| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2017 Google, Inc |
| */ |
| |
| #include <cyclic.h> |
| #include <dm.h> |
| #include <time.h> |
| #include <wdt.h> |
| #include <asm/gpio.h> |
| #include <asm/state.h> |
| #include <asm/test.h> |
| #include <dm/test.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| #include <linux/delay.h> |
| #include <watchdog.h> |
| |
| /* Test that watchdog driver functions are called */ |
| static int dm_test_wdt_base(struct unit_test_state *uts) |
| { |
| struct sandbox_state *state = state_get_current(); |
| struct udevice *dev; |
| const u64 timeout = 42; |
| |
| ut_assertok(uclass_get_device_by_driver(UCLASS_WDT, |
| DM_DRIVER_GET(wdt_sandbox), &dev)); |
| ut_assertnonnull(dev); |
| ut_asserteq(0, state->wdt.counter); |
| ut_asserteq(false, state->wdt.running); |
| |
| ut_assertok(wdt_start(dev, timeout, 0)); |
| ut_asserteq(timeout, state->wdt.counter); |
| ut_asserteq(true, state->wdt.running); |
| |
| uint reset_count = state->wdt.reset_count; |
| ut_assertok(wdt_reset(dev)); |
| ut_asserteq(reset_count + 1, state->wdt.reset_count); |
| ut_asserteq(true, state->wdt.running); |
| |
| ut_assertok(wdt_stop(dev)); |
| ut_asserteq(false, state->wdt.running); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_wdt_base, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_wdt_gpio_toggle(struct unit_test_state *uts) |
| { |
| /* |
| * The sandbox wdt gpio is "connected" to gpio bank a, offset |
| * 7. Use the sandbox back door to verify that the gpio-wdt |
| * driver behaves as expected when using the 'toggle' algorithm. |
| */ |
| struct udevice *wdt, *gpio; |
| const u64 timeout = 42; |
| const int offset = 8; |
| int val; |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_WDT, |
| "wdt-gpio-toggle", &wdt)); |
| ut_assertnonnull(wdt); |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_GPIO, "base-gpios", &gpio)); |
| ut_assertnonnull(gpio); |
| ut_assertok(wdt_start(wdt, timeout, 0)); |
| |
| val = sandbox_gpio_get_value(gpio, offset); |
| ut_assertok(wdt_reset(wdt)); |
| ut_asserteq(!val, sandbox_gpio_get_value(gpio, offset)); |
| ut_assertok(wdt_reset(wdt)); |
| ut_asserteq(val, sandbox_gpio_get_value(gpio, offset)); |
| |
| ut_asserteq(-ENOSYS, wdt_stop(wdt)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_wdt_gpio_toggle, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_wdt_gpio_level(struct unit_test_state *uts) |
| { |
| /* |
| * The sandbox wdt gpio is "connected" to gpio bank a, offset |
| * 7. Use the sandbox back door to verify that the gpio-wdt |
| * driver behaves as expected when using the 'level' algorithm. |
| */ |
| struct udevice *wdt, *gpio; |
| const u64 timeout = 42; |
| const int offset = 7; |
| int val; |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_WDT, |
| "wdt-gpio-level", &wdt)); |
| ut_assertnonnull(wdt); |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_GPIO, "base-gpios", &gpio)); |
| ut_assertnonnull(gpio); |
| ut_assertok(wdt_start(wdt, timeout, 0)); |
| |
| val = sandbox_gpio_get_value(gpio, offset); |
| ut_assertok(wdt_reset(wdt)); |
| ut_asserteq(val, sandbox_gpio_get_value(gpio, offset)); |
| ut_assertok(wdt_reset(wdt)); |
| ut_asserteq(val, sandbox_gpio_get_value(gpio, offset)); |
| |
| ut_asserteq(-ENOSYS, wdt_stop(wdt)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_wdt_gpio_level, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_wdt_watchdog_reset(struct unit_test_state *uts) |
| { |
| struct sandbox_state *state = state_get_current(); |
| struct udevice *gpio_wdt, *sandbox_wdt; |
| struct udevice *gpio; |
| const u64 timeout = 42; |
| const int offset = 8; |
| uint reset_count; |
| int val; |
| |
| ut_assertok(uclass_get_device_by_name(UCLASS_WDT, |
| "wdt-gpio-toggle", &gpio_wdt)); |
| ut_assertnonnull(gpio_wdt); |
| ut_assertok(uclass_get_device_by_driver(UCLASS_WDT, |
| DM_DRIVER_GET(wdt_sandbox), &sandbox_wdt)); |
| ut_assertnonnull(sandbox_wdt); |
| ut_assertok(uclass_get_device_by_name(UCLASS_GPIO, "base-gpios", &gpio)); |
| ut_assertnonnull(gpio); |
| |
| /* Neither device should be "started", so watchdog_reset() should be a no-op. */ |
| reset_count = state->wdt.reset_count; |
| val = sandbox_gpio_get_value(gpio, offset); |
| cyclic_run(); |
| ut_asserteq(reset_count, state->wdt.reset_count); |
| ut_asserteq(val, sandbox_gpio_get_value(gpio, offset)); |
| |
| /* Start both devices. */ |
| ut_assertok(wdt_start(gpio_wdt, timeout, 0)); |
| ut_assertok(wdt_start(sandbox_wdt, timeout, 0)); |
| |
| /* Make sure both devices have just been pinged. */ |
| timer_test_add_offset(100); |
| cyclic_run(); |
| reset_count = state->wdt.reset_count; |
| val = sandbox_gpio_get_value(gpio, offset); |
| |
| /* The gpio watchdog should be pinged, the sandbox one not. */ |
| timer_test_add_offset(30); |
| cyclic_run(); |
| ut_asserteq(reset_count, state->wdt.reset_count); |
| ut_asserteq(!val, sandbox_gpio_get_value(gpio, offset)); |
| |
| /* After another ~30ms, both devices should get pinged. */ |
| timer_test_add_offset(30); |
| cyclic_run(); |
| ut_asserteq(reset_count + 1, state->wdt.reset_count); |
| ut_asserteq(val, sandbox_gpio_get_value(gpio, offset)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_wdt_watchdog_reset, UT_TESTF_SCAN_FDT); |