| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale i.MX28 NAND flash driver |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * Freescale GPMI NFC NAND Flash Driver |
| * |
| * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| * Copyright 2017-2019 NXP |
| */ |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <cpu_func.h> |
| #include <dm.h> |
| #include <dm/device_compat.h> |
| #include <malloc.h> |
| #include <mxs_nand.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/cache.h> |
| #include <asm/io.h> |
| #include <asm/mach-imx/regs-bch.h> |
| #include <asm/mach-imx/regs-gpmi.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/sizes.h> |
| #include <linux/types.h> |
| #include <linux/math64.h> |
| |
| #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 |
| |
| #if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_IMX8) || \ |
| defined(CONFIG_IMX8M) |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 |
| #else |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 |
| #endif |
| #define MXS_NAND_METADATA_SIZE 10 |
| #define MXS_NAND_BITS_PER_ECC_LEVEL 13 |
| |
| #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32 |
| #define MXS_NAND_COMMAND_BUFFER_SIZE 32 |
| #else |
| #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE |
| #endif |
| |
| #define MXS_NAND_BCH_TIMEOUT 10000 |
| #define USEC_PER_SEC 1000000 |
| #define NSEC_PER_SEC 1000000000L |
| |
| #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) |
| |
| struct nand_ecclayout fake_ecc_layout; |
| |
| /* |
| * Cache management functions |
| */ |
| #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) |
| static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uintptr_t)info->data_buf; |
| |
| flush_dcache_range(addr, addr + info->data_buf_size); |
| } |
| |
| static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uintptr_t)info->data_buf; |
| |
| invalidate_dcache_range(addr, addr + info->data_buf_size); |
| } |
| |
| static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) |
| { |
| uint32_t addr = (uintptr_t)info->cmd_buf; |
| |
| flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); |
| } |
| #else |
| static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} |
| static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} |
| static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} |
| #endif |
| |
| static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) |
| { |
| struct mxs_dma_desc *desc; |
| |
| if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { |
| printf("MXS NAND: Too many DMA descriptors requested\n"); |
| return NULL; |
| } |
| |
| desc = info->desc[info->desc_index]; |
| info->desc_index++; |
| |
| return desc; |
| } |
| |
| static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) |
| { |
| int i; |
| struct mxs_dma_desc *desc; |
| |
| for (i = 0; i < info->desc_index; i++) { |
| desc = info->desc[i]; |
| memset(desc, 0, sizeof(struct mxs_dma_desc)); |
| desc->address = (dma_addr_t)desc; |
| } |
| |
| info->desc_index = 0; |
| } |
| |
| static uint32_t mxs_nand_aux_status_offset(void) |
| { |
| return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; |
| } |
| |
| static inline bool mxs_nand_bbm_in_data_chunk(struct bch_geometry *geo, |
| struct mtd_info *mtd, |
| unsigned int *chunk_num) |
| { |
| unsigned int i, j; |
| |
| if (geo->ecc_chunk0_size != geo->ecc_chunkn_size) { |
| dev_err(mtd->dev, "The size of chunk0 must equal to chunkn\n"); |
| return false; |
| } |
| |
| i = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) / |
| (geo->gf_len * geo->ecc_strength + |
| geo->ecc_chunkn_size * 8); |
| |
| j = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) - |
| (geo->gf_len * geo->ecc_strength + |
| geo->ecc_chunkn_size * 8) * i; |
| |
| if (j < geo->ecc_chunkn_size * 8) { |
| *chunk_num = i + 1; |
| dev_dbg(mtd->dev, "Set ecc to %d and bbm in chunk %d\n", |
| geo->ecc_strength, *chunk_num); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo, |
| struct mtd_info *mtd, |
| unsigned int ecc_strength, |
| unsigned int ecc_step) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| unsigned int block_mark_bit_offset; |
| |
| switch (ecc_step) { |
| case SZ_512: |
| geo->gf_len = 13; |
| break; |
| case SZ_1K: |
| geo->gf_len = 14; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| geo->ecc_chunk0_size = ecc_step; |
| geo->ecc_chunkn_size = ecc_step; |
| geo->ecc_strength = round_up(ecc_strength, 2); |
| |
| /* Keep the C >= O */ |
| if (geo->ecc_chunkn_size < mtd->oobsize) |
| return -EINVAL; |
| |
| if (geo->ecc_strength > nand_info->max_ecc_strength_supported) |
| return -EINVAL; |
| |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; |
| |
| /* For bit swap. */ |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| + MXS_NAND_METADATA_SIZE * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| |
| return 0; |
| } |
| |
| static inline int mxs_nand_legacy_calc_ecc_layout(struct bch_geometry *geo, |
| struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| unsigned int block_mark_bit_offset; |
| int corr, ds_corr; |
| |
| /* The default for the length of Galois Field. */ |
| geo->gf_len = 13; |
| |
| /* The default for chunk size. */ |
| geo->ecc_chunk0_size = 512; |
| geo->ecc_chunkn_size = 512; |
| |
| if (geo->ecc_chunkn_size < mtd->oobsize) { |
| geo->gf_len = 14; |
| geo->ecc_chunk0_size *= 2; |
| geo->ecc_chunkn_size *= 2; |
| } |
| |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; |
| |
| /* |
| * Determine the ECC layout with the formula: |
| * ECC bits per chunk = (total page spare data bits) / |
| * (bits per ECC level) / (chunks per page) |
| * where: |
| * total page spare data bits = |
| * (page oob size - meta data size) * (bits per byte) |
| */ |
| geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8) |
| / (geo->gf_len * geo->ecc_chunk_count); |
| |
| geo->ecc_strength = min(round_down(geo->ecc_strength, 2), |
| nand_info->max_ecc_strength_supported); |
| |
| /* check ecc strength, same as nand_ecc_is_strong_enough() did*/ |
| if (chip->ecc_step_ds) { |
| corr = mtd->writesize * geo->ecc_strength / |
| geo->ecc_chunkn_size; |
| ds_corr = mtd->writesize * chip->ecc_strength_ds / |
| chip->ecc_step_ds; |
| if (corr < ds_corr || |
| geo->ecc_strength < chip->ecc_strength_ds) |
| return -EINVAL; |
| } |
| |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| + MXS_NAND_METADATA_SIZE * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| |
| return 0; |
| } |
| |
| static inline int mxs_nand_calc_ecc_for_large_oob(struct bch_geometry *geo, |
| struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| unsigned int block_mark_bit_offset; |
| unsigned int max_ecc; |
| unsigned int bbm_chunk; |
| unsigned int i; |
| |
| /* sanity check for the minimum ecc nand required */ |
| if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) |
| return -EINVAL; |
| geo->ecc_strength = chip->ecc_strength_ds; |
| |
| /* calculate the maximum ecc platform can support*/ |
| geo->gf_len = 14; |
| geo->ecc_chunk0_size = 1024; |
| geo->ecc_chunkn_size = 1024; |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; |
| max_ecc = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8) |
| / (geo->gf_len * geo->ecc_chunk_count); |
| max_ecc = min(round_down(max_ecc, 2), |
| nand_info->max_ecc_strength_supported); |
| |
| |
| /* search a supported ecc strength that makes bbm */ |
| /* located in data chunk */ |
| geo->ecc_strength = chip->ecc_strength_ds; |
| while (!(geo->ecc_strength > max_ecc)) { |
| if (mxs_nand_bbm_in_data_chunk(geo, mtd, &bbm_chunk)) |
| break; |
| geo->ecc_strength += 2; |
| } |
| |
| /* if none of them works, keep using the minimum ecc */ |
| /* nand required but changing ecc page layout */ |
| if (geo->ecc_strength > max_ecc) { |
| geo->ecc_strength = chip->ecc_strength_ds; |
| /* add extra ecc for meta data */ |
| geo->ecc_chunk0_size = 0; |
| geo->ecc_chunk_count = (mtd->writesize / geo->ecc_chunkn_size) + 1; |
| geo->ecc_for_meta = 1; |
| /* check if oob can afford this extra ecc chunk */ |
| if (mtd->oobsize * 8 < MXS_NAND_METADATA_SIZE * 8 + |
| geo->gf_len * geo->ecc_strength |
| * geo->ecc_chunk_count) { |
| printf("unsupported NAND chip with new layout\n"); |
| return -EINVAL; |
| } |
| |
| /* calculate in which chunk bbm located */ |
| bbm_chunk = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8 - |
| geo->gf_len * geo->ecc_strength) / |
| (geo->gf_len * geo->ecc_strength + |
| geo->ecc_chunkn_size * 8) + 1; |
| } |
| |
| /* calculate the number of ecc chunk behind the bbm */ |
| i = (mtd->writesize / geo->ecc_chunkn_size) - bbm_chunk + 1; |
| |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) |
| + MXS_NAND_METADATA_SIZE * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| |
| return 0; |
| } |
| |
| /* |
| * Wait for BCH complete IRQ and clear the IRQ |
| */ |
| static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info) |
| { |
| int timeout = MXS_NAND_BCH_TIMEOUT; |
| int ret; |
| |
| ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg, |
| BCH_CTRL_COMPLETE_IRQ, timeout); |
| |
| writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr); |
| |
| return ret; |
| } |
| |
| /* |
| * This is the function that we install in the cmd_ctrl function pointer of the |
| * owning struct nand_chip. The only functions in the reference implementation |
| * that use these functions pointers are cmdfunc and select_chip. |
| * |
| * In this driver, we implement our own select_chip, so this function will only |
| * be called by the reference implementation's cmdfunc. For this reason, we can |
| * ignore the chip enable bit and concentrate only on sending bytes to the NAND |
| * Flash. |
| */ |
| static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| /* |
| * If this condition is true, something is _VERY_ wrong in MTD |
| * subsystem! |
| */ |
| if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { |
| printf("MXS NAND: Command queue too long\n"); |
| return; |
| } |
| |
| /* |
| * Every operation begins with a command byte and a series of zero or |
| * more address bytes. These are distinguished by either the Address |
| * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| * asserted. When MTD is ready to execute the command, it will |
| * deasert both latch enables. |
| * |
| * Rather than run a separate DMA operation for every single byte, we |
| * queue them up and run a single DMA operation for the entire series |
| * of command and data bytes. |
| */ |
| if (ctrl & (NAND_ALE | NAND_CLE)) { |
| if (data != NAND_CMD_NONE) |
| nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; |
| return; |
| } |
| |
| /* |
| * If control arrives here, MTD has deasserted both the ALE and CLE, |
| * which means it's ready to run an operation. Check if we have any |
| * bytes to send. |
| */ |
| if (nand_info->cmd_queue_len == 0) |
| return; |
| |
| /* Compile the DMA descriptor -- a descriptor that sends command. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | |
| MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->cmd_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_CLE | |
| GPMI_CTRL0_ADDRESS_INCREMENT | |
| nand_info->cmd_queue_len; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_cmd_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) |
| printf("MXS NAND: Error sending command\n"); |
| |
| mxs_nand_return_dma_descs(nand_info); |
| |
| /* Reset the command queue. */ |
| nand_info->cmd_queue_len = 0; |
| } |
| |
| /* |
| * Test if the NAND flash is ready. |
| */ |
| static int mxs_nand_device_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| uint32_t tmp; |
| |
| tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat); |
| tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); |
| |
| return tmp & 1; |
| } |
| |
| /* |
| * Select the NAND chip. |
| */ |
| static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| |
| nand_info->cur_chip = chip; |
| } |
| |
| /* |
| * Handle block mark swapping. |
| * |
| * Note that, when this function is called, it doesn't know whether it's |
| * swapping the block mark, or swapping it *back* -- but it doesn't matter |
| * because the the operation is the same. |
| */ |
| static void mxs_nand_swap_block_mark(struct bch_geometry *geo, |
| uint8_t *data_buf, uint8_t *oob_buf) |
| { |
| uint32_t bit_offset = geo->block_mark_bit_offset; |
| uint32_t buf_offset = geo->block_mark_byte_offset; |
| |
| uint32_t src; |
| uint32_t dst; |
| |
| /* |
| * Get the byte from the data area that overlays the block mark. Since |
| * the ECC engine applies its own view to the bits in the page, the |
| * physical block mark won't (in general) appear on a byte boundary in |
| * the data. |
| */ |
| src = data_buf[buf_offset] >> bit_offset; |
| src |= data_buf[buf_offset + 1] << (8 - bit_offset); |
| |
| dst = oob_buf[0]; |
| |
| oob_buf[0] = src; |
| |
| data_buf[buf_offset] &= ~(0xff << bit_offset); |
| data_buf[buf_offset + 1] &= 0xff << bit_offset; |
| |
| data_buf[buf_offset] |= dst << bit_offset; |
| data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); |
| } |
| |
| /* |
| * Read data from NAND. |
| */ |
| static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| if (length > NAND_MAX_PAGESIZE) { |
| printf("MXS NAND: DMA buffer too big\n"); |
| return; |
| } |
| |
| if (!buf) { |
| printf("MXS NAND: DMA buffer is NULL\n"); |
| return; |
| } |
| |
| /* Compile the DMA descriptor - a descriptor that reads data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (length << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_READ | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| length; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* |
| * A DMA descriptor that waits for the command to end and the chip to |
| * become ready. |
| * |
| * I think we actually should *not* be waiting for the chip to become |
| * ready because, after all, we don't care. I think the original code |
| * did that and no one has re-thought it yet. |
| */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | |
| MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA read error\n"); |
| goto rtn; |
| } |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| memcpy(buf, nand_info->data_buf, length); |
| |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| } |
| |
| /* |
| * Write data to NAND. |
| */ |
| static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int length) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| if (length > NAND_MAX_PAGESIZE) { |
| printf("MXS NAND: DMA buffer too big\n"); |
| return; |
| } |
| |
| if (!buf) { |
| printf("MXS NAND: DMA buffer is NULL\n"); |
| return; |
| } |
| |
| memcpy(nand_info->data_buf, buf, length); |
| |
| /* Compile the DMA descriptor - a descriptor that writes data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
| (length << MXS_DMA_DESC_BYTES_OFFSET); |
| |
| d->cmd.address = (dma_addr_t)nand_info->data_buf; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| length; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) |
| printf("MXS NAND: DMA write error\n"); |
| |
| mxs_nand_return_dma_descs(nand_info); |
| } |
| |
| /* |
| * Read a single byte from NAND. |
| */ |
| static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) |
| { |
| uint8_t buf; |
| mxs_nand_read_buf(mtd, &buf, 1); |
| return buf; |
| } |
| |
| static bool mxs_nand_erased_page(struct mtd_info *mtd, struct nand_chip *nand, |
| u8 *buf, int chunk, int page) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| unsigned int flip_bits = 0, flip_bits_noecc = 0; |
| unsigned int threshold; |
| unsigned int base = geo->ecc_chunkn_size * chunk; |
| u32 *dma_buf = (u32 *)buf; |
| int i; |
| |
| threshold = geo->gf_len / 2; |
| if (threshold > geo->ecc_strength) |
| threshold = geo->ecc_strength; |
| |
| for (i = 0; i < geo->ecc_chunkn_size; i++) { |
| flip_bits += hweight8(~buf[base + i]); |
| if (flip_bits > threshold) |
| return false; |
| } |
| |
| nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| nand->read_buf(mtd, buf, mtd->writesize); |
| |
| for (i = 0; i < mtd->writesize / 4; i++) { |
| flip_bits_noecc += hweight32(~dma_buf[i]); |
| if (flip_bits_noecc > threshold) |
| return false; |
| } |
| |
| mtd->ecc_stats.corrected += flip_bits; |
| |
| memset(buf, 0xff, mtd->writesize); |
| |
| printf("The page(%d) is an erased page(%d,%d,%d,%d).\n", page, chunk, threshold, flip_bits, flip_bits_noecc); |
| |
| return true; |
| } |
| |
| /* |
| * Read a page from NAND. |
| */ |
| static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| struct mxs_bch_regs *bch_regs = nand_info->bch_regs; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| uint32_t corrected = 0, failed = 0; |
| uint8_t *status; |
| int i, ret; |
| int flag = 0; |
| |
| /* Compile the DMA descriptor - wait for ready. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - enable the BCH block and read. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_READ | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = |
| GPMI_ECCCTRL_ENABLE_ECC | |
| GPMI_ECCCTRL_ECC_CMD_DECODE | |
| GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; |
| d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| |
| if (nand_info->en_randomizer) { |
| d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE | |
| GPMI_ECCCTRL_RANDOMIZER_TYPE2; |
| d->cmd.pio_words[3] |= (page % 256) << 16; |
| } |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - disable the BCH block. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | |
| MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | |
| (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA | |
| (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = 0; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM; |
| |
| d->cmd.address = 0; |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA read error\n"); |
| goto rtn; |
| } |
| |
| ret = mxs_nand_wait_for_bch_complete(nand_info); |
| if (ret) { |
| printf("MXS NAND: BCH read timeout\n"); |
| goto rtn; |
| } |
| |
| mxs_nand_return_dma_descs(nand_info); |
| |
| /* Invalidate caches */ |
| mxs_nand_inval_data_buf(nand_info); |
| |
| /* Read DMA completed, now do the mark swapping. */ |
| mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf); |
| |
| /* Loop over status bytes, accumulating ECC status. */ |
| status = nand_info->oob_buf + mxs_nand_aux_status_offset(); |
| for (i = 0; i < geo->ecc_chunk_count; i++) { |
| if (status[i] == 0x00) |
| continue; |
| |
| if (status[i] == 0xff) { |
| if (!nand_info->en_randomizer && |
| (is_mx6dqp() || is_mx7() || is_mx6ul() || |
| is_imx8() || is_imx8m())) |
| if (readl(&bch_regs->hw_bch_debug1)) |
| flag = 1; |
| continue; |
| } |
| |
| if (status[i] == 0xfe) { |
| if (mxs_nand_erased_page(mtd, nand, |
| nand_info->data_buf, i, page)) |
| break; |
| failed++; |
| continue; |
| } |
| |
| corrected += status[i]; |
| } |
| |
| /* Propagate ECC status to the owning MTD. */ |
| mtd->ecc_stats.failed += failed; |
| mtd->ecc_stats.corrected += corrected; |
| |
| /* |
| * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for |
| * details about our policy for delivering the OOB. |
| * |
| * We fill the caller's buffer with set bits, and then copy the block |
| * mark to the caller's buffer. Note that, if block mark swapping was |
| * necessary, it has already been done, so we can rely on the first |
| * byte of the auxiliary buffer to contain the block mark. |
| */ |
| memset(nand->oob_poi, 0xff, mtd->oobsize); |
| |
| nand->oob_poi[0] = nand_info->oob_buf[0]; |
| |
| memcpy(buf, nand_info->data_buf, mtd->writesize); |
| |
| if (flag) |
| memset(buf, 0xff, mtd->writesize); |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| |
| return ret; |
| } |
| |
| /* |
| * Write a page to NAND. |
| */ |
| static int mxs_nand_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *nand, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| struct mxs_dma_desc *d; |
| uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; |
| int ret; |
| |
| memcpy(nand_info->data_buf, buf, mtd->writesize); |
| memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); |
| |
| /* Handle block mark swapping. */ |
| mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf); |
| |
| /* Compile the DMA descriptor - write data. */ |
| d = mxs_nand_get_dma_desc(nand_info); |
| d->cmd.data = |
| MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | |
| MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | |
| (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
| |
| d->cmd.address = 0; |
| |
| d->cmd.pio_words[0] = |
| GPMI_CTRL0_COMMAND_MODE_WRITE | |
| GPMI_CTRL0_WORD_LENGTH | |
| (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | |
| GPMI_CTRL0_ADDRESS_NAND_DATA; |
| d->cmd.pio_words[1] = 0; |
| d->cmd.pio_words[2] = |
| GPMI_ECCCTRL_ENABLE_ECC | |
| GPMI_ECCCTRL_ECC_CMD_ENCODE | |
| GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; |
| d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); |
| d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; |
| d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; |
| |
| if (nand_info->en_randomizer) { |
| d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE | |
| GPMI_ECCCTRL_RANDOMIZER_TYPE2; |
| /* |
| * Write NAND page number needed to be randomized |
| * to GPMI_ECCCOUNT register. |
| * |
| * The value is between 0-255. For additional details |
| * check 9.6.6.4 of i.MX7D Applications Processor reference |
| */ |
| d->cmd.pio_words[3] |= (page % 256) << 16; |
| } |
| |
| mxs_dma_desc_append(channel, d); |
| |
| /* Flush caches */ |
| mxs_nand_flush_data_buf(nand_info); |
| |
| /* Execute the DMA chain. */ |
| ret = mxs_dma_go(channel); |
| if (ret) { |
| printf("MXS NAND: DMA write error\n"); |
| goto rtn; |
| } |
| |
| ret = mxs_nand_wait_for_bch_complete(nand_info); |
| if (ret) { |
| printf("MXS NAND: BCH write timeout\n"); |
| goto rtn; |
| } |
| |
| rtn: |
| mxs_nand_return_dma_descs(nand_info); |
| return 0; |
| } |
| |
| /* |
| * Read OOB from NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| int ret; |
| |
| if (ops->mode == MTD_OPS_RAW) |
| nand_info->raw_oob_mode = 1; |
| else |
| nand_info->raw_oob_mode = 0; |
| |
| ret = nand_info->hooked_read_oob(mtd, from, ops); |
| |
| nand_info->raw_oob_mode = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Write OOB to NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| int ret; |
| |
| if (ops->mode == MTD_OPS_RAW) |
| nand_info->raw_oob_mode = 1; |
| else |
| nand_info->raw_oob_mode = 0; |
| |
| ret = nand_info->hooked_write_oob(mtd, to, ops); |
| |
| nand_info->raw_oob_mode = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Mark a block bad in NAND. |
| * |
| * This function is a veneer that replaces the function originally installed by |
| * the NAND Flash MTD code. |
| */ |
| static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| int ret; |
| |
| nand_info->marking_block_bad = 1; |
| |
| ret = nand_info->hooked_block_markbad(mtd, ofs); |
| |
| nand_info->marking_block_bad = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * There are several places in this driver where we have to handle the OOB and |
| * block marks. This is the function where things are the most complicated, so |
| * this is where we try to explain it all. All the other places refer back to |
| * here. |
| * |
| * These are the rules, in order of decreasing importance: |
| * |
| * 1) Nothing the caller does can be allowed to imperil the block mark, so all |
| * write operations take measures to protect it. |
| * |
| * 2) In read operations, the first byte of the OOB we return must reflect the |
| * true state of the block mark, no matter where that block mark appears in |
| * the physical page. |
| * |
| * 3) ECC-based read operations return an OOB full of set bits (since we never |
| * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| * return). |
| * |
| * 4) "Raw" read operations return a direct view of the physical bytes in the |
| * page, using the conventional definition of which bytes are data and which |
| * are OOB. This gives the caller a way to see the actual, physical bytes |
| * in the page, without the distortions applied by our ECC engine. |
| * |
| * What we do for this specific read operation depends on whether we're doing |
| * "raw" read, or an ECC-based read. |
| * |
| * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| * ECC-based or raw view of the page is implicit in which function it calls |
| * (there is a similar pair of ECC-based/raw functions for writing). |
| * |
| * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
| * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
| * caller wants an ECC-based or raw view of the page is not propagated down to |
| * this driver. |
| * |
| * Since our OOB *is* covered by ECC, we need this information. So, we hook the |
| * ecc.read_oob and ecc.write_oob function pointers in the owning |
| * struct mtd_info with our own functions. These hook functions set the |
| * raw_oob_mode field so that, when control finally arrives here, we'll know |
| * what to do. |
| */ |
| static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| |
| /* |
| * First, fill in the OOB buffer. If we're doing a raw read, we need to |
| * get the bytes from the physical page. If we're not doing a raw read, |
| * we need to fill the buffer with set bits. |
| */ |
| if (nand_info->raw_oob_mode) { |
| /* |
| * If control arrives here, we're doing a "raw" read. Send the |
| * command to read the conventional OOB and read it. |
| */ |
| nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); |
| } else { |
| /* |
| * If control arrives here, we're not doing a "raw" read. Fill |
| * the OOB buffer with set bits and correct the block mark. |
| */ |
| memset(nand->oob_poi, 0xff, mtd->oobsize); |
| |
| nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| mxs_nand_read_buf(mtd, nand->oob_poi, 1); |
| } |
| |
| return 0; |
| |
| } |
| |
| /* |
| * Write OOB data to NAND. |
| */ |
| static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| int page) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| uint8_t block_mark = 0; |
| |
| /* |
| * There are fundamental incompatibilities between the i.MX GPMI NFC and |
| * the NAND Flash MTD model that make it essentially impossible to write |
| * the out-of-band bytes. |
| * |
| * We permit *ONE* exception. If the *intent* of writing the OOB is to |
| * mark a block bad, we can do that. |
| */ |
| |
| if (!nand_info->marking_block_bad) { |
| printf("NXS NAND: Writing OOB isn't supported\n"); |
| return -EIO; |
| } |
| |
| /* Write the block mark. */ |
| nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| nand->write_buf(mtd, &block_mark, 1); |
| nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| /* Check if it worked. */ |
| if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /* |
| * Claims all blocks are good. |
| * |
| * In principle, this function is *only* called when the NAND Flash MTD system |
| * isn't allowed to keep an in-memory bad block table, so it is forced to ask |
| * the driver for bad block information. |
| * |
| * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so |
| * this function is *only* called when we take it away. |
| * |
| * Thus, this function is only called when we want *all* blocks to look good, |
| * so it *always* return success. |
| */ |
| static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs) |
| { |
| return 0; |
| } |
| |
| static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| int err; |
| |
| if (chip->ecc_strength_ds > nand_info->max_ecc_strength_supported) { |
| printf("unsupported NAND chip, minimum ecc required %d\n" |
| , chip->ecc_strength_ds); |
| return -EINVAL; |
| } |
| |
| /* use the legacy bch setting by default */ |
| if ((!nand_info->use_minimum_ecc && mtd->oobsize < 1024) || |
| !(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) { |
| dev_dbg(mtd->dev, "use legacy bch geometry\n"); |
| err = mxs_nand_legacy_calc_ecc_layout(geo, mtd); |
| if (!err) |
| return 0; |
| } |
| |
| /* for large oob nand */ |
| if (mtd->oobsize > 1024) { |
| dev_dbg(mtd->dev, "use large oob bch geometry\n"); |
| err = mxs_nand_calc_ecc_for_large_oob(geo, mtd); |
| if (!err) |
| return 0; |
| } |
| |
| /* otherwise use the minimum ecc nand chips required */ |
| dev_dbg(mtd->dev, "use minimum ecc bch geometry\n"); |
| err = mxs_nand_calc_ecc_layout_by_info(geo, mtd, chip->ecc_strength_ds, |
| chip->ecc_step_ds); |
| |
| if (err) |
| dev_err(mtd->dev, "none of the bch geometry setting works\n"); |
| |
| return err; |
| } |
| |
| void mxs_nand_dump_geo(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| |
| dev_dbg(mtd->dev, "BCH Geometry :\n" |
| "GF Length\t\t: %u\n" |
| "ECC Strength\t\t: %u\n" |
| "ECC for Meta\t\t: %u\n" |
| "ECC Chunk0 Size\t\t: %u\n" |
| "ECC Chunkn Size\t\t: %u\n" |
| "ECC Chunk Count\t\t: %u\n" |
| "Block Mark Byte Offset\t: %u\n" |
| "Block Mark Bit Offset\t: %u\n", |
| geo->gf_len, |
| geo->ecc_strength, |
| geo->ecc_for_meta, |
| geo->ecc_chunk0_size, |
| geo->ecc_chunkn_size, |
| geo->ecc_chunk_count, |
| geo->block_mark_byte_offset, |
| geo->block_mark_bit_offset); |
| } |
| |
| /* |
| * At this point, the physical NAND Flash chips have been identified and |
| * counted, so we know the physical geometry. This enables us to make some |
| * important configuration decisions. |
| * |
| * The return value of this function propagates directly back to this driver's |
| * board_nand_init(). Anything other than zero will cause this driver to |
| * tear everything down and declare failure. |
| */ |
| int mxs_nand_setup_ecc(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| struct mxs_bch_regs *bch_regs = nand_info->bch_regs; |
| uint32_t tmp; |
| int ret; |
| |
| nand_info->en_randomizer = 0; |
| nand_info->oobsize = mtd->oobsize; |
| nand_info->writesize = mtd->writesize; |
| |
| ret = mxs_nand_set_geometry(mtd, geo); |
| if (ret) |
| return ret; |
| |
| mxs_nand_dump_geo(mtd); |
| |
| /* Configure BCH and set NFC geometry */ |
| mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); |
| |
| /* Configure layout 0 */ |
| tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| tmp |= geo->ecc_chunk0_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
| tmp |= (geo->gf_len == 14 ? 1 : 0) << |
| BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout0); |
| nand_info->bch_flash0layout0 = tmp; |
| |
| tmp = (mtd->writesize + mtd->oobsize) |
| << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; |
| tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| tmp |= geo->ecc_chunkn_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
| tmp |= (geo->gf_len == 14 ? 1 : 0) << |
| BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout1); |
| nand_info->bch_flash0layout1 = tmp; |
| |
| /* Set erase threshold to ecc strength for mx6ul, mx6qp and mx7 */ |
| if (is_mx6dqp() || is_mx7() || |
| is_mx6ul() || is_imx8() || is_imx8m()) |
| writel(BCH_MODE_ERASE_THRESHOLD(geo->ecc_strength), |
| &bch_regs->hw_bch_mode); |
| |
| /* Set *all* chip selects to use layout 0 */ |
| writel(0, &bch_regs->hw_bch_layoutselect); |
| |
| /* Enable BCH complete interrupt */ |
| writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate DMA buffers |
| */ |
| int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) |
| { |
| uint8_t *buf; |
| const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; |
| |
| nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); |
| |
| /* DMA buffers */ |
| buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); |
| if (!buf) { |
| printf("MXS NAND: Error allocating DMA buffers\n"); |
| return -ENOMEM; |
| } |
| |
| memset(buf, 0, nand_info->data_buf_size); |
| |
| nand_info->data_buf = buf; |
| nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; |
| /* Command buffers */ |
| nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, |
| MXS_NAND_COMMAND_BUFFER_SIZE); |
| if (!nand_info->cmd_buf) { |
| free(buf); |
| printf("MXS NAND: Error allocating command buffers\n"); |
| return -ENOMEM; |
| } |
| memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); |
| nand_info->cmd_queue_len = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Initializes the NFC hardware. |
| */ |
| static int mxs_nand_init_dma(struct mxs_nand_info *info) |
| { |
| int i = 0, j, ret = 0; |
| |
| info->desc = malloc(sizeof(struct mxs_dma_desc *) * |
| MXS_NAND_DMA_DESCRIPTOR_COUNT); |
| if (!info->desc) { |
| ret = -ENOMEM; |
| goto err1; |
| } |
| |
| /* Allocate the DMA descriptors. */ |
| for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { |
| info->desc[i] = mxs_dma_desc_alloc(); |
| if (!info->desc[i]) { |
| ret = -ENOMEM; |
| goto err2; |
| } |
| } |
| |
| /* Init the DMA controller. */ |
| mxs_dma_init(); |
| for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; |
| j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { |
| ret = mxs_dma_init_channel(j); |
| if (ret) |
| goto err3; |
| } |
| |
| /* Reset the GPMI block. */ |
| mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg); |
| mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg); |
| |
| /* |
| * Choose NAND mode, set IRQ polarity, disable write protection and |
| * select BCH ECC. |
| */ |
| clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1, |
| GPMI_CTRL1_GPMI_MODE, |
| GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | |
| GPMI_CTRL1_BCH_MODE); |
| |
| return 0; |
| |
| err3: |
| for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--) |
| mxs_dma_release(j); |
| err2: |
| for (--i; i >= 0; i--) |
| mxs_dma_desc_free(info->desc[i]); |
| free(info->desc); |
| err1: |
| if (ret == -ENOMEM) |
| printf("MXS NAND: Unable to allocate DMA descriptors\n"); |
| return ret; |
| } |
| |
| /* |
| * <1> Firstly, we should know what's the GPMI-clock means. |
| * The GPMI-clock is the internal clock in the gpmi nand controller. |
| * If you set 100MHz to gpmi nand controller, the GPMI-clock's period |
| * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. |
| * |
| * <2> Secondly, we should know what's the frequency on the nand chip pins. |
| * The frequency on the nand chip pins is derived from the GPMI-clock. |
| * We can get it from the following equation: |
| * |
| * F = G / (DS + DH) |
| * |
| * F : the frequency on the nand chip pins. |
| * G : the GPMI clock, such as 100MHz. |
| * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP |
| * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD |
| * |
| * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, |
| * the nand EDO(extended Data Out) timing could be applied. |
| * The GPMI implements a feedback read strobe to sample the read data. |
| * The feedback read strobe can be delayed to support the nand EDO timing |
| * where the read strobe may deasserts before the read data is valid, and |
| * read data is valid for some time after read strobe. |
| * |
| * The following figure illustrates some aspects of a NAND Flash read: |
| * |
| * |<---tREA---->| |
| * | | |
| * | | | |
| * |<--tRP-->| | |
| * | | | |
| * __ ___|__________________________________ |
| * RDN \________/ | |
| * | |
| * /---------\ |
| * Read Data --------------< >--------- |
| * \---------/ |
| * | | |
| * |<-D->| |
| * FeedbackRDN ________ ____________ |
| * \___________/ |
| * |
| * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. |
| * |
| * |
| * <4> Now, we begin to describe how to compute the right RDN_DELAY. |
| * |
| * 4.1) From the aspect of the nand chip pins: |
| * Delay = (tREA + C - tRP) {1} |
| * |
| * tREA : the maximum read access time. |
| * C : a constant to adjust the delay. default is 4000ps. |
| * tRP : the read pulse width, which is exactly: |
| * tRP = (GPMI-clock-period) * DATA_SETUP |
| * |
| * 4.2) From the aspect of the GPMI nand controller: |
| * Delay = RDN_DELAY * 0.125 * RP {2} |
| * |
| * RP : the DLL reference period. |
| * if (GPMI-clock-period > DLL_THRETHOLD) |
| * RP = GPMI-clock-period / 2; |
| * else |
| * RP = GPMI-clock-period; |
| * |
| * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period |
| * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD |
| * is 16000ps, but in mx6q, we use 12000ps. |
| * |
| * 4.3) since {1} equals {2}, we get: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- {3} |
| * RP |
| */ |
| static void mxs_compute_timings(struct nand_chip *chip, |
| const struct nand_sdr_timings *sdr) |
| { |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| unsigned long clk_rate; |
| unsigned int dll_wait_time_us; |
| unsigned int dll_threshold_ps = nand_info->max_chain_delay; |
| unsigned int period_ps, reference_period_ps; |
| unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; |
| unsigned int tRP_ps; |
| bool use_half_period; |
| int sample_delay_ps, sample_delay_factor; |
| u16 busy_timeout_cycles; |
| u8 wrn_dly_sel; |
| u32 timing0; |
| u32 timing1; |
| u32 ctrl1n; |
| |
| if (sdr->tRC_min >= 30000) { |
| /* ONFI non-EDO modes [0-3] */ |
| clk_rate = 22000000; |
| wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; |
| } else if (sdr->tRC_min >= 25000) { |
| /* ONFI EDO mode 4 */ |
| clk_rate = 80000000; |
| wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| debug("%s, setting ONFI onfi edo 4\n", __func__); |
| } else { |
| /* ONFI EDO mode 5 */ |
| clk_rate = 100000000; |
| wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| debug("%s, setting ONFI onfi edo 5\n", __func__); |
| } |
| |
| /* SDR core timings are given in picoseconds */ |
| period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate); |
| |
| addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); |
| data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); |
| data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); |
| busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); |
| |
| timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) | |
| (data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) | |
| (data_setup_cycles << GPMI_TIMING0_DATA_SETUP_OFFSET); |
| timing1 = (busy_timeout_cycles * 4096) << GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET; |
| |
| /* |
| * Derive NFC ideal delay from {3}: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- |
| * RP |
| */ |
| if (period_ps > dll_threshold_ps) { |
| use_half_period = true; |
| reference_period_ps = period_ps / 2; |
| } else { |
| use_half_period = false; |
| reference_period_ps = period_ps; |
| } |
| |
| tRP_ps = data_setup_cycles * period_ps; |
| sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; |
| if (sample_delay_ps > 0) |
| sample_delay_factor = sample_delay_ps / reference_period_ps; |
| else |
| sample_delay_factor = 0; |
| |
| ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET); |
| if (sample_delay_factor) |
| ctrl1n |= (sample_delay_factor << GPMI_CTRL1_RDN_DELAY_OFFSET) | |
| GPMI_CTRL1_DLL_ENABLE | |
| (use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0); |
| |
| writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0); |
| writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1); |
| |
| /* |
| * Clear several CTRL1 fields, DLL must be disabled when setting |
| * RDN_DELAY or HALF_PERIOD. |
| */ |
| writel(GPMI_CTRL1_CLEAR_MASK, &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr); |
| writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set); |
| |
| clk_set_rate(nand_info->gpmi_clk, clk_rate); |
| |
| /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ |
| dll_wait_time_us = USEC_PER_SEC / clk_rate * 64; |
| if (!dll_wait_time_us) |
| dll_wait_time_us = 1; |
| |
| /* Wait for the DLL to settle. */ |
| udelay(dll_wait_time_us); |
| } |
| |
| static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr, |
| const struct nand_data_interface *conf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| const struct nand_sdr_timings *sdr; |
| |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| /* Stop here if this call was just a check */ |
| if (chipnr < 0) |
| return 0; |
| |
| /* Do the actual derivation of the controller timings */ |
| mxs_compute_timings(chip, sdr); |
| |
| return 0; |
| } |
| |
| int mxs_nand_init_spl(struct nand_chip *nand) |
| { |
| struct mxs_nand_info *nand_info; |
| int err; |
| |
| nand_info = malloc(sizeof(struct mxs_nand_info)); |
| if (!nand_info) { |
| printf("MXS NAND: Failed to allocate private data\n"); |
| return -ENOMEM; |
| } |
| memset(nand_info, 0, sizeof(struct mxs_nand_info)); |
| |
| nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; |
| nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| |
| if (is_mx6sx() || is_mx7() || is_imx8() || is_imx8m()) |
| nand_info->max_ecc_strength_supported = 62; |
| else |
| nand_info->max_ecc_strength_supported = 40; |
| |
| if (IS_ENABLED(CONFIG_NAND_MXS_USE_MINIMUM_ECC)) |
| nand_info->use_minimum_ecc = true; |
| |
| err = mxs_nand_alloc_buffers(nand_info); |
| if (err) |
| return err; |
| |
| err = mxs_nand_init_dma(nand_info); |
| if (err) |
| return err; |
| |
| nand_set_controller_data(nand, nand_info); |
| |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| nand->cmd_ctrl = mxs_nand_cmd_ctrl; |
| nand->dev_ready = mxs_nand_device_ready; |
| nand->select_chip = mxs_nand_select_chip; |
| |
| nand->read_byte = mxs_nand_read_byte; |
| nand->read_buf = mxs_nand_read_buf; |
| |
| nand->ecc.read_page = mxs_nand_ecc_read_page; |
| |
| nand->ecc.mode = NAND_ECC_HW; |
| |
| return 0; |
| } |
| |
| int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info) |
| { |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| int err; |
| |
| nand = &nand_info->chip; |
| mtd = nand_to_mtd(nand); |
| err = mxs_nand_alloc_buffers(nand_info); |
| if (err) |
| return err; |
| |
| err = mxs_nand_init_dma(nand_info); |
| if (err) |
| goto err_free_buffers; |
| |
| memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); |
| |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| #endif |
| |
| nand_set_controller_data(nand, nand_info); |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| if (nand_info->dev) |
| nand->flash_node = dev_ofnode(nand_info->dev); |
| |
| nand->cmd_ctrl = mxs_nand_cmd_ctrl; |
| |
| nand->dev_ready = mxs_nand_device_ready; |
| nand->select_chip = mxs_nand_select_chip; |
| nand->block_bad = mxs_nand_block_bad; |
| |
| nand->read_byte = mxs_nand_read_byte; |
| |
| nand->read_buf = mxs_nand_read_buf; |
| nand->write_buf = mxs_nand_write_buf; |
| |
| if (nand_info->gpmi_clk) |
| nand->setup_data_interface = mxs_nand_setup_interface; |
| |
| /* first scan to find the device and get the page size */ |
| if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) |
| goto err_free_buffers; |
| |
| if (mxs_nand_setup_ecc(mtd)) |
| goto err_free_buffers; |
| |
| nand->ecc.read_page = mxs_nand_ecc_read_page; |
| nand->ecc.write_page = mxs_nand_ecc_write_page; |
| nand->ecc.read_oob = mxs_nand_ecc_read_oob; |
| nand->ecc.write_oob = mxs_nand_ecc_write_oob; |
| |
| nand->ecc.layout = &fake_ecc_layout; |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.size = nand_info->bch_geometry.ecc_chunkn_size; |
| nand->ecc.strength = nand_info->bch_geometry.ecc_strength; |
| |
| /* second phase scan */ |
| err = nand_scan_tail(mtd); |
| if (err) |
| goto err_free_buffers; |
| |
| /* Hook some operations at the MTD level. */ |
| if (mtd->_read_oob != mxs_nand_hook_read_oob) { |
| nand_info->hooked_read_oob = mtd->_read_oob; |
| mtd->_read_oob = mxs_nand_hook_read_oob; |
| } |
| |
| if (mtd->_write_oob != mxs_nand_hook_write_oob) { |
| nand_info->hooked_write_oob = mtd->_write_oob; |
| mtd->_write_oob = mxs_nand_hook_write_oob; |
| } |
| |
| if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { |
| nand_info->hooked_block_markbad = mtd->_block_markbad; |
| mtd->_block_markbad = mxs_nand_hook_block_markbad; |
| } |
| |
| err = nand_register(0, mtd); |
| if (err) |
| goto err_free_buffers; |
| |
| return 0; |
| |
| err_free_buffers: |
| free(nand_info->data_buf); |
| free(nand_info->cmd_buf); |
| |
| return err; |
| } |
| |
| #ifndef CONFIG_NAND_MXS_DT |
| void board_nand_init(void) |
| { |
| struct mxs_nand_info *nand_info; |
| |
| nand_info = malloc(sizeof(struct mxs_nand_info)); |
| if (!nand_info) { |
| printf("MXS NAND: Failed to allocate private data\n"); |
| return; |
| } |
| memset(nand_info, 0, sizeof(struct mxs_nand_info)); |
| |
| nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; |
| nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| |
| /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */ |
| if (is_mx6sx() || is_mx7()) |
| nand_info->max_ecc_strength_supported = 62; |
| else |
| nand_info->max_ecc_strength_supported = 40; |
| |
| #ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC |
| nand_info->use_minimum_ecc = true; |
| #endif |
| |
| if (mxs_nand_init_ctrl(nand_info) < 0) |
| goto err; |
| |
| return; |
| |
| err: |
| free(nand_info); |
| } |
| #endif |
| |
| /* |
| * Read NAND layout for FCB block generation. |
| */ |
| void mxs_nand_get_layout(struct mtd_info *mtd, struct mxs_nand_layout *l) |
| { |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| u32 tmp; |
| |
| tmp = readl(&bch_regs->hw_bch_flash0layout0); |
| l->nblocks = (tmp & BCH_FLASHLAYOUT0_NBLOCKS_MASK) >> |
| BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| l->meta_size = (tmp & BCH_FLASHLAYOUT0_META_SIZE_MASK) >> |
| BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| |
| tmp = readl(&bch_regs->hw_bch_flash0layout1); |
| l->data0_size = 4 * ((tmp & BCH_FLASHLAYOUT0_DATA0_SIZE_MASK) >> |
| BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET); |
| l->ecc0 = (tmp & BCH_FLASHLAYOUT0_ECC0_MASK) >> |
| BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| l->datan_size = 4 * ((tmp & BCH_FLASHLAYOUT1_DATAN_SIZE_MASK) >> |
| BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET); |
| l->eccn = (tmp & BCH_FLASHLAYOUT1_ECCN_MASK) >> |
| BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| l->gf_len = (tmp & BCH_FLASHLAYOUT1_GF13_0_GF14_1_MASK) >> |
| BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; |
| } |
| |
| /* |
| * Set BCH to specific layout used by ROM bootloader to read FCB. |
| */ |
| void mxs_nand_mode_fcb_62bit(struct mtd_info *mtd) |
| { |
| u32 tmp; |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| |
| nand_info->en_randomizer = 1; |
| |
| mtd->writesize = 1024; |
| mtd->oobsize = 1862 - 1024; |
| |
| /* 8 ecc_chunks_*/ |
| tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| /* 32 bytes for metadata */ |
| tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| /* using ECC62 level to be performed */ |
| tmp |= 0x1F << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| /* 0x20 * 4 bytes of the data0 block */ |
| tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET; |
| tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout0); |
| |
| /* 1024 for data + 838 for OOB */ |
| tmp = 1862 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; |
| /* using ECC62 level to be performed */ |
| tmp |= 0x1F << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| /* 0x20 * 4 bytes of the data0 block */ |
| tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET; |
| tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout1); |
| } |
| |
| /* |
| * Set BCH to specific layout used by ROM bootloader to read FCB. |
| */ |
| void mxs_nand_mode_fcb_40bit(struct mtd_info *mtd) |
| { |
| u32 tmp; |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| |
| /* no randomizer in this setting*/ |
| nand_info->en_randomizer = 0; |
| |
| mtd->writesize = 1024; |
| mtd->oobsize = 1576 - 1024; |
| |
| /* 8 ecc_chunks_*/ |
| tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
| /* 32 bytes for metadata */ |
| tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
| /* using ECC40 level to be performed */ |
| tmp |= 0x14 << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
| /* 0x20 * 4 bytes of the data0 block */ |
| tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET; |
| tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout0); |
| |
| /* 1024 for data + 552 for OOB */ |
| tmp = 1576 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; |
| /* using ECC40 level to be performed */ |
| tmp |= 0x14 << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
| /* 0x20 * 4 bytes of the data0 block */ |
| tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET; |
| tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; |
| writel(tmp, &bch_regs->hw_bch_flash0layout1); |
| } |
| |
| /* |
| * Restore BCH to normal settings. |
| */ |
| void mxs_nand_mode_normal(struct mtd_info *mtd) |
| { |
| struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
| |
| nand_info->en_randomizer = 0; |
| |
| mtd->writesize = nand_info->writesize; |
| mtd->oobsize = nand_info->oobsize; |
| |
| writel(nand_info->bch_flash0layout0, &bch_regs->hw_bch_flash0layout0); |
| writel(nand_info->bch_flash0layout1, &bch_regs->hw_bch_flash0layout1); |
| } |
| |
| uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| |
| return geo->block_mark_byte_offset; |
| } |
| |
| uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
| struct bch_geometry *geo = &nand_info->bch_geometry; |
| |
| return geo->block_mark_bit_offset; |
| } |