| /* |
| * (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <asm/fw_cfg.h> |
| #include <asm/tables.h> |
| #include <asm/e820.h> |
| #include <linux/list.h> |
| #include <memalign.h> |
| |
| static bool fwcfg_present; |
| static bool fwcfg_dma_present; |
| |
| static LIST_HEAD(fw_list); |
| |
| /* Read configuration item using fw_cfg PIO interface */ |
| static void qemu_fwcfg_read_entry_pio(uint16_t entry, |
| uint32_t size, void *address) |
| { |
| uint32_t i = 0; |
| uint8_t *data = address; |
| |
| /* |
| * writting FW_CFG_INVALID will cause read operation to resume at |
| * last offset, otherwise read will start at offset 0 |
| */ |
| if (entry != FW_CFG_INVALID) |
| outw(entry, FW_CONTROL_PORT); |
| while (size--) |
| data[i++] = inb(FW_DATA_PORT); |
| } |
| |
| /* Read configuration item using fw_cfg DMA interface */ |
| static void qemu_fwcfg_read_entry_dma(uint16_t entry, |
| uint32_t size, void *address) |
| { |
| struct fw_cfg_dma_access dma; |
| |
| dma.length = cpu_to_be32(size); |
| dma.address = cpu_to_be64((uintptr_t)address); |
| dma.control = cpu_to_be32(FW_CFG_DMA_READ); |
| |
| /* |
| * writting FW_CFG_INVALID will cause read operation to resume at |
| * last offset, otherwise read will start at offset 0 |
| */ |
| if (entry != FW_CFG_INVALID) |
| dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16)); |
| |
| barrier(); |
| |
| debug("qemu_fwcfg_dma_read_entry: addr %p, length %u control 0x%x\n", |
| address, size, be32_to_cpu(dma.control)); |
| |
| outl(cpu_to_be32((uint32_t)&dma), FW_DMA_PORT_HIGH); |
| |
| while (be32_to_cpu(dma.control) & ~FW_CFG_DMA_ERROR) |
| __asm__ __volatile__ ("pause"); |
| } |
| |
| static bool qemu_fwcfg_present(void) |
| { |
| uint32_t qemu; |
| |
| qemu_fwcfg_read_entry_pio(FW_CFG_SIGNATURE, 4, &qemu); |
| return be32_to_cpu(qemu) == QEMU_FW_CFG_SIGNATURE; |
| } |
| |
| static bool qemu_fwcfg_dma_present(void) |
| { |
| uint8_t dma_enabled; |
| |
| qemu_fwcfg_read_entry_pio(FW_CFG_ID, 1, &dma_enabled); |
| if (dma_enabled & FW_CFG_DMA_ENABLED) |
| return true; |
| |
| return false; |
| } |
| |
| static void qemu_fwcfg_read_entry(uint16_t entry, |
| uint32_t length, void *address) |
| { |
| if (fwcfg_dma_present) |
| qemu_fwcfg_read_entry_dma(entry, length, address); |
| else |
| qemu_fwcfg_read_entry_pio(entry, length, address); |
| } |
| |
| int qemu_fwcfg_online_cpus(void) |
| { |
| uint16_t nb_cpus; |
| |
| if (!fwcfg_present) |
| return -ENODEV; |
| |
| qemu_fwcfg_read_entry(FW_CFG_NB_CPUS, 2, &nb_cpus); |
| |
| return le16_to_cpu(nb_cpus); |
| } |
| |
| /* |
| * This function prepares kernel for zboot. It loads kernel data |
| * to 'load_addr', initrd to 'initrd_addr' and kernel command |
| * line using qemu fw_cfg interface. |
| */ |
| static int qemu_fwcfg_setup_kernel(void *load_addr, void *initrd_addr) |
| { |
| char *data_addr; |
| uint32_t setup_size, kernel_size, cmdline_size, initrd_size; |
| |
| qemu_fwcfg_read_entry(FW_CFG_SETUP_SIZE, 4, &setup_size); |
| qemu_fwcfg_read_entry(FW_CFG_KERNEL_SIZE, 4, &kernel_size); |
| |
| if (setup_size == 0 || kernel_size == 0) { |
| printf("warning: no kernel available\n"); |
| return -1; |
| } |
| |
| data_addr = load_addr; |
| qemu_fwcfg_read_entry(FW_CFG_SETUP_DATA, |
| le32_to_cpu(setup_size), data_addr); |
| data_addr += le32_to_cpu(setup_size); |
| |
| qemu_fwcfg_read_entry(FW_CFG_KERNEL_DATA, |
| le32_to_cpu(kernel_size), data_addr); |
| data_addr += le32_to_cpu(kernel_size); |
| |
| data_addr = initrd_addr; |
| qemu_fwcfg_read_entry(FW_CFG_INITRD_SIZE, 4, &initrd_size); |
| if (initrd_size == 0) { |
| printf("warning: no initrd available\n"); |
| } else { |
| qemu_fwcfg_read_entry(FW_CFG_INITRD_DATA, |
| le32_to_cpu(initrd_size), data_addr); |
| data_addr += le32_to_cpu(initrd_size); |
| } |
| |
| qemu_fwcfg_read_entry(FW_CFG_CMDLINE_SIZE, 4, &cmdline_size); |
| if (cmdline_size) { |
| qemu_fwcfg_read_entry(FW_CFG_CMDLINE_DATA, |
| le32_to_cpu(cmdline_size), data_addr); |
| /* |
| * if kernel cmdline only contains '\0', (e.g. no -append |
| * when invoking qemu), do not update bootargs |
| */ |
| if (*data_addr != '\0') { |
| if (setenv("bootargs", data_addr) < 0) |
| printf("warning: unable to change bootargs\n"); |
| } |
| } |
| |
| printf("loading kernel to address %p size %x", load_addr, |
| le32_to_cpu(kernel_size)); |
| if (initrd_size) |
| printf(" initrd %p size %x\n", |
| initrd_addr, |
| le32_to_cpu(initrd_size)); |
| else |
| printf("\n"); |
| |
| return 0; |
| } |
| |
| static int qemu_fwcfg_read_firmware_list(void) |
| { |
| int i; |
| uint32_t count; |
| struct fw_file *file; |
| struct list_head *entry; |
| |
| /* don't read it twice */ |
| if (!list_empty(&fw_list)) |
| return 0; |
| |
| qemu_fwcfg_read_entry(FW_CFG_FILE_DIR, 4, &count); |
| if (!count) |
| return 0; |
| |
| count = be32_to_cpu(count); |
| for (i = 0; i < count; i++) { |
| file = malloc(sizeof(*file)); |
| if (!file) { |
| printf("error: allocating resource\n"); |
| goto err; |
| } |
| qemu_fwcfg_read_entry(FW_CFG_INVALID, |
| sizeof(struct fw_cfg_file), &file->cfg); |
| file->addr = 0; |
| list_add_tail(&file->list, &fw_list); |
| } |
| |
| return 0; |
| |
| err: |
| list_for_each(entry, &fw_list) { |
| file = list_entry(entry, struct fw_file, list); |
| free(file); |
| } |
| |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_QEMU_ACPI_TABLE |
| static struct fw_file *qemu_fwcfg_find_file(const char *name) |
| { |
| struct list_head *entry; |
| struct fw_file *file; |
| |
| list_for_each(entry, &fw_list) { |
| file = list_entry(entry, struct fw_file, list); |
| if (!strcmp(file->cfg.name, name)) |
| return file; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * This function allocates memory for ACPI tables |
| * |
| * @entry : BIOS linker command entry which tells where to allocate memory |
| * (either high memory or low memory) |
| * @addr : The address that should be used for low memory allcation. If the |
| * memory allocation request is 'ZONE_HIGH' then this parameter will |
| * be ignored. |
| * @return: 0 on success, or negative value on failure |
| */ |
| static int bios_linker_allocate(struct bios_linker_entry *entry, u32 *addr) |
| { |
| uint32_t size, align; |
| struct fw_file *file; |
| unsigned long aligned_addr; |
| |
| align = le32_to_cpu(entry->alloc.align); |
| /* align must be power of 2 */ |
| if (align & (align - 1)) { |
| printf("error: wrong alignment %u\n", align); |
| return -EINVAL; |
| } |
| |
| file = qemu_fwcfg_find_file(entry->alloc.file); |
| if (!file) { |
| printf("error: can't find file %s\n", entry->alloc.file); |
| return -ENOENT; |
| } |
| |
| size = be32_to_cpu(file->cfg.size); |
| |
| /* |
| * ZONE_HIGH means we need to allocate from high memory, since |
| * malloc space is already at the end of RAM, so we directly use it. |
| * If allocation zone is ZONE_FSEG, then we use the 'addr' passed |
| * in which is low memory |
| */ |
| if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) { |
| aligned_addr = (unsigned long)memalign(align, size); |
| if (!aligned_addr) { |
| printf("error: allocating resource\n"); |
| return -ENOMEM; |
| } |
| } else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) { |
| aligned_addr = ALIGN(*addr, align); |
| } else { |
| printf("error: invalid allocation zone\n"); |
| return -EINVAL; |
| } |
| |
| debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n", |
| file->cfg.name, size, entry->alloc.zone, align, aligned_addr); |
| |
| qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select), |
| size, (void *)aligned_addr); |
| file->addr = aligned_addr; |
| |
| /* adjust address for low memory allocation */ |
| if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) |
| *addr = (aligned_addr + size); |
| |
| return 0; |
| } |
| |
| /* |
| * This function patches ACPI tables previously loaded |
| * by bios_linker_allocate() |
| * |
| * @entry : BIOS linker command entry which tells how to patch |
| * ACPI tables |
| * @return: 0 on success, or negative value on failure |
| */ |
| static int bios_linker_add_pointer(struct bios_linker_entry *entry) |
| { |
| struct fw_file *dest, *src; |
| uint32_t offset = le32_to_cpu(entry->pointer.offset); |
| uint64_t pointer = 0; |
| |
| dest = qemu_fwcfg_find_file(entry->pointer.dest_file); |
| if (!dest || !dest->addr) |
| return -ENOENT; |
| src = qemu_fwcfg_find_file(entry->pointer.src_file); |
| if (!src || !src->addr) |
| return -ENOENT; |
| |
| debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n", |
| dest->addr, src->addr, offset, entry->pointer.size, pointer); |
| |
| memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size); |
| pointer = le64_to_cpu(pointer); |
| pointer += (unsigned long)src->addr; |
| pointer = cpu_to_le64(pointer); |
| memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size); |
| |
| return 0; |
| } |
| |
| /* |
| * This function updates checksum fields of ACPI tables previously loaded |
| * by bios_linker_allocate() |
| * |
| * @entry : BIOS linker command entry which tells where to update ACPI table |
| * checksums |
| * @return: 0 on success, or negative value on failure |
| */ |
| static int bios_linker_add_checksum(struct bios_linker_entry *entry) |
| { |
| struct fw_file *file; |
| uint8_t *data, cksum = 0; |
| uint8_t *cksum_start; |
| |
| file = qemu_fwcfg_find_file(entry->cksum.file); |
| if (!file || !file->addr) |
| return -ENOENT; |
| |
| data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset)); |
| cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start)); |
| cksum = table_compute_checksum(cksum_start, |
| le32_to_cpu(entry->cksum.length)); |
| *data = cksum; |
| |
| return 0; |
| } |
| |
| unsigned install_e820_map(unsigned max_entries, struct e820entry *entries) |
| { |
| entries[0].addr = 0; |
| entries[0].size = ISA_START_ADDRESS; |
| entries[0].type = E820_RAM; |
| |
| entries[1].addr = ISA_START_ADDRESS; |
| entries[1].size = ISA_END_ADDRESS - ISA_START_ADDRESS; |
| entries[1].type = E820_RESERVED; |
| |
| /* |
| * since we use memalign(malloc) to allocate high memory for |
| * storing ACPI tables, we need to reserve them in e820 tables, |
| * otherwise kernel will reclaim them and data will be corrupted |
| */ |
| entries[2].addr = ISA_END_ADDRESS; |
| entries[2].size = gd->relocaddr - TOTAL_MALLOC_LEN - ISA_END_ADDRESS; |
| entries[2].type = E820_RAM; |
| |
| /* for simplicity, reserve entire malloc space */ |
| entries[3].addr = gd->relocaddr - TOTAL_MALLOC_LEN; |
| entries[3].size = TOTAL_MALLOC_LEN; |
| entries[3].type = E820_RESERVED; |
| |
| entries[4].addr = gd->relocaddr; |
| entries[4].size = gd->ram_size - gd->relocaddr; |
| entries[4].type = E820_RESERVED; |
| |
| entries[5].addr = CONFIG_PCIE_ECAM_BASE; |
| entries[5].size = CONFIG_PCIE_ECAM_SIZE; |
| entries[5].type = E820_RESERVED; |
| |
| return 6; |
| } |
| |
| /* This function loads and patches ACPI tables provided by QEMU */ |
| u32 write_acpi_tables(u32 addr) |
| { |
| int i, ret = 0; |
| struct fw_file *file; |
| struct bios_linker_entry *table_loader; |
| struct bios_linker_entry *entry; |
| uint32_t size; |
| struct list_head *list; |
| |
| /* make sure fw_list is loaded */ |
| ret = qemu_fwcfg_read_firmware_list(); |
| if (ret) { |
| printf("error: can't read firmware file list\n"); |
| return addr; |
| } |
| |
| file = qemu_fwcfg_find_file("etc/table-loader"); |
| if (!file) { |
| printf("error: can't find etc/table-loader\n"); |
| return addr; |
| } |
| |
| size = be32_to_cpu(file->cfg.size); |
| if ((size % sizeof(*entry)) != 0) { |
| printf("error: table-loader maybe corrupted\n"); |
| return addr; |
| } |
| |
| table_loader = malloc(size); |
| if (!table_loader) { |
| printf("error: no memory for table-loader\n"); |
| return addr; |
| } |
| |
| qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select), |
| size, table_loader); |
| |
| for (i = 0; i < (size / sizeof(*entry)); i++) { |
| entry = table_loader + i; |
| switch (le32_to_cpu(entry->command)) { |
| case BIOS_LINKER_LOADER_COMMAND_ALLOCATE: |
| ret = bios_linker_allocate(entry, &addr); |
| if (ret) |
| goto out; |
| break; |
| case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER: |
| ret = bios_linker_add_pointer(entry); |
| if (ret) |
| goto out; |
| break; |
| case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM: |
| ret = bios_linker_add_checksum(entry); |
| if (ret) |
| goto out; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| out: |
| if (ret) { |
| list_for_each(list, &fw_list) { |
| file = list_entry(list, struct fw_file, list); |
| if (file->addr) |
| free((void *)file->addr); |
| } |
| } |
| |
| free(table_loader); |
| return addr; |
| } |
| #endif |
| |
| static int qemu_fwcfg_list_firmware(void) |
| { |
| int ret; |
| struct list_head *entry; |
| struct fw_file *file; |
| |
| /* make sure fw_list is loaded */ |
| ret = qemu_fwcfg_read_firmware_list(); |
| if (ret) |
| return ret; |
| |
| list_for_each(entry, &fw_list) { |
| file = list_entry(entry, struct fw_file, list); |
| printf("%-56s\n", file->cfg.name); |
| } |
| |
| return 0; |
| } |
| |
| void qemu_fwcfg_init(void) |
| { |
| fwcfg_present = qemu_fwcfg_present(); |
| if (fwcfg_present) |
| fwcfg_dma_present = qemu_fwcfg_dma_present(); |
| } |
| |
| static int qemu_fwcfg_do_list(cmd_tbl_t *cmdtp, int flag, |
| int argc, char * const argv[]) |
| { |
| if (qemu_fwcfg_list_firmware() < 0) |
| return CMD_RET_FAILURE; |
| |
| return 0; |
| } |
| |
| static int qemu_fwcfg_do_cpus(cmd_tbl_t *cmdtp, int flag, |
| int argc, char * const argv[]) |
| { |
| int ret = qemu_fwcfg_online_cpus(); |
| if (ret < 0) { |
| printf("QEMU fw_cfg interface not found\n"); |
| return CMD_RET_FAILURE; |
| } |
| |
| printf("%d cpu(s) online\n", qemu_fwcfg_online_cpus()); |
| |
| return 0; |
| } |
| |
| static int qemu_fwcfg_do_load(cmd_tbl_t *cmdtp, int flag, |
| int argc, char * const argv[]) |
| { |
| char *env; |
| void *load_addr; |
| void *initrd_addr; |
| |
| env = getenv("loadaddr"); |
| load_addr = env ? |
| (void *)simple_strtoul(env, NULL, 16) : |
| (void *)CONFIG_LOADADDR; |
| |
| env = getenv("ramdiskaddr"); |
| initrd_addr = env ? |
| (void *)simple_strtoul(env, NULL, 16) : |
| (void *)CONFIG_RAMDISK_ADDR; |
| |
| if (argc == 2) { |
| load_addr = (void *)simple_strtoul(argv[0], NULL, 16); |
| initrd_addr = (void *)simple_strtoul(argv[1], NULL, 16); |
| } else if (argc == 1) { |
| load_addr = (void *)simple_strtoul(argv[0], NULL, 16); |
| } |
| |
| return qemu_fwcfg_setup_kernel(load_addr, initrd_addr); |
| } |
| |
| static cmd_tbl_t fwcfg_commands[] = { |
| U_BOOT_CMD_MKENT(list, 0, 1, qemu_fwcfg_do_list, "", ""), |
| U_BOOT_CMD_MKENT(cpus, 0, 1, qemu_fwcfg_do_cpus, "", ""), |
| U_BOOT_CMD_MKENT(load, 2, 1, qemu_fwcfg_do_load, "", ""), |
| }; |
| |
| static int do_qemu_fw(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) |
| { |
| int ret; |
| cmd_tbl_t *fwcfg_cmd; |
| |
| if (!fwcfg_present) { |
| printf("QEMU fw_cfg interface not found\n"); |
| return CMD_RET_USAGE; |
| } |
| |
| fwcfg_cmd = find_cmd_tbl(argv[1], fwcfg_commands, |
| ARRAY_SIZE(fwcfg_commands)); |
| argc -= 2; |
| argv += 2; |
| if (!fwcfg_cmd || argc > fwcfg_cmd->maxargs) |
| return CMD_RET_USAGE; |
| |
| ret = fwcfg_cmd->cmd(fwcfg_cmd, flag, argc, argv); |
| |
| return cmd_process_error(fwcfg_cmd, ret); |
| } |
| |
| U_BOOT_CMD( |
| qfw, 4, 1, do_qemu_fw, |
| "QEMU firmware interface", |
| "<command>\n" |
| " - list : print firmware(s) currently loaded\n" |
| " - cpus : print online cpu number\n" |
| " - load <kernel addr> <initrd addr> : load kernel and initrd (if any), and setup for zboot\n" |
| ) |