait_dma_completion(dev, port, slot, 10000)) { |
| printf("ATA operation timed out\n"); |
| return -1; |
| } |
| |
| process_responses(dev, port); |
| |
| /* Invalidate data on read */ |
| if (buffer && len) { |
| start = (u32)buffer & ~(ARCH_DMA_MINALIGN - 1); |
| invalidate_dcache_range(start, |
| start + ALIGN(len, ARCH_DMA_MINALIGN)); |
| } |
| |
| return len; |
| } |
| |
| static u32 mv_sata_rw_cmd_ext(struct udevice *dev, int port, lbaint_t start, |
| u32 blkcnt, |
| u8 *buffer, int is_write) |
| { |
| struct sata_fis_h2d cfis; |
| u32 res; |
| u64 block; |
| |
| block = (u64)start; |
| |
| memset(&cfis, 0, sizeof(struct sata_fis_h2d)); |
| |
| cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D; |
| cfis.command = (is_write) ? ATA_CMD_WRITE_EXT : ATA_CMD_READ_EXT; |
| |
| cfis.lba_high_exp = (block >> 40) & 0xff; |
| cfis.lba_mid_exp = (block >> 32) & 0xff; |
| cfis.lba_low_exp = (block >> 24) & 0xff; |
| cfis.lba_high = (block >> 16) & 0xff; |
| cfis.lba_mid = (block >> 8) & 0xff; |
| cfis.lba_low = block & 0xff; |
| cfis.device = ATA_LBA; |
| cfis.sector_count_exp = (blkcnt >> 8) & 0xff; |
| cfis.sector_count = blkcnt & 0xff; |
| |
| res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer, |
| ATA_SECT_SIZE * blkcnt, is_write); |
| |
| return res >= 0 ? blkcnt : res; |
| } |
| |
| static u32 mv_sata_rw_cmd(struct udevice *dev, int port, lbaint_t start, |
| u32 blkcnt, u8 *buffer, int is_write) |
| { |
| struct sata_fis_h2d cfis; |
| lbaint_t block; |
| u32 res; |
| |
| block = start; |
| |
| memset(&cfis, 0, sizeof(struct sata_fis_h2d)); |
| |
| cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D; |
| cfis.command = (is_write) ? ATA_CMD_WRITE : ATA_CMD_READ; |
| cfis.device = ATA_LBA; |
| |
| cfis.device |= (block >> 24) & 0xf; |
| cfis.lba_high = (block >> 16) & 0xff; |
| cfis.lba_mid = (block >> 8) & 0xff; |
| cfis.lba_low = block & 0xff; |
| cfis.sector_count = (u8)(blkcnt & 0xff); |
| |
| res = mv_ata_exec_ata_cmd(dev, port, &cfis, buffer, |
| ATA_SECT_SIZE * blkcnt, is_write); |
| |
| return res >= 0 ? blkcnt : res; |
| } |
| |
| static u32 ata_low_level_rw(struct udevice *dev, int port, lbaint_t blknr, |
| lbaint_t blkcnt, void *buffer, int is_write) |
| { |
| struct blk_desc *desc = dev_get_uclass_plat(dev); |
| lbaint_t start, blks; |
| u8 *addr; |
| int max_blks; |
| |
| debug("%s: " LBAFU " " LBAFU "\n", __func__, blknr, blkcnt); |
| |
| start = blknr; |
| blks = blkcnt; |
| addr = (u8 *)buffer; |
| |
| max_blks = MV_ATA_MAX_SECTORS; |
| do { |
| if (blks > max_blks) { |
| if (desc->lba48) { |
| mv_sata_rw_cmd_ext(dev, port, start, max_blks, |
| addr, is_write); |
| } else { |
| mv_sata_rw_cmd(dev, port, start, max_blks, |
| addr, is_write); |
| } |
| start += max_blks; |
| blks -= max_blks; |
| addr += ATA_SECT_SIZE * max_blks; |
| } else { |
| if (desc->lba48) { |
| mv_sata_rw_cmd_ext(dev, port, start, blks, addr, |
| is_write); |
| } else { |
| mv_sata_rw_cmd(dev, port, start, blks, addr, |
| is_write); |
| } |
| start += blks; |
| blks = 0; |
| addr += ATA_SECT_SIZE * blks; |
| } |
| } while (blks != 0); |
| |
| return blkcnt; |
| } |
| |
| static int mv_ata_exec_ata_cmd_nondma(struct udevice *dev, int port, |
| struct sata_fis_h2d *cfis, u8 *buffer, |
| u32 len, u32 iswrite) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| int i; |
| u16 *tp; |
| |
| debug("%s\n", __func__); |
| |
| out_le32(priv->regbase + PIO_SECTOR_COUNT, cfis->sector_count); |
| out_le32(priv->regbase + PIO_LBA_HI, cfis->lba_high); |
| out_le32(priv->regbase + PIO_LBA_MID, cfis->lba_mid); |
| out_le32(priv->regbase + PIO_LBA_LOW, cfis->lba_low); |
| out_le32(priv->regbase + PIO_ERR_FEATURES, cfis->features); |
| out_le32(priv->regbase + PIO_DEVICE, cfis->device); |
| out_le32(priv->regbase + PIO_CMD_STATUS, cfis->command); |
| |
| if (ata_wait_register((u32 *)(priv->regbase + PIO_CMD_STATUS), |
| ATA_BUSY, 0x0, 10000)) { |
| debug("Failed to wait for completion\n"); |
| return -1; |
| } |
| |
| if (len > 0) { |
| tp = (u16 *)buffer; |
| for (i = 0; i < len / 2; i++) { |
| if (iswrite) |
| out_le16(priv->regbase + PIO_DATA, *tp++); |
| else |
| *tp++ = in_le16(priv->regbase + PIO_DATA); |
| } |
| } |
| |
| return len; |
| } |
| |
| static int mv_sata_identify(struct udevice *dev, int port, u16 *id) |
| { |
| struct sata_fis_h2d h2d; |
| int len; |
| |
| memset(&h2d, 0, sizeof(struct sata_fis_h2d)); |
| |
| h2d.fis_type = SATA_FIS_TYPE_REGISTER_H2D; |
| h2d.command = ATA_CMD_ID_ATA; |
| |
| /* Give device time to get operational */ |
| mdelay(10); |
| |
| /* During cold start, with some HDDs, the first ATA ID command does |
| * not populate the ID words. In fact, the first ATA ID |
| * command will only power up the drive, and then the ATA ID command |
| * processing is lost in the process. |
| */ |
| len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id, |
| ATA_ID_WORDS * 2, READ_CMD); |
| |
| /* If drive capacity has been filled in, then it was successfully |
| * identified (the drive has been powered up before, i.e. |
| * this function is invoked during a reboot) |
| */ |
| if (ata_id_n_sectors(id) != 0) |
| return len; |
| |
| /* Issue the 2nd ATA ID command to make sure the ID words are |
| * populated properly. |
| */ |
| mdelay(10); |
| len = mv_ata_exec_ata_cmd_nondma(dev, port, &h2d, (u8 *)id, |
| ATA_ID_WORDS * 2, READ_CMD); |
| if (ata_id_n_sectors(id) != 0) |
| return len; |
| |
| printf("Err: Failed to identify SATA device %d\n", port); |
| return -ENODEV; |
| } |
| |
| static void mv_sata_xfer_mode(struct udevice *dev, int port, u16 *id) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| |
| priv->pio = id[ATA_ID_PIO_MODES]; |
| priv->mwdma = id[ATA_ID_MWDMA_MODES]; |
| priv->udma = id[ATA_ID_UDMA_MODES]; |
| debug("pio %04x, mwdma %04x, udma %04x\n", priv->pio, priv->mwdma, |
| priv->udma); |
| } |
| |
| static void mv_sata_set_features(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| struct sata_fis_h2d cfis; |
| u8 udma_cap; |
| |
| memset(&cfis, 0, sizeof(struct sata_fis_h2d)); |
| |
| cfis.fis_type = SATA_FIS_TYPE_REGISTER_H2D; |
| cfis.command = ATA_CMD_SET_FEATURES; |
| cfis.features = SETFEATURES_XFER; |
| |
| /* First check the device capablity */ |
| udma_cap = (u8) (priv->udma & 0xff); |
| |
| if (udma_cap == ATA_UDMA6) |
| cfis.sector_count = XFER_UDMA_6; |
| if (udma_cap == ATA_UDMA5) |
| cfis.sector_count = XFER_UDMA_5; |
| if (udma_cap == ATA_UDMA4) |
| cfis.sector_count = XFER_UDMA_4; |
| if (udma_cap == ATA_UDMA3) |
| cfis.sector_count = XFER_UDMA_3; |
| |
| mv_ata_exec_ata_cmd_nondma(dev, port, &cfis, NULL, 0, READ_CMD); |
| } |
| |
| /* |
| * Initialize SATA memory windows |
| */ |
| static void mvsata_ide_conf_mbus_windows(void) |
| { |
| const struct mbus_dram_target_info *dram; |
| int i; |
| |
| dram = mvebu_mbus_dram_info(); |
| |
| /* Disable windows, Set Size/Base to 0 */ |
| for (i = 0; i < 4; i++) { |
| writel(0, MVSATA_WIN_CONTROL(i)); |
| writel(0, MVSATA_WIN_BASE(i)); |
| } |
| |
| for (i = 0; i < dram->num_cs; i++) { |
| const struct mbus_dram_window *cs = dram->cs + i; |
| writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | |
| (dram->mbus_dram_target_id << 4) | 1, |
| MVSATA_WIN_CONTROL(i)); |
| writel(cs->base & 0xffff0000, MVSATA_WIN_BASE(i)); |
| } |
| } |
| |
| static int sata_mv_init_sata(struct udevice *dev, int port) |
| { |
| struct mv_priv *priv = dev_get_plat(dev); |
| |
| debug("Initialize sata dev: %d\n", port); |
| |
| if (port < 0 || port >= CONFIG_SYS_SATA_MAX_DEVICE) { |
| printf("Invalid sata device %d\n", port); |
| return -1; |
| } |
| |
| /* Allocate and align request buffer */ |
| priv->crqb_alloc = malloc(sizeof(struct crqb) * REQUEST_QUEUE_SIZE + |
| CRQB_ALIGN); |
| if (!priv->crqb_alloc) { |
| printf("Unable to allocate memory for request queue\n"); |
| return -ENOMEM; |
| } |
| memset(priv->crqb_alloc, 0, |
| sizeof(struct crqb) * REQUEST_QUEUE_SIZE + CRQB_ALIGN); |
| priv->request = (struct crqb *)(((u32) priv->crqb_alloc + CRQB_ALIGN) & |
| ~(CRQB_ALIGN - 1)); |
| |
| /* Allocate and align response buffer */ |
| priv->crpb_alloc = malloc(sizeof(struct crpb) * REQUEST_QUEUE_SIZE + |
| CRPB_ALIGN); |
| if (!priv->crpb_alloc) { |
| printf("Unable to allocate memory for response queue\n"); |
| return -ENOMEM; |
| } |
| memset(priv->crpb_alloc, 0, |
| sizeof(struct crpb) * REQUEST_QUEUE_SIZE + CRPB_ALIGN); |
| priv->response = (struct crpb *)(((u32) priv->crpb_alloc + CRPB_ALIGN) & |
| ~(CRPB_ALIGN - 1)); |
| |
| sprintf(priv->name, "SATA%d", port); |
| |
| priv->regbase = port == 0 ? SATA0_BASE : SATA1_BASE; |
| |
| if (!hw_init) { |
| debug("Initialize sata hw\n"); |
| hw_init = 1; |
| mv_reset_one_hc(); |
| mvsata_ide_conf_mbus_windows(); |
| } |
| |
| mv_reset_port(dev, port); |
| |
| if (probe_port(dev, port)) { |
| priv->link = 0; |
| return -ENODEV; |
| } |
| priv->link = 1; |
| |
| return 0; |
| } |
| |
| static int sata_mv_scan_sata(struct udevice *dev, int port) |
| { |
| struct blk_desc *desc = dev_get_uclass_plat(dev); |
| struct mv_priv *priv = dev_get_plat(dev); |
| unsigned char serial[ATA_ID_SERNO_LEN + 1]; |
| unsigned char firmware[ATA_ID_FW_REV_LEN + 1]; |
| unsigned char product[ATA_ID_PROD_LEN + 1]; |
| u64 n_sectors; |
| u16 *id; |
| |
| if (!priv->link) |
| return -ENODEV; |
| |
| id = (u16 *)malloc(ATA_ID_WORDS * 2); |
| if (!id) { |
| printf("Failed to malloc id data\n"); |
| return -ENOMEM; |
| } |
| |
| mv_sata_identify(dev, port, id); |
| ata_swap_buf_le16(id, ATA_ID_WORDS); |
| #ifdef DEBUG |
| ata_dump_id(id); |
| #endif |
| |
| /* Serial number */ |
| ata_id_c_string(id, serial, ATA_ID_SERNO, sizeof(serial)); |
| memcpy(desc->product, serial, sizeof(serial)); |
| |
| /* Firmware version */ |
| ata_id_c_string(id, firmware, ATA_ID_FW_REV, sizeof(firmware)); |
| memcpy(desc->revision, firmware, sizeof(firmware)); |
| |
| /* Product model */ |
| ata_id_c_string(id, product, ATA_ID_PROD, sizeof(product)); |
| memcpy(desc->vendor, product, sizeof(product)); |
| |
| /* Total sectors */ |
| n_sectors = ata_id_n_sectors(id); |
| desc->lba = n_sectors; |
| |
| /* Check if support LBA48 */ |
| if (ata_id_has_lba48(id)) { |
| desc->lba48 = 1; |
| debug("Device support LBA48\n"); |
| } |
| |
| /* Get the NCQ queue depth from device */ |
| priv->queue_depth = ata_id_queue_depth(id); |
| |
| /* Get the xfer mode from device */ |
| mv_sata_xfer_mode(dev, port, id); |
| |
| /* Set the xfer mode to highest speed */ |
| mv_sata_set_features(dev, port); |
| |
| /* Start up */ |
| mv_start_edma_engine(dev, port); |
| |
| return 0; |
| } |
| |
| static ulong sata_mv_read(struct udevice *blk, lbaint_t blknr, |
| lbaint_t blkcnt, void *buffer) |
| { |
| struct mv_priv *priv = dev_get_plat(blk); |
| |
| return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt, |
| buffer, READ_CMD); |
| } |
| |
| static ulong sata_mv_write(struct udevice *blk, lbaint_t blknr, |
| lbaint_t blkcnt, const void *buffer) |
| { |
| struct mv_priv *priv = dev_get_plat(blk); |
| |
| return ata_low_level_rw(blk, priv->dev_nr, blknr, blkcnt, |
| (void *)buffer, WRITE_CMD); |
| } |
| |
| static const struct blk_ops sata_mv_blk_ops = { |
| .read = sata_mv_read, |
| .write = sata_mv_write, |
| }; |
| |
| U_BOOT_DRIVER(sata_mv_driver) = { |
| .name = "sata_mv_blk", |
| .id = UCLASS_BLK, |
| .ops = &sata_mv_blk_ops, |
| .plat_auto = sizeof(struct mv_priv), |
| }; |
| |
| static int sata_mv_probe(struct udevice *dev) |
| { |
| const void *blob = gd->fdt_blob; |
| int node = dev_of_offset(dev); |
| struct mv_priv *priv; |
| struct udevice *blk; |
| int nr_ports; |
| int ret; |
| int i; |
| int status = -ENODEV; /* If the probe fails to detected any SATA port */ |
| |
| /* Get number of ports of this SATA controller */ |
| nr_ports = min(fdtdec_get_int(blob, node, "nr-ports", -1), |
| CONFIG_SYS_SATA_MAX_DEVICE); |
| |
| for (i = 0; i < nr_ports; i++) { |
| ret = blk_create_devicef(dev, "sata_mv_blk", "blk", |
| UCLASS_AHCI, -1, DEFAULT_BLKSZ, |
| 0, &blk); |
| if (ret) { |
| debug("Can't create device\n"); |
| continue; |
| } |
| |
| priv = dev_get_plat(blk); |
| priv->dev_nr = i; |
| |
| /* Init SATA port */ |
| ret = sata_mv_init_sata(blk, i); |
| if (ret) { |
| debug("%s: Failed to init bus\n", __func__); |
| continue; |
| } |
| |
| /* Scan SATA port */ |
| ret = sata_mv_scan_sata(blk, i); |
| if (ret) { |
| debug("%s: Failed to scan bus\n", __func__); |
| continue; |
| } |
| |
| ret = blk_probe_or_unbind(dev); |
| if (ret < 0) |
| /* TODO: undo create */ |
| continue; |
| |
| ret = bootdev_setup_for_sibling_blk(blk, "sata_bootdev"); |
| if (ret) { |
| printf("%s: Failed to create bootdev\n", __func__); |
| continue; |
| } |
| |
| /* If we got here, the current SATA port was probed |
| * successfully, so set the probe status to successful. |
| */ |
| status = 0; |
| } |
| |
| return status; |
| } |
| |
| static int sata_mv_scan(struct udevice *dev) |
| { |
| /* Nothing to do here */ |
| return 0; |
| } |
| |
| static const struct udevice_id sata_mv_ids[] = { |
| { .compatible = "marvell,armada-370-sata" }, |
| { .compatible = "marvell,orion-sata" }, |
| { } |
| }; |
| |
| struct ahci_ops sata_mv_ahci_ops = { |
| .scan = sata_mv_scan, |
| }; |
| |
| U_BOOT_DRIVER(sata_mv_ahci) = { |
| .name = "sata_mv_ahci", |
| .id = UCLASS_AHCI, |
| .of_match = sata_mv_ids, |
| .ops = &sata_mv_ahci_ops, |
| .probe = sata_mv_probe, |
| }; |