blob: 2e2794ebd7fcd8a12c37e90515dcac2857d59351 [file] [log] [blame]
/*
* (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <errno.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/fw_cfg.h>
#include <asm/tables.h>
#include <asm/e820.h>
#include <linux/list.h>
#include <memalign.h>
static bool fwcfg_present;
static bool fwcfg_dma_present;
static LIST_HEAD(fw_list);
/* Read configuration item using fw_cfg PIO interface */
static void qemu_fwcfg_read_entry_pio(uint16_t entry,
uint32_t size, void *address)
{
uint32_t i = 0;
uint8_t *data = address;
/*
* writting FW_CFG_INVALID will cause read operation to resume at
* last offset, otherwise read will start at offset 0
*/
if (entry != FW_CFG_INVALID)
outw(entry, FW_CONTROL_PORT);
while (size--)
data[i++] = inb(FW_DATA_PORT);
}
/* Read configuration item using fw_cfg DMA interface */
static void qemu_fwcfg_read_entry_dma(uint16_t entry,
uint32_t size, void *address)
{
struct fw_cfg_dma_access dma;
dma.length = cpu_to_be32(size);
dma.address = cpu_to_be64((uintptr_t)address);
dma.control = cpu_to_be32(FW_CFG_DMA_READ);
/*
* writting FW_CFG_INVALID will cause read operation to resume at
* last offset, otherwise read will start at offset 0
*/
if (entry != FW_CFG_INVALID)
dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16));
barrier();
debug("qemu_fwcfg_dma_read_entry: addr %p, length %u control 0x%x\n",
address, size, be32_to_cpu(dma.control));
outl(cpu_to_be32((uint32_t)&dma), FW_DMA_PORT_HIGH);
while (be32_to_cpu(dma.control) & ~FW_CFG_DMA_ERROR)
__asm__ __volatile__ ("pause");
}
static bool qemu_fwcfg_present(void)
{
uint32_t qemu;
qemu_fwcfg_read_entry_pio(FW_CFG_SIGNATURE, 4, &qemu);
return be32_to_cpu(qemu) == QEMU_FW_CFG_SIGNATURE;
}
static bool qemu_fwcfg_dma_present(void)
{
uint8_t dma_enabled;
qemu_fwcfg_read_entry_pio(FW_CFG_ID, 1, &dma_enabled);
if (dma_enabled & FW_CFG_DMA_ENABLED)
return true;
return false;
}
static void qemu_fwcfg_read_entry(uint16_t entry,
uint32_t length, void *address)
{
if (fwcfg_dma_present)
qemu_fwcfg_read_entry_dma(entry, length, address);
else
qemu_fwcfg_read_entry_pio(entry, length, address);
}
int qemu_fwcfg_online_cpus(void)
{
uint16_t nb_cpus;
if (!fwcfg_present)
return -ENODEV;
qemu_fwcfg_read_entry(FW_CFG_NB_CPUS, 2, &nb_cpus);
return le16_to_cpu(nb_cpus);
}
/*
* This function prepares kernel for zboot. It loads kernel data
* to 'load_addr', initrd to 'initrd_addr' and kernel command
* line using qemu fw_cfg interface.
*/
static int qemu_fwcfg_setup_kernel(void *load_addr, void *initrd_addr)
{
char *data_addr;
uint32_t setup_size, kernel_size, cmdline_size, initrd_size;
qemu_fwcfg_read_entry(FW_CFG_SETUP_SIZE, 4, &setup_size);
qemu_fwcfg_read_entry(FW_CFG_KERNEL_SIZE, 4, &kernel_size);
if (setup_size == 0 || kernel_size == 0) {
printf("warning: no kernel available\n");
return -1;
}
data_addr = load_addr;
qemu_fwcfg_read_entry(FW_CFG_SETUP_DATA,
le32_to_cpu(setup_size), data_addr);
data_addr += le32_to_cpu(setup_size);
qemu_fwcfg_read_entry(FW_CFG_KERNEL_DATA,
le32_to_cpu(kernel_size), data_addr);
data_addr += le32_to_cpu(kernel_size);
data_addr = initrd_addr;
qemu_fwcfg_read_entry(FW_CFG_INITRD_SIZE, 4, &initrd_size);
if (initrd_size == 0) {
printf("warning: no initrd available\n");
} else {
qemu_fwcfg_read_entry(FW_CFG_INITRD_DATA,
le32_to_cpu(initrd_size), data_addr);
data_addr += le32_to_cpu(initrd_size);
}
qemu_fwcfg_read_entry(FW_CFG_CMDLINE_SIZE, 4, &cmdline_size);
if (cmdline_size) {
qemu_fwcfg_read_entry(FW_CFG_CMDLINE_DATA,
le32_to_cpu(cmdline_size), data_addr);
/*
* if kernel cmdline only contains '\0', (e.g. no -append
* when invoking qemu), do not update bootargs
*/
if (*data_addr != '\0') {
if (setenv("bootargs", data_addr) < 0)
printf("warning: unable to change bootargs\n");
}
}
printf("loading kernel to address %p size %x", load_addr,
le32_to_cpu(kernel_size));
if (initrd_size)
printf(" initrd %p size %x\n",
initrd_addr,
le32_to_cpu(initrd_size));
else
printf("\n");
return 0;
}
static int qemu_fwcfg_read_firmware_list(void)
{
int i;
uint32_t count;
struct fw_file *file;
struct list_head *entry;
/* don't read it twice */
if (!list_empty(&fw_list))
return 0;
qemu_fwcfg_read_entry(FW_CFG_FILE_DIR, 4, &count);
if (!count)
return 0;
count = be32_to_cpu(count);
for (i = 0; i < count; i++) {
file = malloc(sizeof(*file));
if (!file) {
printf("error: allocating resource\n");
goto err;
}
qemu_fwcfg_read_entry(FW_CFG_INVALID,
sizeof(struct fw_cfg_file), &file->cfg);
file->addr = 0;
list_add_tail(&file->list, &fw_list);
}
return 0;
err:
list_for_each(entry, &fw_list) {
file = list_entry(entry, struct fw_file, list);
free(file);
}
return -ENOMEM;
}
#ifdef CONFIG_QEMU_ACPI_TABLE
static struct fw_file *qemu_fwcfg_find_file(const char *name)
{
struct list_head *entry;
struct fw_file *file;
list_for_each(entry, &fw_list) {
file = list_entry(entry, struct fw_file, list);
if (!strcmp(file->cfg.name, name))
return file;
}
return NULL;
}
/*
* This function allocates memory for ACPI tables
*
* @entry : BIOS linker command entry which tells where to allocate memory
* (either high memory or low memory)
* @addr : The address that should be used for low memory allcation. If the
* memory allocation request is 'ZONE_HIGH' then this parameter will
* be ignored.
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_allocate(struct bios_linker_entry *entry, u32 *addr)
{
uint32_t size, align;
struct fw_file *file;
unsigned long aligned_addr;
align = le32_to_cpu(entry->alloc.align);
/* align must be power of 2 */
if (align & (align - 1)) {
printf("error: wrong alignment %u\n", align);
return -EINVAL;
}
file = qemu_fwcfg_find_file(entry->alloc.file);
if (!file) {
printf("error: can't find file %s\n", entry->alloc.file);
return -ENOENT;
}
size = be32_to_cpu(file->cfg.size);
/*
* ZONE_HIGH means we need to allocate from high memory, since
* malloc space is already at the end of RAM, so we directly use it.
* If allocation zone is ZONE_FSEG, then we use the 'addr' passed
* in which is low memory
*/
if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) {
aligned_addr = (unsigned long)memalign(align, size);
if (!aligned_addr) {
printf("error: allocating resource\n");
return -ENOMEM;
}
} else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) {
aligned_addr = ALIGN(*addr, align);
} else {
printf("error: invalid allocation zone\n");
return -EINVAL;
}
debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n",
file->cfg.name, size, entry->alloc.zone, align, aligned_addr);
qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
size, (void *)aligned_addr);
file->addr = aligned_addr;
/* adjust address for low memory allocation */
if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG)
*addr = (aligned_addr + size);
return 0;
}
/*
* This function patches ACPI tables previously loaded
* by bios_linker_allocate()
*
* @entry : BIOS linker command entry which tells how to patch
* ACPI tables
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_add_pointer(struct bios_linker_entry *entry)
{
struct fw_file *dest, *src;
uint32_t offset = le32_to_cpu(entry->pointer.offset);
uint64_t pointer = 0;
dest = qemu_fwcfg_find_file(entry->pointer.dest_file);
if (!dest || !dest->addr)
return -ENOENT;
src = qemu_fwcfg_find_file(entry->pointer.src_file);
if (!src || !src->addr)
return -ENOENT;
debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n",
dest->addr, src->addr, offset, entry->pointer.size, pointer);
memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size);
pointer = le64_to_cpu(pointer);
pointer += (unsigned long)src->addr;
pointer = cpu_to_le64(pointer);
memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size);
return 0;
}
/*
* This function updates checksum fields of ACPI tables previously loaded
* by bios_linker_allocate()
*
* @entry : BIOS linker command entry which tells where to update ACPI table
* checksums
* @return: 0 on success, or negative value on failure
*/
static int bios_linker_add_checksum(struct bios_linker_entry *entry)
{
struct fw_file *file;
uint8_t *data, cksum = 0;
uint8_t *cksum_start;
file = qemu_fwcfg_find_file(entry->cksum.file);
if (!file || !file->addr)
return -ENOENT;
data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset));
cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start));
cksum = table_compute_checksum(cksum_start,
le32_to_cpu(entry->cksum.length));
*data = cksum;
return 0;
}
unsigned install_e820_map(unsigned max_entries, struct e820entry *entries)
{
entries[0].addr = 0;
entries[0].size = ISA_START_ADDRESS;
entries[0].type = E820_RAM;
entries[1].addr = ISA_START_ADDRESS;
entries[1].size = ISA_END_ADDRESS - ISA_START_ADDRESS;
entries[1].type = E820_RESERVED;
/*
* since we use memalign(malloc) to allocate high memory for
* storing ACPI tables, we need to reserve them in e820 tables,
* otherwise kernel will reclaim them and data will be corrupted
*/
entries[2].addr = ISA_END_ADDRESS;
entries[2].size = gd->relocaddr - TOTAL_MALLOC_LEN - ISA_END_ADDRESS;
entries[2].type = E820_RAM;
/* for simplicity, reserve entire malloc space */
entries[3].addr = gd->relocaddr - TOTAL_MALLOC_LEN;
entries[3].size = TOTAL_MALLOC_LEN;
entries[3].type = E820_RESERVED;
entries[4].addr = gd->relocaddr;
entries[4].size = gd->ram_size - gd->relocaddr;
entries[4].type = E820_RESERVED;
entries[5].addr = CONFIG_PCIE_ECAM_BASE;
entries[5].size = CONFIG_PCIE_ECAM_SIZE;
entries[5].type = E820_RESERVED;
return 6;
}
/* This function loads and patches ACPI tables provided by QEMU */
u32 write_acpi_tables(u32 addr)
{
int i, ret = 0;
struct fw_file *file;
struct bios_linker_entry *table_loader;
struct bios_linker_entry *entry;
uint32_t size;
struct list_head *list;
/* make sure fw_list is loaded */
ret = qemu_fwcfg_read_firmware_list();
if (ret) {
printf("error: can't read firmware file list\n");
return addr;
}
file = qemu_fwcfg_find_file("etc/table-loader");
if (!file) {
printf("error: can't find etc/table-loader\n");
return addr;
}
size = be32_to_cpu(file->cfg.size);
if ((size % sizeof(*entry)) != 0) {
printf("error: table-loader maybe corrupted\n");
return addr;
}
table_loader = malloc(size);
if (!table_loader) {
printf("error: no memory for table-loader\n");
return addr;
}
qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select),
size, table_loader);
for (i = 0; i < (size / sizeof(*entry)); i++) {
entry = table_loader + i;
switch (le32_to_cpu(entry->command)) {
case BIOS_LINKER_LOADER_COMMAND_ALLOCATE:
ret = bios_linker_allocate(entry, &addr);
if (ret)
goto out;
break;
case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER:
ret = bios_linker_add_pointer(entry);
if (ret)
goto out;
break;
case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM:
ret = bios_linker_add_checksum(entry);
if (ret)
goto out;
break;
default:
break;
}
}
out:
if (ret) {
list_for_each(list, &fw_list) {
file = list_entry(list, struct fw_file, list);
if (file->addr)
free((void *)file->addr);
}
}
free(table_loader);
return addr;
}
#endif
static int qemu_fwcfg_list_firmware(void)
{
int ret;
struct list_head *entry;
struct fw_file *file;
/* make sure fw_list is loaded */
ret = qemu_fwcfg_read_firmware_list();
if (ret)
return ret;
list_for_each(entry, &fw_list) {
file = list_entry(entry, struct fw_file, list);
printf("%-56s\n", file->cfg.name);
}
return 0;
}
void qemu_fwcfg_init(void)
{
fwcfg_present = qemu_fwcfg_present();
if (fwcfg_present)
fwcfg_dma_present = qemu_fwcfg_dma_present();
}
static int qemu_fwcfg_do_list(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
if (qemu_fwcfg_list_firmware() < 0)
return CMD_RET_FAILURE;
return 0;
}
static int qemu_fwcfg_do_cpus(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
int ret = qemu_fwcfg_online_cpus();
if (ret < 0) {
printf("QEMU fw_cfg interface not found\n");
return CMD_RET_FAILURE;
}
printf("%d cpu(s) online\n", qemu_fwcfg_online_cpus());
return 0;
}
static int qemu_fwcfg_do_load(cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
char *env;
void *load_addr;
void *initrd_addr;
env = getenv("loadaddr");
load_addr = env ?
(void *)simple_strtoul(env, NULL, 16) :
(void *)CONFIG_LOADADDR;
env = getenv("ramdiskaddr");
initrd_addr = env ?
(void *)simple_strtoul(env, NULL, 16) :
(void *)CONFIG_RAMDISK_ADDR;
if (argc == 2) {
load_addr = (void *)simple_strtoul(argv[0], NULL, 16);
initrd_addr = (void *)simple_strtoul(argv[1], NULL, 16);
} else if (argc == 1) {
load_addr = (void *)simple_strtoul(argv[0], NULL, 16);
}
return qemu_fwcfg_setup_kernel(load_addr, initrd_addr);
}
static cmd_tbl_t fwcfg_commands[] = {
U_BOOT_CMD_MKENT(list, 0, 1, qemu_fwcfg_do_list, "", ""),
U_BOOT_CMD_MKENT(cpus, 0, 1, qemu_fwcfg_do_cpus, "", ""),
U_BOOT_CMD_MKENT(load, 2, 1, qemu_fwcfg_do_load, "", ""),
};
static int do_qemu_fw(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int ret;
cmd_tbl_t *fwcfg_cmd;
if (!fwcfg_present) {
printf("QEMU fw_cfg interface not found\n");
return CMD_RET_USAGE;
}
fwcfg_cmd = find_cmd_tbl(argv[1], fwcfg_commands,
ARRAY_SIZE(fwcfg_commands));
argc -= 2;
argv += 2;
if (!fwcfg_cmd || argc > fwcfg_cmd->maxargs)
return CMD_RET_USAGE;
ret = fwcfg_cmd->cmd(fwcfg_cmd, flag, argc, argv);
return cmd_process_error(fwcfg_cmd, ret);
}
U_BOOT_CMD(
qfw, 4, 1, do_qemu_fw,
"QEMU firmware interface",
"<command>\n"
" - list : print firmware(s) currently loaded\n"
" - cpus : print online cpu number\n"
" - load <kernel addr> <initrd addr> : load kernel and initrd (if any), and setup for zboot\n"
)