blob: 5555f82f23e80227167fae828ad67dde9ec8bc96 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2001-2015
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
* Joe Hershberger, National Instruments
*/
#define LOG_CATEGORY UCLASS_ETH
#include <bootdev.h>
#include <bootstage.h>
#include <dm.h>
#include <env.h>
#include <log.h>
#include <net.h>
#include <nvmem.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <net/pcap.h>
#include "eth_internal.h"
#include <eth_phy.h>
DECLARE_GLOBAL_DATA_PTR;
/**
* struct eth_device_priv - private structure for each Ethernet device
*
* @state: The state of the Ethernet MAC driver (defined by enum eth_state_t)
*/
struct eth_device_priv {
enum eth_state_t state;
bool running;
};
/**
* struct eth_uclass_priv - The structure attached to the uclass itself
*
* @current: The Ethernet device that the network functions are using
* @no_bootdevs: true to skip binding Ethernet bootdevs (this is a negative flag
* so that the default value enables it)
*/
struct eth_uclass_priv {
struct udevice *current;
bool no_bootdevs;
};
/* eth_errno - This stores the most recent failure code from DM functions */
static int eth_errno;
/* Are we currently in eth_init() or eth_halt()? */
static bool in_init_halt;
/* board-specific Ethernet Interface initializations. */
__weak int board_interface_eth_init(struct udevice *dev,
phy_interface_t interface_type)
{
return 0;
}
static struct eth_uclass_priv *eth_get_uclass_priv(void)
{
struct uclass *uc;
int ret;
ret = uclass_get(UCLASS_ETH, &uc);
if (ret)
return NULL;
assert(uc);
return uclass_get_priv(uc);
}
void eth_set_enable_bootdevs(bool enable)
{
struct eth_uclass_priv *priv = eth_get_uclass_priv();
if (priv)
priv->no_bootdevs = !enable;
}
void eth_set_current_to_next(void)
{
struct eth_uclass_priv *uc_priv;
uc_priv = eth_get_uclass_priv();
if (uc_priv->current)
uclass_next_device(&uc_priv->current);
if (!uc_priv->current)
uclass_first_device(UCLASS_ETH, &uc_priv->current);
}
/*
* Typically this will simply return the active device.
* In the case where the most recent active device was unset, this will attempt
* to return the device with sequence id 0 (which can be configured by the
* device tree). If this fails, fall back to just getting the first device.
* The latter is non-deterministic and depends on the order of the probing.
* If that device doesn't exist or fails to probe, this function will return
* NULL.
*/
struct udevice *eth_get_dev(void)
{
struct eth_uclass_priv *uc_priv;
uc_priv = eth_get_uclass_priv();
if (!uc_priv)
return NULL;
if (!uc_priv->current) {
eth_errno = uclass_get_device_by_seq(UCLASS_ETH, 0,
&uc_priv->current);
if (eth_errno)
eth_errno = uclass_first_device_err(UCLASS_ETH,
&uc_priv->current);
if (eth_errno)
uc_priv->current = NULL;
}
return uc_priv->current;
}
/*
* Typically this will just store a device pointer.
* In case it was not probed, we will attempt to do so.
* dev may be NULL to unset the active device.
*/
void eth_set_dev(struct udevice *dev)
{
if (dev && !device_active(dev)) {
eth_errno = device_probe(dev);
if (eth_errno)
dev = NULL;
}
eth_get_uclass_priv()->current = dev;
}
/*
* Find the udevice that either has the name passed in as devname or has an
* alias named devname.
*/
struct udevice *eth_get_dev_by_name(const char *devname)
{
int seq = -1;
char *endp = NULL;
const char *startp = NULL;
struct udevice *it;
struct uclass *uc;
int len = strlen("eth");
int ret;
/* Must be longer than 3 to be an alias */
if (!strncmp(devname, "eth", len) && strlen(devname) > len) {
startp = devname + len;
seq = dectoul(startp, &endp);
}
ret = uclass_get(UCLASS_ETH, &uc);
if (ret)
return NULL;
uclass_foreach_dev(it, uc) {
/*
* We don't care about errors from probe here. Either they won't
* match an alias or it will match a literal name and we'll pick
* up the error when we try to probe again in eth_set_dev().
*/
if (device_probe(it))
continue;
/* Check for the name or the sequence number to match */
if (strcmp(it->name, devname) == 0 ||
(endp > startp && dev_seq(it) == seq))
return it;
}
return NULL;
}
unsigned char *eth_get_ethaddr(void)
{
struct eth_pdata *pdata;
if (eth_get_dev()) {
pdata = dev_get_plat(eth_get_dev());
return pdata->enetaddr;
}
return NULL;
}
/* Set active state without calling start on the driver */
int eth_init_state_only(void)
{
struct udevice *current;
struct eth_device_priv *priv;
current = eth_get_dev();
if (!current || !device_active(current))
return -EINVAL;
priv = dev_get_uclass_priv(current);
priv->state = ETH_STATE_ACTIVE;
return 0;
}
/* Set passive state without calling stop on the driver */
void eth_halt_state_only(void)
{
struct udevice *current;
struct eth_device_priv *priv;
current = eth_get_dev();
if (!current || !device_active(current))
return;
priv = dev_get_uclass_priv(current);
priv->state = ETH_STATE_PASSIVE;
}
int eth_get_dev_index(void)
{
if (eth_get_dev())
return dev_seq(eth_get_dev());
return -1;
}
static int eth_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata;
int ret = 0;
if (!dev || !device_active(dev))
return -EINVAL;
/* seq is valid since the device is active */
if (eth_get_ops(dev)->write_hwaddr && !eth_mac_skip(dev_seq(dev))) {
pdata = dev_get_plat(dev);
if (!is_valid_ethaddr(pdata->enetaddr)) {
printf("\nError: %s address %pM illegal value\n",
dev->name, pdata->enetaddr);
return -EINVAL;
}
/*
* Drivers are allowed to decide not to implement this at
* run-time. E.g. Some devices may use it and some may not.
*/
ret = eth_get_ops(dev)->write_hwaddr(dev);
if (ret == -ENOSYS)
ret = 0;
if (ret)
printf("\nWarning: %s failed to set MAC address\n",
dev->name);
}
return ret;
}
static int on_ethaddr(const char *name, const char *value, enum env_op op,
int flags)
{
int index;
int retval;
struct udevice *dev;
/* look for an index after "eth" */
index = dectoul(name + 3, NULL);
retval = uclass_find_device_by_seq(UCLASS_ETH, index, &dev);
if (!retval) {
struct eth_pdata *pdata = dev_get_plat(dev);
switch (op) {
case env_op_create:
case env_op_overwrite:
string_to_enetaddr(value, pdata->enetaddr);
eth_write_hwaddr(dev);
break;
case env_op_delete:
memset(pdata->enetaddr, 0, ARP_HLEN);
}
}
return 0;
}
U_BOOT_ENV_CALLBACK(ethaddr, on_ethaddr);
int eth_start_udev(struct udevice *dev)
{
struct eth_device_priv *priv = dev_get_uclass_priv(dev);
int ret;
if (priv->running)
return 0;
if (!device_active(dev))
return -EINVAL;
ret = eth_get_ops(dev)->start(dev);
if (ret < 0)
return ret;
priv->state = ETH_STATE_ACTIVE;
priv->running = true;
return 0;
}
int eth_init(void)
{
struct udevice *current = NULL;
struct udevice *old_current;
int ret = -ENODEV;
char *ethrotate;
char *ethact;
if (in_init_halt)
return -EBUSY;
in_init_halt = true;
ethact = env_get("ethact");
ethrotate = env_get("ethrotate");
/*
* When 'ethrotate' variable is set to 'no' and 'ethact' variable
* is already set to an ethernet device, we should stick to 'ethact'.
*/
if ((ethrotate != NULL) && (strcmp(ethrotate, "no") == 0)) {
if (ethact) {
current = eth_get_dev_by_name(ethact);
if (!current) {
ret = -EINVAL;
goto end;
}
}
}
if (!current) {
current = eth_get_dev();
if (!current) {
log_err("No ethernet found.\n");
ret = -ENODEV;
goto end;
}
}
old_current = current;
do {
if (current) {
debug("Trying %s\n", current->name);
ret = eth_start_udev(current);
if (ret < 0)
ret = eth_errno;
else
break;
debug("FAIL\n");
} else {
debug("PROBE FAIL\n");
}
/*
* If ethrotate is enabled, this will change "current",
* otherwise we will drop out of this while loop immediately
*/
eth_try_another(0);
/* This will ensure the new "current" attempted to probe */
current = eth_get_dev();
} while (old_current != current);
end:
in_init_halt = false;
return ret;
}
void eth_halt(void)
{
struct udevice *current;
struct eth_device_priv *priv;
if (in_init_halt)
return;
in_init_halt = true;
current = eth_get_dev();
if (!current)
goto end;
priv = dev_get_uclass_priv(current);
if (!priv || !priv->running)
goto end;
eth_get_ops(current)->stop(current);
priv->state = ETH_STATE_PASSIVE;
priv->running = false;
end:
in_init_halt = false;
}
int eth_is_active(struct udevice *dev)
{
struct eth_device_priv *priv;
if (!dev || !device_active(dev))
return 0;
priv = dev_get_uclass_priv(dev);
return priv->state == ETH_STATE_ACTIVE;
}
int eth_send(void *packet, int length)
{
struct udevice *current;
int ret;
current = eth_get_dev();
if (!current)
return -ENODEV;
if (!eth_is_active(current))
return -EINVAL;
ret = eth_get_ops(current)->send(current, packet, length);
if (ret < 0) {
/* We cannot completely return the error at present */
debug("%s: send() returned error %d\n", __func__, ret);
}
#if defined(CONFIG_CMD_PCAP)
if (ret >= 0)
pcap_post(packet, length, true);
#endif
return ret;
}
int eth_rx(void)
{
struct udevice *current;
uchar *packet;
int flags;
int ret;
int i;
current = eth_get_dev();
if (!current)
return -ENODEV;
if (!eth_is_active(current))
return -EINVAL;
/* Process up to 32 packets at one time */
flags = ETH_RECV_CHECK_DEVICE;
for (i = 0; i < ETH_PACKETS_BATCH_RECV; i++) {
ret = eth_get_ops(current)->recv(current, flags, &packet);
flags = 0;
if (ret > 0)
net_process_received_packet(packet, ret);
if (ret >= 0 && eth_get_ops(current)->free_pkt)
eth_get_ops(current)->free_pkt(current, packet, ret);
if (ret <= 0)
break;
}
if (ret == -EAGAIN)
ret = 0;
if (ret < 0) {
/* We cannot completely return the error at present */
debug("%s: recv() returned error %d\n", __func__, ret);
}
return ret;
}
int eth_initialize(void)
{
int num_devices = 0;
struct udevice *dev;
eth_common_init();
/*
* Devices need to write the hwaddr even if not started so that Linux
* will have access to the hwaddr that u-boot stored for the device.
* This is accomplished by attempting to probe each device and calling
* their write_hwaddr() operation.
*/
uclass_first_device_check(UCLASS_ETH, &dev);
if (!dev) {
log_err("No ethernet found.\n");
bootstage_error(BOOTSTAGE_ID_NET_ETH_START);
} else {
char *ethprime = env_get("ethprime");
struct udevice *prime_dev = NULL;
if (ethprime)
prime_dev = eth_get_dev_by_name(ethprime);
if (prime_dev) {
eth_set_dev(prime_dev);
eth_current_changed();
} else {
eth_set_dev(NULL);
}
bootstage_mark(BOOTSTAGE_ID_NET_ETH_INIT);
do {
if (device_active(dev)) {
if (num_devices)
printf(", ");
printf("eth%d: %s", dev_seq(dev), dev->name);
if (ethprime && dev == prime_dev)
printf(" [PRIME]");
}
eth_write_hwaddr(dev);
if (device_active(dev))
num_devices++;
uclass_next_device_check(&dev);
} while (dev);
if (!num_devices)
log_err("No ethernet found.\n");
putc('\n');
}
return num_devices;
}
static int eth_post_bind(struct udevice *dev)
{
struct eth_uclass_priv *priv = uclass_get_priv(dev->uclass);
int ret;
if (strchr(dev->name, ' ')) {
printf("\nError: eth device name \"%s\" has a space!\n",
dev->name);
return -EINVAL;
}
#ifdef CONFIG_DM_ETH_PHY
eth_phy_binds_nodes(dev);
#endif
if (CONFIG_IS_ENABLED(BOOTDEV_ETH) && !priv->no_bootdevs) {
ret = bootdev_setup_for_dev(dev, "eth_bootdev");
if (ret)
return log_msg_ret("bootdev", ret);
}
return 0;
}
static int eth_pre_unbind(struct udevice *dev)
{
/* Don't hang onto a pointer that is going away */
if (dev == eth_get_uclass_priv()->current)
eth_set_dev(NULL);
return 0;
}
static bool eth_dev_get_mac_address(struct udevice *dev, u8 mac[ARP_HLEN])
{
#if CONFIG_IS_ENABLED(OF_CONTROL)
const uint8_t *p;
struct nvmem_cell mac_cell;
p = dev_read_u8_array_ptr(dev, "mac-address", ARP_HLEN);
if (!p)
p = dev_read_u8_array_ptr(dev, "local-mac-address", ARP_HLEN);
if (p) {
memcpy(mac, p, ARP_HLEN);
return true;
}
if (nvmem_cell_get_by_name(dev, "mac-address", &mac_cell))
return false;
return !nvmem_cell_read(&mac_cell, mac, ARP_HLEN);
#else
return false;
#endif
}
static int eth_post_probe(struct udevice *dev)
{
struct eth_device_priv *priv = dev_get_uclass_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
unsigned char env_enetaddr[ARP_HLEN];
char *source = "DT";
priv->state = ETH_STATE_INIT;
priv->running = false;
/* Check if the device has a valid MAC address in device tree */
if (!eth_dev_get_mac_address(dev, pdata->enetaddr) ||
!is_valid_ethaddr(pdata->enetaddr)) {
/* Check if the device has a MAC address in ROM */
if (eth_get_ops(dev)->read_rom_hwaddr) {
int ret;
ret = eth_get_ops(dev)->read_rom_hwaddr(dev);
if (!ret)
source = "ROM";
}
}
eth_env_get_enetaddr_by_index("eth", dev_seq(dev), env_enetaddr);
if (!is_zero_ethaddr(env_enetaddr)) {
if (!is_zero_ethaddr(pdata->enetaddr) &&
memcmp(pdata->enetaddr, env_enetaddr, ARP_HLEN)) {
printf("\nWarning: %s MAC addresses don't match:\n",
dev->name);
printf("Address in %s is\t\t%pM\n",
source, pdata->enetaddr);
printf("Address in environment is\t%pM\n",
env_enetaddr);
}
/* Override the ROM MAC address */
memcpy(pdata->enetaddr, env_enetaddr, ARP_HLEN);
} else if (is_valid_ethaddr(pdata->enetaddr)) {
eth_env_set_enetaddr_by_index("eth", dev_seq(dev),
pdata->enetaddr);
} else if (is_zero_ethaddr(pdata->enetaddr) ||
!is_valid_ethaddr(pdata->enetaddr)) {
#ifdef CONFIG_NET_RANDOM_ETHADDR
net_random_ethaddr(pdata->enetaddr);
printf("\nWarning: %s (eth%d) using random MAC address - %pM\n",
dev->name, dev_seq(dev), pdata->enetaddr);
eth_env_set_enetaddr_by_index("eth", dev_seq(dev),
pdata->enetaddr);
#else
printf("\nError: %s No valid MAC address found.\n",
dev->name);
return -EINVAL;
#endif
}
eth_write_hwaddr(dev);
return 0;
}
static int eth_pre_remove(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
eth_get_ops(dev)->stop(dev);
/* clear the MAC address */
memset(pdata->enetaddr, 0, ARP_HLEN);
return 0;
}
UCLASS_DRIVER(ethernet) = {
.name = "ethernet",
.id = UCLASS_ETH,
.post_bind = eth_post_bind,
.pre_unbind = eth_pre_unbind,
.post_probe = eth_post_probe,
.pre_remove = eth_pre_remove,
.priv_auto = sizeof(struct eth_uclass_priv),
.per_device_auto = sizeof(struct eth_device_priv),
.flags = DM_UC_FLAG_SEQ_ALIAS,
};