mtd: nand: zynq_nand: Add nand driver support for zynq

Add nand flash controller driver support for zynq SoC.

Signed-off-by: Siva Durga Prasad Paladugu <sivadur@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index df154bf..65bb040 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -87,6 +87,13 @@
 	  This enables NAND driver for the NAND flash controller on the
 	  MXS processors.
 
+config NAND_ZYNQ
+	bool "Support for Zynq Nand controller"
+	select SYS_NAND_SELF_INIT
+	help
+	  This enables Nand driver support for Nand flash controller
+	  found on Zynq SoC.
+
 comment "Generic NAND options"
 
 # Enhance depends when converting drivers to Kconfig which use this config
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 1df9273..fd4bb66 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -67,6 +67,7 @@
 obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o
 obj-$(CONFIG_NAND_PLAT) += nand_plat.o
 obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o
+obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o
 
 else  # minimal SPL drivers
 
diff --git a/drivers/mtd/nand/zynq_nand.c b/drivers/mtd/nand/zynq_nand.c
new file mode 100644
index 0000000..cb3340d
--- /dev/null
+++ b/drivers/mtd/nand/zynq_nand.c
@@ -0,0 +1,1186 @@
+/*
+ * (C) Copyright 2016 Xilinx, Inc.
+ *
+ * Xilinx Zynq NAND Flash Controller Driver
+ * This driver is based on plat_nand.c and mxc_nand.c drivers
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/arch/hardware.h>
+
+/* The NAND flash driver defines */
+#define ZYNQ_NAND_CMD_PHASE		1
+#define ZYNQ_NAND_DATA_PHASE		2
+#define ZYNQ_NAND_ECC_SIZE		512
+#define ZYNQ_NAND_SET_OPMODE_8BIT	(0 << 0)
+#define ZYNQ_NAND_SET_OPMODE_16BIT	(1 << 0)
+#define ZYNQ_NAND_ECC_STATUS		(1 << 6)
+#define ZYNQ_MEMC_CLRCR_INT_CLR1	(1 << 4)
+#define ZYNQ_MEMC_SR_RAW_INT_ST1	(1 << 6)
+#define ZYNQ_MEMC_SR_INT_ST1		(1 << 4)
+#define ZYNQ_MEMC_NAND_ECC_MODE_MASK	0xC
+
+/* Flash memory controller operating parameters */
+#define ZYNQ_NAND_CLR_CONFIG	((0x1 << 1)  |	/* Disable interrupt */ \
+				(0x1 << 4)   |	/* Clear interrupt */ \
+				(0x1 << 6))	/* Disable ECC interrupt */
+
+/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
+#define ZYNQ_NAND_SET_CYCLES	((0x2 << 20) |	/* t_rr from nand_cycles */ \
+				(0x2 << 17)  |	/* t_ar from nand_cycles */ \
+				(0x1 << 14)  |	/* t_clr from nand_cycles */ \
+				(0x3 << 11)  |	/* t_wp from nand_cycles */ \
+				(0x2 << 8)   |	/* t_rea from nand_cycles */ \
+				(0x5 << 4)   |	/* t_wc from nand_cycles */ \
+				(0x5 << 0))	/* t_rc from nand_cycles */
+
+
+#define ZYNQ_NAND_DIRECT_CMD	((0x4 << 23) |	/* Chip 0 from interface 1 */ \
+				(0x2 << 21))	/* UpdateRegs operation */
+
+#define ZYNQ_NAND_ECC_CONFIG	((0x1 << 2)  |	/* ECC available on APB */ \
+				(0x1 << 4)   |	/* ECC read at end of page */ \
+				(0x0 << 5))	/* No Jumping */
+
+#define ZYNQ_NAND_ECC_CMD1	((0x80)      |	/* Write command */ \
+				(0x00 << 8)  |	/* Read command */ \
+				(0x30 << 16) |	/* Read End command */ \
+				(0x1 << 24))	/* Read End command calid */
+
+#define ZYNQ_NAND_ECC_CMD2	((0x85)      |	/* Write col change cmd */ \
+				(0x05 << 8)  |	/* Read col change cmd */ \
+				(0xE0 << 16) |	/* Read col change end cmd */ \
+				(0x1 << 24))	/* Read col change
+							end cmd valid */
+/* AXI Address definitions */
+#define START_CMD_SHIFT			3
+#define END_CMD_SHIFT			11
+#define END_CMD_VALID_SHIFT		20
+#define ADDR_CYCLES_SHIFT		21
+#define CLEAR_CS_SHIFT			21
+#define ECC_LAST_SHIFT			10
+#define COMMAND_PHASE			(0 << 19)
+#define DATA_PHASE			(1 << 19)
+#define ONDIE_ECC_FEATURE_ADDR		0x90
+#define ONDIE_ECC_FEATURE_ENABLE	0x08
+
+#define ZYNQ_NAND_ECC_LAST	(1 << ECC_LAST_SHIFT)	/* Set ECC_Last */
+#define ZYNQ_NAND_CLEAR_CS	(1 << CLEAR_CS_SHIFT)	/* Clear chip select */
+
+/* ECC block registers bit position and bit mask */
+#define ZYNQ_NAND_ECC_BUSY	(1 << 6)	/* ECC block is busy */
+#define ZYNQ_NAND_ECC_MASK	0x00FFFFFF	/* ECC value mask */
+
+
+/* SMC register set */
+struct zynq_nand_smc_regs {
+	u32 csr;		/* 0x00 */
+	u32 reserved0[2];
+	u32 cfr;		/* 0x0C */
+	u32 dcr;		/* 0x10 */
+	u32 scr;		/* 0x14 */
+	u32 sor;		/* 0x18 */
+	u32 reserved1[249];
+	u32 esr;		/* 0x400 */
+	u32 emcr;		/* 0x404 */
+	u32 emcmd1r;		/* 0x408 */
+	u32 emcmd2r;		/* 0x40C */
+	u32 reserved2[2];
+	u32 eval0r;		/* 0x418 */
+};
+#define zynq_nand_smc_base	((struct zynq_nand_smc_regs __iomem *)\
+				ZYNQ_SMC_BASEADDR)
+
+/*
+ * struct zynq_nand_info - Defines the NAND flash driver instance
+ * @parts:		Pointer to the mtd_partition structure
+ * @nand_base:		Virtual address of the NAND flash device
+ * @end_cmd_pending:	End command is pending
+ * @end_cmd:		End command
+ */
+struct zynq_nand_info {
+	void __iomem	*nand_base;
+	u8		end_cmd_pending;
+	u8		end_cmd;
+};
+
+/*
+ * struct zynq_nand_command_format - Defines NAND flash command format
+ * @start_cmd:		First cycle command (Start command)
+ * @end_cmd:		Second cycle command (Last command)
+ * @addr_cycles:	Number of address cycles required to send the address
+ * @end_cmd_valid:	The second cycle command is valid for cmd or data phase
+ */
+struct zynq_nand_command_format {
+	u8 start_cmd;
+	u8 end_cmd;
+	u8 addr_cycles;
+	u8 end_cmd_valid;
+};
+
+/*  The NAND flash operations command format */
+static const struct zynq_nand_command_format zynq_nand_commands[] = {
+	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
+	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
+	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
+	/* Add all the flash commands supported by the flash device */
+};
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_16 = {
+	.eccbytes = 3,
+	.eccpos = {0, 1, 2},
+	.oobfree = {
+		{ .offset = 8, .length = 8 }
+	}
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+	.eccbytes = 12,
+	.eccpos = {
+		   52, 53, 54, 55, 56, 57,
+		   58, 59, 60, 61, 62, 63},
+	.oobfree = {
+		{ .offset = 2, .length = 50 }
+	}
+};
+
+static struct nand_ecclayout ondie_nand_oob_64 = {
+	.eccbytes = 32,
+
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		56, 57, 58, 59, 60, 61, 62, 63
+	},
+
+	.oobfree = {
+		{ .offset = 4, .length = 4 },
+		{ .offset = 20, .length = 4 },
+		{ .offset = 36, .length = 4 },
+		{ .offset = 52, .length = 4 }
+	}
+};
+
+/* bbt decriptors for chips with on-die ECC and
+   chips with 64-byte OOB */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+/*
+ * zynq_nand_waitfor_ecc_completion - Wait for ECC completion
+ *
+ * returns: status for command completion, -1 for Timeout
+ */
+static int zynq_nand_waitfor_ecc_completion(void)
+{
+	unsigned long timeout;
+	u32 status;
+
+	/* Wait max 10us */
+	timeout = 10;
+	status = readl(&zynq_nand_smc_base->esr);
+	while (status & ZYNQ_NAND_ECC_BUSY) {
+		status = readl(&zynq_nand_smc_base->esr);
+		if (timeout == 0)
+			return -1;
+		timeout--;
+		udelay(1);
+	}
+
+	return status;
+}
+
+/*
+ * zynq_nand_init_nand_flash - Initialize NAND controller
+ * @option:	Device property flags
+ *
+ * This function initializes the NAND flash interface on the NAND controller.
+ *
+ * returns:	0 on success or error value on failure
+ */
+static int zynq_nand_init_nand_flash(int option)
+{
+	u32 status;
+
+	/* disable interrupts */
+	writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr);
+	/* Initialize the NAND interface by setting cycles and operation mode */
+	writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr);
+	if (option & NAND_BUSWIDTH_16)
+		writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor);
+	else
+		writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor);
+
+	writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr);
+
+	/* Wait till the ECC operation is complete */
+	status = zynq_nand_waitfor_ecc_completion();
+	if (status < 0) {
+		printf("%s: Timeout\n", __func__);
+		return status;
+	}
+
+	/* Set the command1 and command2 register */
+	writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r);
+	writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:	Pointer to the mtd_info structure
+ * @data:	Pointer to the page data
+ * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * returns:	0 on success or error value on failure
+ */
+static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
+		u8 *ecc_code)
+{
+	u32 ecc_value = 0;
+	u8 ecc_reg, ecc_byte;
+	u32 ecc_status;
+
+	/* Wait till the ECC operation is complete */
+	ecc_status = zynq_nand_waitfor_ecc_completion();
+	if (ecc_status < 0) {
+		printf("%s: Timeout\n", __func__);
+		return ecc_status;
+	}
+
+	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+		/* Read ECC value for each block */
+		ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg);
+
+		/* Get the ecc status from ecc read value */
+		ecc_status = (ecc_value >> 24) & 0xFF;
+
+		/* ECC value valid */
+		if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
+			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+				/* Copy ECC bytes to MTD buffer */
+				*ecc_code = ecc_value & 0xFF;
+				ecc_value = ecc_value >> 8;
+				ecc_code++;
+			}
+		} else {
+			debug("%s: ecc status failed\n", __func__);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * onehot - onehot function
+ * @value:	value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if one bit is set.
+ *
+ * FIXME: Try to move this in common.h
+ */
+static bool onehot(unsigned short value)
+{
+	bool onehot;
+
+	onehot = value && !(value & (value - 1));
+	return onehot;
+}
+
+/*
+ * zynq_nand_correct_data - ECC correction function
+ * @mtd:	Pointer to the mtd_info structure
+ * @buf:	Pointer to the page data
+ * @read_ecc:	Pointer to the ECC value read from spare data area
+ * @calc_ecc:	Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * returns:	0 if no ECC errors found
+ *		1 if single bit error found and corrected.
+ *		-1 if multiple ECC errors found.
+ */
+static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+			unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	unsigned char bit_addr;
+	unsigned int byte_addr;
+	unsigned short ecc_odd, ecc_even;
+	unsigned short read_ecc_lower, read_ecc_upper;
+	unsigned short calc_ecc_lower, calc_ecc_upper;
+
+	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+	ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+	if ((ecc_odd == 0) && (ecc_even == 0))
+		return 0;       /* no error */
+
+	if (ecc_odd == (~ecc_even & 0xfff)) {
+		/* bits [11:3] of error code is byte offset */
+		byte_addr = (ecc_odd >> 3) & 0x1ff;
+		/* bits [2:0] of error code is bit offset */
+		bit_addr = ecc_odd & 0x7;
+		/* Toggling error bit */
+		buf[byte_addr] ^= (1 << bit_addr);
+		return 1;
+	}
+
+	if (onehot(ecc_odd | ecc_even))
+		return 1; /* one error in parity */
+
+	return -1; /* Uncorrectable error */
+}
+
+/*
+ * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @page:	page number to read
+ * @sndcmd:	flag whether to issue read command or not
+ */
+static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			int page)
+{
+	unsigned long data_phase_addr = 0;
+	int data_width = 4;
+	u8 *p;
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+
+	p = chip->oob_poi;
+	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+	p += mtd->oobsize - data_width;
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+	chip->read_buf(mtd, p, data_width);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @page:	page number to write
+ */
+static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	int status = 0, data_width = 4;
+	const u8 *buf = chip->oob_poi;
+	unsigned long data_phase_addr = 0;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+	chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
+	buf += mtd->oobsize - data_width;
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	chip->write_buf(mtd, buf, data_width);
+
+	/* Send command to program the OOB data */
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * zynq_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page:       page number to read
+ */
+static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				   u8 *buf,  int oob_required, int page)
+{
+	unsigned long data_width = 4;
+	unsigned long data_phase_addr = 0;
+	u8 *p;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+
+	p = chip->oob_poi;
+	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+	p += (mtd->oobsize - data_width);
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	chip->read_buf(mtd, p, data_width);
+	return 0;
+}
+
+static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
+		struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+	chip->read_buf(mtd, buf, mtd->writesize);
+	return 0;
+}
+
+static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
+				    struct nand_chip *chip, u32 data_offs,
+				    u32 readlen, u8 *buf, int page)
+{
+	if (data_offs != 0) {
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
+		buf += data_offs;
+	}
+	chip->read_buf(mtd, buf, readlen);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_page_raw - [Intern] raw page write function
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	unsigned long data_width = 4;
+	unsigned long data_phase_addr = 0;
+	u8 *p;
+
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	p = chip->oob_poi;
+	chip->write_buf(mtd, p, (mtd->oobsize - data_width));
+	p += (mtd->oobsize - data_width);
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+	chip->write_buf(mtd, p, data_width);
+
+	return 0;
+}
+
+/*
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:	Pointer to the mtd info structure
+ * @chip:	Pointer to the NAND chip info structure
+ * @buf:	Pointer to the data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ */
+static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	int i, eccsteps, eccsize = chip->ecc.size;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	const u8 *p = buf;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+	unsigned long data_phase_addr = 0;
+	unsigned long data_width = 4;
+	u8 *oob_ptr;
+
+	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+		chip->write_buf(mtd, p, eccsize);
+		p += eccsize;
+	}
+	chip->write_buf(mtd, p, (eccsize - data_width));
+	p += eccsize - data_width;
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long) chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	chip->write_buf(mtd, p, data_width);
+
+	/* Wait for ECC to be calculated and read the error values */
+	p = buf;
+	chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
+
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+	/* Write the spare area with ECC bytes */
+	oob_ptr = chip->oob_poi;
+	chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	oob_ptr += (mtd->oobsize - data_width);
+	chip->write_buf(mtd, oob_ptr, data_width);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
+ * write function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	const u8 *p = buf;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+
+	/* Software ecc calculation */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+}
+
+/*
+ * nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:	Pointer to the mtd info structure
+ * @chip:	Pointer to the NAND chip info structure
+ * @buf:	Pointer to the buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page:	page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * returns:	0 always and updates ECC operation status in to MTD structure
+ */
+static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+	int i, stat, eccsteps, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	u8 *ecc_code = chip->buffers->ecccode;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+	unsigned long data_phase_addr = 0;
+	unsigned long data_width = 4;
+	u8 *oob_ptr;
+
+	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+		chip->read_buf(mtd, p, eccsize);
+		p += eccsize;
+	}
+	chip->read_buf(mtd, p, (eccsize - data_width));
+	p += eccsize - data_width;
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+	chip->read_buf(mtd, p, data_width);
+
+	/* Read the calculated ECC value */
+	p = buf;
+	chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	/* Read the stored ECC value */
+	oob_ptr = chip->oob_poi;
+	chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+	/* de-assert chip select */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	oob_ptr += (mtd->oobsize - data_width);
+	chip->read_buf(mtd, oob_ptr, data_width);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	/* Check ECC error for all blocks and correct if it is correctable */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+	return 0;
+}
+
+/*
+ * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
+ * read function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @page:	page number to read
+ */
+static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
+	struct nand_chip *chip, u8 *buf, int oob_required,  int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	u8 *ecc_code = chip->buffers->ecccode;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+
+	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+	return 0;
+}
+
+/*
+ * zynq_nand_select_chip - Select the flash device
+ * @mtd:	Pointer to the mtd_info structure
+ * @chip:	Chip number to be selected
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* Not support multiple chips yet */
+}
+
+/*
+ * zynq_nand_cmd_function - Send command to NAND device
+ * @mtd:	Pointer to the mtd_info structure
+ * @command:	The command to be sent to the flash device
+ * @column:	The column address for this command, -1 if none
+ * @page_addr:	The page address for this command, -1 if none
+ */
+static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
+				 int column, int page_addr)
+{
+	struct nand_chip *chip = mtd->priv;
+	const struct zynq_nand_command_format *curr_cmd = NULL;
+	struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv;
+	void *cmd_addr;
+	unsigned long cmd_data = 0;
+	unsigned long cmd_phase_addr = 0;
+	unsigned long data_phase_addr = 0;
+	u8 end_cmd = 0;
+	u8 end_cmd_valid = 0;
+	u32 index;
+
+	if (xnand->end_cmd_pending) {
+		/* Check for end command if this command request is same as the
+		 * pending command then return
+		 */
+		if (xnand->end_cmd == command) {
+			xnand->end_cmd = 0;
+			xnand->end_cmd_pending = 0;
+			return;
+		}
+	}
+
+	/* Emulate NAND_CMD_READOOB for large page device */
+	if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
+	    (command == NAND_CMD_READOOB)) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Get the command format */
+	for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
+		if (command == zynq_nand_commands[index].start_cmd)
+			break;
+
+	if (index == ARRAY_SIZE(zynq_nand_commands)) {
+		printf("%s: Unsupported start cmd %02x\n", __func__, command);
+		return;
+	}
+	curr_cmd = &zynq_nand_commands[index];
+
+	/* Clear interrupt */
+	writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr);
+
+	/* Get the command phase address */
+	if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
+		end_cmd_valid = 1;
+
+	if (curr_cmd->end_cmd == NAND_CMD_NONE)
+		end_cmd = 0x0;
+	else
+		end_cmd = curr_cmd->end_cmd;
+
+	cmd_phase_addr = (unsigned long)xnand->nand_base	|
+			(curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT)	|
+			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
+			(COMMAND_PHASE)					|
+			(end_cmd << END_CMD_SHIFT)			|
+			(curr_cmd->start_cmd << START_CMD_SHIFT);
+
+	cmd_addr = (void __iomem *)cmd_phase_addr;
+
+	/* Get the data phase address */
+	end_cmd_valid = 0;
+
+	data_phase_addr = (unsigned long)xnand->nand_base	|
+			(0x0 << CLEAR_CS_SHIFT)				|
+			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
+			(DATA_PHASE)					|
+			(end_cmd << END_CMD_SHIFT)			|
+			(0x0 << ECC_LAST_SHIFT);
+
+	chip->IO_ADDR_R = (void  __iomem *)data_phase_addr;
+	chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+	/* Command phase AXI Read & Write */
+	if (column != -1 && page_addr != -1) {
+		/* Adjust columns for 16 bit bus width */
+		if (chip->options & NAND_BUSWIDTH_16)
+			column >>= 1;
+		cmd_data = column;
+		if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
+			cmd_data |= page_addr << 16;
+			/* Another address cycle for devices > 128MiB */
+			if (chip->chipsize > (128 << 20)) {
+				writel(cmd_data, cmd_addr);
+				cmd_data = (page_addr >> 16);
+			}
+		} else {
+			cmd_data |= page_addr << 8;
+		}
+	} else if (page_addr != -1)  { /* Erase */
+		cmd_data = page_addr;
+	} else if (column != -1) { /* Change read/write column, read id etc */
+		/* Adjust columns for 16 bit bus width */
+		if ((chip->options & NAND_BUSWIDTH_16) &&
+		    ((command == NAND_CMD_READ0) ||
+		     (command == NAND_CMD_SEQIN) ||
+		     (command == NAND_CMD_RNDOUT) ||
+		     (command == NAND_CMD_RNDIN)))
+			column >>= 1;
+		cmd_data = column;
+	}
+
+	writel(cmd_data, cmd_addr);
+
+	if (curr_cmd->end_cmd_valid) {
+		xnand->end_cmd = curr_cmd->end_cmd;
+		xnand->end_cmd_pending = 1;
+	}
+
+	ndelay(100);
+
+	if ((command == NAND_CMD_READ0) ||
+	    (command == NAND_CMD_RESET) ||
+	    (command == NAND_CMD_PARAM) ||
+	    (command == NAND_CMD_GET_FEATURES))
+		/* wait until command is processed */
+		nand_wait_ready(mtd);
+}
+
+/*
+ * zynq_nand_read_buf - read chip data into buffer
+ * @mtd:        MTD device structure
+ * @buf:        buffer to store date
+ * @len:        number of bytes to read
+ */
+static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((unsigned long)buf & 0x3) != 0) {
+		if (((unsigned long)buf & 0x1) != 0) {
+			if (len) {
+				*buf = readb(chip->IO_ADDR_R);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((unsigned long)buf & 0x3) != 0) {
+			if (len >= 2) {
+				*(u16 *)buf = readw(chip->IO_ADDR_R);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		*(u32 *)buf = readl(chip->IO_ADDR_R);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			*(u16 *)buf = readw(chip->IO_ADDR_R);
+			buf += 2;
+			len -= 2;
+		}
+		if (len)
+			*buf = readb(chip->IO_ADDR_R);
+	}
+}
+
+/*
+ * zynq_nand_write_buf - write buffer to chip
+ * @mtd:        MTD device structure
+ * @buf:        data buffer
+ * @len:        number of bytes to write
+ */
+static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	const u32 *nand = chip->IO_ADDR_W;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((unsigned long)buf & 0x3) != 0) {
+		if (((unsigned long)buf & 0x1) != 0) {
+			if (len) {
+				writeb(*buf, nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((unsigned long)buf & 0x3) != 0) {
+			if (len >= 2) {
+				writew(*(u16 *)buf, nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		writel(*(u32 *)buf, nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			writew(*(u16 *)buf, nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			writeb(*buf, nand);
+	}
+}
+
+/*
+ * zynq_nand_device_ready - Check device ready/busy line
+ * @mtd:	Pointer to the mtd_info structure
+ *
+ * returns:	0 on busy or 1 on ready state
+ */
+static int zynq_nand_device_ready(struct mtd_info *mtd)
+{
+	u32 csr_val;
+
+	csr_val = readl(&zynq_nand_smc_base->csr);
+	/* Check the raw_int_status1 bit */
+	if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
+		/* Clear the interrupt condition */
+		writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr);
+		return 1;
+	}
+
+	return 0;
+}
+
+static int zynq_nand_init(struct nand_chip *nand_chip, int devnum)
+{
+	struct zynq_nand_info *xnand;
+	struct mtd_info *mtd;
+	unsigned long ecc_page_size;
+	u8 maf_id, dev_id, i;
+	u8 get_feature[4];
+	u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
+	unsigned long ecc_cfg;
+	int ondie_ecc_enabled = 0;
+	int err = -1;
+
+	xnand = calloc(1, sizeof(struct zynq_nand_info));
+	if (!xnand) {
+		printf("%s: failed to allocate\n", __func__);
+		goto fail;
+	}
+
+	xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR;
+	mtd = (struct mtd_info *)&nand_info[0];
+
+	nand_chip->priv = xnand;
+	mtd->priv = nand_chip;
+
+	/* Set address of NAND IO lines */
+	nand_chip->IO_ADDR_R = xnand->nand_base;
+	nand_chip->IO_ADDR_W = xnand->nand_base;
+
+	/* Set the driver entry points for MTD */
+	nand_chip->cmdfunc = zynq_nand_cmd_function;
+	nand_chip->dev_ready = zynq_nand_device_ready;
+	nand_chip->select_chip = zynq_nand_select_chip;
+
+	/* If we don't set this delay driver sets 20us by default */
+	nand_chip->chip_delay = 30;
+
+	/* Buffer read/write routines */
+	nand_chip->read_buf = zynq_nand_read_buf;
+	nand_chip->write_buf = zynq_nand_write_buf;
+
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	/* Initialize the NAND flash interface on NAND controller */
+	if (zynq_nand_init_nand_flash(nand_chip->options) < 0) {
+		printf("%s: nand flash init failed\n", __func__);
+		goto fail;
+	}
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, 1, NULL)) {
+		printf("%s: nand_scan_ident failed\n", __func__);
+		goto fail;
+	}
+	/* Send the command for reading device ID */
+	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read manufacturer and device IDs */
+	maf_id = nand_chip->read_byte(mtd);
+	dev_id = nand_chip->read_byte(mtd);
+
+	if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
+				 (dev_id == 0xa1) || (dev_id == 0xb1) ||
+				 (dev_id == 0xaa) || (dev_id == 0xba) ||
+				 (dev_id == 0xda) || (dev_id == 0xca) ||
+				 (dev_id == 0xac) || (dev_id == 0xbc) ||
+				 (dev_id == 0xdc) || (dev_id == 0xcc) ||
+				 (dev_id == 0xa3) || (dev_id == 0xb3) ||
+				 (dev_id == 0xd3) || (dev_id == 0xc3))) {
+		nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
+						ONDIE_ECC_FEATURE_ADDR, -1);
+		for (i = 0; i < 4; i++)
+			writeb(set_feature[i], nand_chip->IO_ADDR_W);
+
+		/* Wait for 1us after writing data with SET_FEATURES command */
+		ndelay(1000);
+
+		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
+						ONDIE_ECC_FEATURE_ADDR, -1);
+		nand_chip->read_buf(mtd, get_feature, 4);
+
+		if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
+			debug("%s: OnDie ECC flash\n", __func__);
+			ondie_ecc_enabled = 1;
+		} else {
+			printf("%s: Unable to detect OnDie ECC\n", __func__);
+		}
+	}
+
+	if (ondie_ecc_enabled) {
+		/* Bypass the controller ECC block */
+		ecc_cfg = readl(&zynq_nand_smc_base->emcr);
+		ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
+		writel(ecc_cfg, &zynq_nand_smc_base->emcr);
+
+		/* The software ECC routines won't work
+		 * with the SMC controller
+		 */
+		nand_chip->ecc.mode = NAND_ECC_HW;
+		nand_chip->ecc.strength = 1;
+		nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
+		nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
+		nand_chip->ecc.write_page = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_oob = zynq_nand_read_oob;
+		nand_chip->ecc.write_oob = zynq_nand_write_oob;
+		nand_chip->ecc.size = mtd->writesize;
+		nand_chip->ecc.bytes = 0;
+
+		/* NAND with on-die ECC supports subpage reads */
+		nand_chip->options |= NAND_SUBPAGE_READ;
+
+		/* On-Die ECC spare bytes offset 8 is used for ECC codes */
+		if (ondie_ecc_enabled) {
+			nand_chip->ecc.layout = &ondie_nand_oob_64;
+			/* Use the BBT pattern descriptors */
+			nand_chip->bbt_td = &bbt_main_descr;
+			nand_chip->bbt_md = &bbt_mirror_descr;
+		}
+	} else {
+		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+		nand_chip->ecc.mode = NAND_ECC_HW;
+		nand_chip->ecc.strength = 1;
+		nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
+		nand_chip->ecc.bytes = 3;
+		nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
+		nand_chip->ecc.correct = zynq_nand_correct_data;
+		nand_chip->ecc.hwctl = NULL;
+		nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
+		nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
+		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_oob = zynq_nand_read_oob;
+		nand_chip->ecc.write_oob = zynq_nand_write_oob;
+
+		switch (mtd->writesize) {
+		case 512:
+			ecc_page_size = 0x1;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		case 1024:
+			ecc_page_size = 0x2;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		case 2048:
+			ecc_page_size = 0x3;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		default:
+			nand_chip->ecc.mode = NAND_ECC_SOFT;
+			nand_chip->ecc.calculate = nand_calculate_ecc;
+			nand_chip->ecc.correct = nand_correct_data;
+			nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
+			nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
+			nand_chip->ecc.size = 256;
+			break;
+		}
+
+		if (mtd->oobsize == 16)
+			nand_chip->ecc.layout = &nand_oob_16;
+		else if (mtd->oobsize == 64)
+			nand_chip->ecc.layout = &nand_oob_64;
+		else
+			printf("%s: No oob layout found\n", __func__);
+	}
+
+	/* Second phase scan */
+	if (nand_scan_tail(mtd)) {
+		printf("%s: nand_scan_tail failed\n", __func__);
+		goto fail;
+	}
+	if (nand_register(devnum, mtd))
+		goto fail;
+	return 0;
+fail:
+	free(xnand);
+	return err;
+}
+
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+
+void board_nand_init(void)
+{
+	struct nand_chip *nand = &nand_chip[0];
+
+	if (zynq_nand_init(nand, 0))
+		puts("ZYNQ NAND init failed\n");
+}