mips: octeon: Add cvmx-helper-sfp.c

Import cvmx-helper-sfp.c from 2013 U-Boot. It will be used by the later
added drivers to support networking on the MIPS Octeon II / III
platforms.

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
diff --git a/arch/mips/mach-octeon/cvmx-helper-sfp.c b/arch/mips/mach-octeon/cvmx-helper-sfp.c
new file mode 100644
index 0000000..a08a6cf
--- /dev/null
+++ b/arch/mips/mach-octeon/cvmx-helper-sfp.c
@@ -0,0 +1,1309 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018-2022 Marvell International Ltd.
+ */
+
+#include <errno.h>
+#include <i2c.h>
+#include <log.h>
+#include <malloc.h>
+#include <linux/delay.h>
+#include <display_options.h>
+
+#include <mach/cvmx-regs.h>
+#include <mach/cvmx-csr.h>
+#include <mach/cvmx-bootmem.h>
+#include <mach/octeon-model.h>
+#include <mach/cvmx-fuse.h>
+#include <mach/octeon-feature.h>
+#include <mach/cvmx-qlm.h>
+#include <mach/octeon_qlm.h>
+#include <mach/cvmx-pcie.h>
+#include <mach/cvmx-coremask.h>
+
+#include <mach/cvmx-helper.h>
+#include <mach/cvmx-helper-board.h>
+#include <mach/cvmx-helper-fdt.h>
+#include <mach/cvmx-helper-cfg.h>
+#include <mach/cvmx-helper-gpio.h>
+#include <mach/cvmx-helper-util.h>
+
+extern void octeon_i2c_unblock(int bus);
+
+static struct cvmx_fdt_sfp_info *sfp_list;
+
+/**
+ * Local allocator to handle both SE and U-Boot that also zeroes out memory
+ *
+ * @param	size	number of bytes to allocate
+ *
+ * @return	pointer to allocated memory or NULL if out of memory.
+ *		Alignment is set to 8-bytes.
+ */
+static void *cvm_sfp_alloc(size_t size)
+{
+	return calloc(size, 1);
+}
+
+/**
+ * Free allocated memory.
+ *
+ * @param	ptr	pointer to memory to free
+ *
+ * NOTE: This only works in U-Boot since SE does not really have a freeing
+ *	 mechanism.  In SE the memory is zeroed out and not freed so this
+ *	 is a memory leak if errors occur.
+ */
+static inline void cvm_sfp_free(void *ptr, size_t size)
+{
+	free(ptr);
+}
+
+/**
+ * Select a QSFP device before accessing the EEPROM
+ *
+ * @param	sfp	handle for sfp/qsfp connector
+ * @param	enable	Set true to select, false to deselect
+ *
+ * @return	0 on success or if SFP or no select GPIO, -1 on GPIO error
+ */
+static int cvmx_qsfp_select(const struct cvmx_fdt_sfp_info *sfp, bool enable)
+{
+	/* Select is only needed for QSFP modules */
+	if (!sfp->is_qsfp) {
+		debug("%s(%s, %d): not QSFP\n", __func__, sfp->name, enable);
+		return 0;
+	}
+
+	if (dm_gpio_is_valid(&sfp->select)) {
+		/* Note that select is active low */
+		return dm_gpio_set_value(&sfp->select, !enable);
+	}
+
+	debug("%s: select GPIO unknown\n", __func__);
+	return 0;
+}
+
+static int cvmx_sfp_parse_sfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
+				     const uint8_t *buffer)
+{
+	u8 csum = 0;
+	bool csum_good = false;
+	int i;
+
+	/* Validate the checksum */
+	for (i = 0; i < 0x3f; i++)
+		csum += buffer[i];
+	csum_good = csum == buffer[0x3f];
+	debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+	      buffer[0x3f]);
+	csum = 0;
+	for (i = 0x40; i < 0x5f; i++)
+		csum += buffer[i];
+	debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+	      buffer[0x5f]);
+	if (csum != buffer[0x5f] || !csum_good) {
+		debug("Error: SFP EEPROM checksum information is incorrect\n");
+		return -1;
+	}
+
+	sfp_info->conn_type = buffer[0];
+	if (buffer[1] < 1 || buffer[1] > 7) { /* Extended ID */
+		debug("Error: Unknown SFP extended identifier 0x%x\n",
+		      buffer[1]);
+		return -1;
+	}
+	if (buffer[1] != 4) {
+		debug("Module is not SFP/SFP+/SFP28/QSFP+\n");
+		return -1;
+	}
+	sfp_info->mod_type = buffer[2];
+	sfp_info->eth_comp = buffer[3] & 0xf0;
+	sfp_info->cable_comp = buffer[0x24];
+
+	/* There are several ways a cable can be marked as active or
+	 * passive.  8.[2-3] specify the SFP+ cable technology.  Some
+	 * modules also use 3.[0-1] for Infiniband, though it's
+	 * redundant.
+	 */
+	if ((buffer[8] & 0x0C) == 0x08) {
+		sfp_info->limiting = true;
+		sfp_info->active_cable = true;
+	} else if ((buffer[8] & 0xC) == 0x4) {
+		sfp_info->limiting = false;
+		sfp_info->active_cable = false;
+	}
+	if ((buffer[3] & 3) == 2) {
+		sfp_info->active_cable = true;
+		sfp_info->limiting = true;
+	}
+
+	switch (sfp_info->mod_type) {
+	case CVMX_SFP_MOD_OPTICAL_LC:
+	case CVMX_SFP_MOD_OPTICAL_PIGTAIL:
+		sfp_info->copper_cable = false;
+		break;
+	case CVMX_SFP_MOD_COPPER_PIGTAIL:
+		sfp_info->copper_cable = true;
+		break;
+	case CVMX_SFP_MOD_NO_SEP_CONN:
+		switch (sfp_info->cable_comp) {
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
+			sfp_info->copper_cable = false;
+			sfp_info->limiting = true;
+			sfp_info->active_cable = true;
+			break;
+
+		case CVMX_SFP_CABLE_100G_SR4_25G_SR:
+		case CVMX_SFP_CABLE_100G_LR4_25G_LR:
+		case CVMX_SFP_CABLE_100G_ER4_25G_ER:
+		case CVMX_SFP_CABLE_100G_SR10:
+		case CVMX_SFP_CABLE_100G_CWDM4_MSA:
+		case CVMX_SFP_CABLE_100G_PSM4:
+		case CVMX_SFP_CABLE_100G_CWDM4:
+		case CVMX_SFP_CABLE_40G_ER4:
+		case CVMX_SFP_CABLE_4X10G_SR:
+		case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
+		case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
+		case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
+		case CVMX_SFP_CABLE_100G_CLR4:
+		case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
+		case CVMX_SFP_CABLE_40G_SWDM4:
+		case CVMX_SFP_CABLE_100G_SWDM4:
+		case CVMX_SFP_CABLE_100G_PAM4_BIDI:
+			sfp_info->copper_cable = false;
+			break;
+
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
+		case CVMX_SFP_CABLE_10GBASE_T:
+		case CVMX_SFP_CABLE_10GBASE_T_SR:
+		case CVMX_SFP_CABLE_5GBASE_T:
+		case CVMX_SFP_CABLE_2_5GBASE_T:
+			sfp_info->copper_cable = true;
+			sfp_info->limiting = true;
+			sfp_info->active_cable = true;
+			break;
+
+		case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
+		case CVMX_SFP_CABLE_25G_CR_CA_S:
+		case CVMX_SFP_CABLE_25G_CR_CA_N:
+		case CVMX_SFP_CABLE_40G_PSM4:
+			sfp_info->copper_cable = true;
+			break;
+
+		default:
+			switch (sfp_info->eth_comp) {
+			case CVMX_SFP_CABLE_10GBASE_ER:
+			case CVMX_SFP_CABLE_10GBASE_LRM:
+			case CVMX_SFP_CABLE_10GBASE_LR:
+			case CVMX_SFP_CABLE_10GBASE_SR:
+				sfp_info->copper_cable = false;
+				break;
+			}
+			break;
+		}
+		break;
+
+	case CVMX_SFP_MOD_RJ45:
+		debug("%s: RJ45 adapter\n", __func__);
+		sfp_info->copper_cable = true;
+		sfp_info->active_cable = true;
+		sfp_info->limiting = true;
+		break;
+	case CVMX_SFP_MOD_UNKNOWN:
+		/* The Avago 1000Base-X to 1000Base-T module reports that it
+		 * is an unknown module type but the Ethernet compliance code
+		 * says it is 1000Base-T.  We'll change the reporting to RJ45.
+		 */
+		if (buffer[6] & 8) {
+			debug("RJ45 gigabit module detected\n");
+			sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
+			sfp_info->copper_cable = false;
+			sfp_info->limiting = true;
+			sfp_info->active_cable = true;
+			sfp_info->max_copper_cable_len = buffer[0x12];
+			sfp_info->rate = CVMX_SFP_RATE_1G;
+		} else {
+			debug("Unknown module type 0x%x\n", sfp_info->mod_type);
+		}
+		sfp_info->limiting = true;
+		break;
+	case CVMX_SFP_MOD_MXC_2X16:
+		debug("%s: MXC 2X16\n", __func__);
+		break;
+	default:
+		sfp_info->limiting = true;
+		break;
+	}
+
+	if (sfp_info->copper_cable)
+		sfp_info->max_copper_cable_len = buffer[0x12];
+	else
+		sfp_info->max_50um_om4_cable_length = buffer[0x12] * 10;
+
+	if (buffer[0xe])
+		sfp_info->max_single_mode_cable_length = buffer[0xe] * 1000;
+	else
+		sfp_info->max_single_mode_cable_length = buffer[0xf] * 100000;
+
+	sfp_info->max_50um_om2_cable_length = buffer[0x10] * 10;
+	sfp_info->max_62_5um_om1_cable_length = buffer[0x11] * 10;
+	sfp_info->max_50um_om3_cable_length = buffer[0x13] * 10;
+
+	if (buffer[0xc] == 0xff) {
+		if (buffer[0x42] >= 255)
+			sfp_info->rate = CVMX_SFP_RATE_100G;
+		else if (buffer[0x42] >= 160)
+			sfp_info->rate = CVMX_SFP_RATE_40G;
+		else if (buffer[0x42] >= 100)
+			sfp_info->rate = CVMX_SFP_RATE_25G;
+		else
+			sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+	} else if (buffer[0xc] >= 100) {
+		sfp_info->rate = CVMX_SFP_RATE_10G;
+	} else if (buffer[0xc] >= 10) {
+		sfp_info->rate = CVMX_SFP_RATE_1G;
+	} else {
+		sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+	}
+
+	if (sfp_info->rate == CVMX_SFP_RATE_UNKNOWN) {
+		switch (sfp_info->cable_comp) {
+		case CVMX_SFP_CABLE_100G_SR10:
+		case CVMX_SFP_CABLE_100G_CWDM4_MSA:
+		case CVMX_SFP_CABLE_100G_PSM4:
+		case CVMX_SFP_CABLE_100G_CWDM4:
+		case CVMX_SFP_CABLE_100G_CLR4:
+		case CVMX_SFP_CABLE_100G_2_LAMBDA_DWDM:
+		case CVMX_SFP_CABLE_100G_SWDM4:
+		case CVMX_SFP_CABLE_100G_PAM4_BIDI:
+			sfp_info->rate = CVMX_SFP_RATE_100G;
+			break;
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_HIGH_BER:
+		case CVMX_SFP_CABLE_100G_SR4_25G_SR:
+		case CVMX_SFP_CABLE_100G_LR4_25G_LR:
+		case CVMX_SFP_CABLE_100G_ER4_25G_ER:
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_HIGH_BER:
+		case CVMX_SFP_CABLE_100G_CR4_25G_CR_CA_L:
+		case CVMX_SFP_CABLE_25G_CR_CA_S:
+		case CVMX_SFP_CABLE_25G_CR_CA_N:
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_AOC_LOW_BER:
+		case CVMX_SFP_CABLE_100G_25GAUI_C2M_ACC_LOW_BER:
+			sfp_info->rate = CVMX_SFP_RATE_25G;
+			break;
+		case CVMX_SFP_CABLE_40G_ER4:
+		case CVMX_SFP_CABLE_4X10G_SR:
+		case CVMX_SFP_CABLE_40G_PSM4:
+		case CVMX_SFP_CABLE_40G_SWDM4:
+			sfp_info->rate = CVMX_SFP_RATE_40G;
+			break;
+		case CVMX_SFP_CABLE_G959_1_P1I1_2D1:
+		case CVMX_SFP_CABLE_G959_1_P1S1_2D2:
+		case CVMX_SFP_CABLE_G959_1_P1L1_2D2:
+		case CVMX_SFP_CABLE_10GBASE_T:
+		case CVMX_SFP_CABLE_10GBASE_T_SR:
+		case CVMX_SFP_CABLE_5GBASE_T:
+		case CVMX_SFP_CABLE_2_5GBASE_T:
+			sfp_info->rate = CVMX_SFP_RATE_10G;
+			break;
+		default:
+			switch (sfp_info->eth_comp) {
+			case CVMX_SFP_CABLE_10GBASE_ER:
+			case CVMX_SFP_CABLE_10GBASE_LRM:
+			case CVMX_SFP_CABLE_10GBASE_LR:
+			case CVMX_SFP_CABLE_10GBASE_SR:
+				sfp_info->rate = CVMX_SFP_RATE_10G;
+				break;
+			default:
+				sfp_info->rate = CVMX_SFP_RATE_UNKNOWN;
+				break;
+			}
+			break;
+		}
+	}
+
+	if (buffer[0xc] < 0xff)
+		sfp_info->bitrate_max = buffer[0xc] * 100;
+	else
+		sfp_info->bitrate_max = buffer[0x42] * 250;
+
+	if ((buffer[8] & 0xc) == 8) {
+		if (buffer[0x3c] & 0x4)
+			sfp_info->limiting = true;
+	}
+
+	/* Currently we only set this for 25G.  FEC is required for CA-S cables
+	 * and for cable lengths >= 5M as of this writing.
+	 */
+	if ((sfp_info->rate == CVMX_SFP_RATE_25G &&
+	     sfp_info->copper_cable) &&
+	    (sfp_info->cable_comp == CVMX_SFP_CABLE_25G_CR_CA_S ||
+	     sfp_info->max_copper_cable_len >= 5))
+		sfp_info->fec_required = true;
+
+	/* copy strings and vendor info, strings will be automatically NUL
+	 * terminated.
+	 */
+	memcpy(sfp_info->vendor_name, &buffer[0x14], 16);
+	memcpy(sfp_info->vendor_oui, &buffer[0x25], 3);
+	memcpy(sfp_info->vendor_pn, &buffer[0x28], 16);
+	memcpy(sfp_info->vendor_rev, &buffer[0x38], 4);
+	memcpy(sfp_info->vendor_sn, &buffer[0x44], 16);
+	memcpy(sfp_info->date_code, &buffer[0x54], 8);
+
+	sfp_info->cooled_laser = !!(buffer[0x40] & 4);
+	sfp_info->internal_cdr = !!(buffer[0x40] & 8);
+
+	if (buffer[0x40] & 0x20)
+		sfp_info->power_level = 3;
+	else
+		sfp_info->power_level = (buffer[0x40] & 2) ? 2 : 1;
+
+	sfp_info->diag_paging = !!(buffer[0x40] & 0x10);
+	sfp_info->linear_rx_output = !(buffer[0x40] & 1);
+	sfp_info->los_implemented = !!(buffer[0x41] & 2);
+	sfp_info->los_inverted = !!(buffer[0x41] & 4);
+	sfp_info->tx_fault_implemented = !!(buffer[0x41] & 8);
+	sfp_info->tx_disable_implemented = !!(buffer[0x41] & 0x10);
+	sfp_info->rate_select_implemented = !!(buffer[0x41] & 0x20);
+	sfp_info->tuneable_transmitter = !!(buffer[0x41] & 0x40);
+	sfp_info->rx_decision_threshold_implemented = !!(buffer[0x41] & 0x80);
+
+	sfp_info->diag_monitoring = !!(buffer[0x5c] & 0x40);
+	sfp_info->diag_rx_power_averaged = !!(buffer[0x5c] & 0x8);
+	sfp_info->diag_externally_calibrated = !!(buffer[0x5c] & 0x10);
+	sfp_info->diag_internally_calibrated = !!(buffer[0x5c] & 0x20);
+	sfp_info->diag_addr_change_required = !!(buffer[0x5c] & 0x4);
+	sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 2);
+	sfp_info->diag_app_select_control = !!(buffer[0x5d] & 4);
+	sfp_info->diag_soft_rate_select_control = !!(buffer[0x5d] & 8);
+	sfp_info->diag_soft_rx_los_implemented = !!(buffer[0x5d] & 0x10);
+	sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0x5d] & 0x20);
+	sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0x5d] & 0x40);
+	sfp_info->diag_alarm_warning_flags_implemented =
+		!!(buffer[0x5d] & 0x80);
+	sfp_info->diag_rev = buffer[0x5e];
+
+	return 0;
+}
+
+static int cvmx_sfp_parse_qsfp_buffer(struct cvmx_sfp_mod_info *sfp_info,
+				      const uint8_t *buffer)
+{
+	u8 csum = 0;
+	bool csum_good = false;
+	int i;
+
+	/* Validate the checksum */
+	for (i = 0x80; i < 0xbf; i++)
+		csum += buffer[i];
+	csum_good = csum == buffer[0xbf];
+	debug("%s: Lower checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+	      buffer[0xbf]);
+	csum = 0;
+	for (i = 0xc0; i < 0xdf; i++)
+		csum += buffer[i];
+	debug("%s: Upper checksum: 0x%02x, expected: 0x%02x\n", __func__, csum,
+	      buffer[0xdf]);
+	if (csum != buffer[0xdf] || !csum_good) {
+		debug("Error: SFP EEPROM checksum information is incorrect\n");
+		return -1;
+	}
+
+	sfp_info->conn_type = buffer[0x80];
+	sfp_info->mod_type = buffer[0x82];
+	sfp_info->eth_comp = buffer[0x83] & 0xf0;
+	sfp_info->cable_comp = buffer[0xa4];
+
+	switch (sfp_info->mod_type) {
+	case CVMX_SFP_MOD_COPPER_PIGTAIL:
+	case CVMX_SFP_MOD_NO_SEP_CONN:
+		debug("%s: copper pigtail or no separable cable\n", __func__);
+		/* There are several ways a cable can be marked as active or
+		 * passive.  8.[2-3] specify the SFP+ cable technology.  Some
+		 * modules also use 3.[0-1] for Infiniband, though it's
+		 * redundant.
+		 */
+		sfp_info->copper_cable = true;
+		if ((buffer[0x88] & 0x0C) == 0x08) {
+			sfp_info->limiting = true;
+			sfp_info->active_cable = true;
+		} else if ((buffer[0x88] & 0xC) == 0x4) {
+			sfp_info->limiting = false;
+			sfp_info->active_cable = false;
+		}
+		if ((buffer[0x83] & 3) == 2) {
+			sfp_info->active_cable = true;
+			sfp_info->limiting = true;
+		}
+		break;
+	case CVMX_SFP_MOD_RJ45:
+		debug("%s: RJ45 adapter\n", __func__);
+		sfp_info->copper_cable = true;
+		sfp_info->active_cable = true;
+		sfp_info->limiting = true;
+		break;
+	case CVMX_SFP_MOD_UNKNOWN:
+		debug("Unknown module type\n");
+		/* The Avago 1000Base-X to 1000Base-T module reports that it
+		 * is an unknown module type but the Ethernet compliance code
+		 * says it is 1000Base-T.  We'll change the reporting to RJ45.
+		 */
+		if (buffer[0x86] & 8) {
+			sfp_info->mod_type = CVMX_SFP_MOD_RJ45;
+			sfp_info->copper_cable = false;
+			sfp_info->limiting = true;
+			sfp_info->active_cable = true;
+			sfp_info->max_copper_cable_len = buffer[0x92];
+			sfp_info->rate = CVMX_SFP_RATE_1G;
+		}
+		fallthrough;
+	default:
+		sfp_info->limiting = true;
+		break;
+	}
+
+	if (sfp_info->copper_cable)
+		sfp_info->max_copper_cable_len = buffer[0x92];
+	else
+		sfp_info->max_50um_om4_cable_length = buffer[0x92] * 10;
+
+	debug("%s: copper cable: %d, max copper cable len: %d\n", __func__,
+	      sfp_info->copper_cable, sfp_info->max_copper_cable_len);
+	if (buffer[0xe])
+		sfp_info->max_single_mode_cable_length = buffer[0x8e] * 1000;
+	else
+		sfp_info->max_single_mode_cable_length = buffer[0x8f] * 100000;
+
+	sfp_info->max_50um_om2_cable_length = buffer[0x90] * 10;
+	sfp_info->max_62_5um_om1_cable_length = buffer[0x91] * 10;
+	sfp_info->max_50um_om3_cable_length = buffer[0x93] * 10;
+
+	if (buffer[0x8c] == 12) {
+		sfp_info->rate = CVMX_SFP_RATE_1G;
+	} else if (buffer[0x8c] == 103) {
+		sfp_info->rate = CVMX_SFP_RATE_10G;
+	} else if (buffer[0x8c] == 0xff) {
+		if (buffer[0xc2] == 103)
+			sfp_info->rate = CVMX_SFP_RATE_100G;
+	}
+
+	if (buffer[0x8c] < 0xff)
+		sfp_info->bitrate_max = buffer[0x8c] * 100;
+	else
+		sfp_info->bitrate_max = buffer[0xc2] * 250;
+
+	if ((buffer[0x88] & 0xc) == 8) {
+		if (buffer[0xbc] & 0x4)
+			sfp_info->limiting = true;
+	}
+
+	/* Currently we only set this for 25G.  FEC is required for CA-S cables
+	 * and for cable lengths >= 5M as of this writing.
+	 */
+	/* copy strings and vendor info, strings will be automatically NUL
+	 * terminated.
+	 */
+	memcpy(sfp_info->vendor_name, &buffer[0x94], 16);
+	memcpy(sfp_info->vendor_oui, &buffer[0xa5], 3);
+	memcpy(sfp_info->vendor_pn, &buffer[0xa8], 16);
+	memcpy(sfp_info->vendor_rev, &buffer[0xb8], 4);
+	memcpy(sfp_info->vendor_sn, &buffer[0xc4], 16);
+	memcpy(sfp_info->date_code, &buffer[0xd4], 8);
+
+	sfp_info->linear_rx_output = !!(buffer[0xc0] & 1);
+	sfp_info->cooled_laser = !!(buffer[0xc0] & 4);
+	sfp_info->internal_cdr = !!(buffer[0xc0] & 8);
+
+	if (buffer[0xc0] & 0x20)
+		sfp_info->power_level = 3;
+	else
+		sfp_info->power_level = (buffer[0xc0] & 2) ? 2 : 1;
+
+	sfp_info->diag_paging = !!(buffer[0xc0] & 0x10);
+	sfp_info->los_implemented = !!(buffer[0xc1] & 2);
+	sfp_info->los_inverted = !!(buffer[0xc1] & 4);
+	sfp_info->tx_fault_implemented = !!(buffer[0xc1] & 8);
+	sfp_info->tx_disable_implemented = !!(buffer[0xc1] & 0x10);
+	sfp_info->rate_select_implemented = !!(buffer[0xc1] & 0x20);
+	sfp_info->tuneable_transmitter = !!(buffer[0xc1] & 0x40);
+	sfp_info->rx_decision_threshold_implemented = !!(buffer[0xc1] & 0x80);
+
+	sfp_info->diag_monitoring = !!(buffer[0xdc] & 0x40);
+	sfp_info->diag_rx_power_averaged = !!(buffer[0xdc] & 0x8);
+	sfp_info->diag_externally_calibrated = !!(buffer[0xdc] & 0x10);
+	sfp_info->diag_internally_calibrated = !!(buffer[0xdc] & 0x20);
+	sfp_info->diag_addr_change_required = !!(buffer[0xdc] & 0x4);
+	sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 2);
+	sfp_info->diag_app_select_control = !!(buffer[0xdd] & 4);
+	sfp_info->diag_soft_rate_select_control = !!(buffer[0xdd] & 8);
+	sfp_info->diag_soft_rx_los_implemented = !!(buffer[0xdd] & 0x10);
+	sfp_info->diag_soft_tx_fault_implemented = !!(buffer[0xdd] & 0x20);
+	sfp_info->diag_soft_tx_disable_implemented = !!(buffer[0xdd] & 0x40);
+	sfp_info->diag_alarm_warning_flags_implemented =
+		!!(buffer[0xdd] & 0x80);
+	sfp_info->diag_rev = buffer[0xde];
+
+	return 0;
+}
+
+static bool sfp_verify_checksum(const uint8_t *buffer)
+{
+	u8 csum = 0;
+	u8 offset;
+	bool csum_good = false;
+	int i;
+
+	switch (buffer[0]) {
+	case CVMX_SFP_CONN_QSFP:
+	case CVMX_SFP_CONN_QSFPP:
+	case CVMX_SFP_CONN_QSFP28:
+	case CVMX_SFP_CONN_MICRO_QSFP:
+	case CVMX_SFP_CONN_QSFP_DD:
+		offset = 0x80;
+		break;
+	default:
+		offset = 0;
+		break;
+	}
+	for (i = offset; i < offset + 0x3f; i++)
+		csum += buffer[i];
+	csum_good = csum == buffer[offset + 0x3f];
+	if (!csum_good) {
+		debug("%s: Lower checksum bad, got 0x%x, expected 0x%x\n",
+		      __func__, csum, buffer[offset + 0x3f]);
+		return false;
+	}
+	csum = 0;
+	for (i = offset + 0x40; i < offset + 0x5f; i++)
+		csum += buffer[i];
+	if (csum != buffer[offset + 0x5f]) {
+		debug("%s: Upper checksum bad, got 0x%x, expected 0x%x\n",
+		      __func__, csum, buffer[offset + 0x5f]);
+		return false;
+	}
+	return true;
+}
+
+/**
+ * Reads and parses SFP/QSFP EEPROM
+ *
+ * @param	sfp	sfp handle to read
+ *
+ * @return	0 for success, -1 on error.
+ */
+int cvmx_sfp_read_i2c_eeprom(struct cvmx_fdt_sfp_info *sfp)
+{
+	const struct cvmx_fdt_i2c_bus_info *bus = sfp->i2c_bus;
+	int oct_bus = cvmx_fdt_i2c_get_root_bus(bus);
+	struct udevice *dev;
+	u8 buffer[256];
+	bool is_qsfp;
+	int retry;
+	int err;
+
+	if (!bus) {
+		debug("%s(%s): Error: i2c bus undefined for eeprom\n", __func__,
+		      sfp->name);
+		return -1;
+	}
+
+	is_qsfp = (sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP ||
+		   sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFPP ||
+		   sfp->sfp_info.conn_type == CVMX_SFP_CONN_QSFP28 ||
+		   sfp->sfp_info.conn_type == CVMX_SFP_CONN_MICRO_QSFP) ||
+		  sfp->is_qsfp;
+
+	err = cvmx_qsfp_select(sfp, true);
+	if (err) {
+		debug("%s: Error selecting SFP/QSFP slot\n", __func__);
+		return err;
+	}
+
+	debug("%s: Reading eeprom from i2c address %d:0x%x\n", __func__,
+	      oct_bus, sfp->i2c_eeprom_addr);
+	for (retry = 0; retry < 3; retry++) {
+		err = i2c_get_chip(bus->i2c_bus, sfp->i2c_eeprom_addr, 1, &dev);
+		if (err) {
+			debug("Cannot find I2C device: %d\n", err);
+			goto error;
+		}
+
+		err = dm_i2c_read(dev, 0, buffer, 256);
+		if (err || !sfp_verify_checksum(buffer)) {
+			debug("%s: Error %d reading eeprom at 0x%x, bus %d\n",
+			      __func__, err, sfp->i2c_eeprom_addr, oct_bus);
+			debug("%s: Retry %d\n", __func__, retry + 1);
+			mdelay(1000);
+		} else {
+			break;
+		}
+	}
+	if (err) {
+		debug("%s: Error reading eeprom from SFP %s\n", __func__,
+		      sfp->name);
+		return -1;
+	}
+#ifdef DEBUG
+	print_buffer(0, buffer, 1, 256, 0);
+#endif
+	memset(&sfp->sfp_info, 0, sizeof(struct cvmx_sfp_mod_info));
+
+	switch (buffer[0]) {
+	case CVMX_SFP_CONN_SFP:
+		err = cvmx_sfp_parse_sfp_buffer(&sfp->sfp_info, buffer);
+		break;
+	case CVMX_SFP_CONN_QSFP:
+	case CVMX_SFP_CONN_QSFPP:
+	case CVMX_SFP_CONN_QSFP28:
+	case CVMX_SFP_CONN_MICRO_QSFP:
+		err = cvmx_sfp_parse_qsfp_buffer(&sfp->sfp_info, buffer);
+		break;
+	default:
+		debug("%s: Unknown SFP transceiver type 0x%x\n", __func__,
+		      buffer[0]);
+		err = -1;
+		break;
+	}
+
+error:
+	if (is_qsfp)
+		err |= cvmx_qsfp_select(sfp, false);
+
+	if (!err) {
+		sfp->valid = true;
+		sfp->sfp_info.valid = true;
+	} else {
+		sfp->valid = false;
+		sfp->sfp_info.valid = false;
+	}
+
+	return err;
+}
+
+/**
+ * Function called to check and return the status of the mod_abs pin or
+ * mod_pres pin for QSFPs.
+ *
+ * @param	sfp	Handle to SFP information.
+ * @param	data	User-defined data passed to the function
+ *
+ * @return	0 if absent, 1 if present, -1 on error
+ */
+int cvmx_sfp_check_mod_abs(struct cvmx_fdt_sfp_info *sfp, void *data)
+{
+	int val;
+	int err = 0;
+	int mode;
+
+	if (!dm_gpio_is_valid(&sfp->mod_abs)) {
+		debug("%s: Error: mod_abs not set for %s\n", __func__,
+		      sfp->name);
+		return -1;
+	}
+	val = dm_gpio_get_value(&sfp->mod_abs);
+	debug("%s(%s, %p) mod_abs: %d\n", __func__, sfp->name, data, val);
+	if (val >= 0 && val != sfp->last_mod_abs && sfp->mod_abs_changed) {
+		err = 0;
+		if (!val) {
+			err = cvmx_sfp_read_i2c_eeprom(sfp);
+			if (err)
+				debug("%s: Error reading SFP %s EEPROM\n",
+				      __func__, sfp->name);
+		}
+		err = sfp->mod_abs_changed(sfp, val, sfp->mod_abs_changed_data);
+	}
+	debug("%s(%s (%p)): Last mod_abs: %d, current: %d, changed: %p, rc: %d, next: %p, caller: %p\n",
+	      __func__, sfp->name, sfp, sfp->last_mod_abs, val,
+	      sfp->mod_abs_changed, err, sfp->next_iface_sfp,
+	      __builtin_return_address(0));
+
+	if (err >= 0) {
+		sfp->last_mod_abs = val;
+		mode = cvmx_helper_interface_get_mode(sfp->xiface);
+		cvmx_sfp_validate_module(sfp, mode);
+	} else {
+		debug("%s: mod_abs_changed for %s returned error\n", __func__,
+		      sfp->name);
+	}
+
+	return err < 0 ? err : val;
+}
+
+/**
+ * Reads the EEPROMs of all SFP modules.
+ *
+ * @return 0 for success
+ */
+int cvmx_sfp_read_all_modules(void)
+{
+	struct cvmx_fdt_sfp_info *sfp;
+	int val;
+	bool error = false;
+	int rc;
+
+	for (sfp = sfp_list; sfp; sfp = sfp->next) {
+		if (dm_gpio_is_valid(&sfp->mod_abs)) {
+			/* Check if module absent */
+			val = dm_gpio_get_value(&sfp->mod_abs);
+			sfp->last_mod_abs = val;
+			if (val)
+				continue;
+		}
+		rc = cvmx_sfp_read_i2c_eeprom(sfp);
+		if (rc) {
+			debug("%s: Error reading eeprom from SFP %s\n",
+			      __func__, sfp->name);
+			error = true;
+		}
+	}
+
+	return error ? -1 : 0;
+}
+
+/**
+ * Registers a function to be called whenever the mod_abs/mod_pres signal
+ * changes.
+ *
+ * @param	sfp		Handle to SFP data structure
+ * @param	mod_abs_changed	Function called whenever mod_abs is changed
+ *				or NULL to remove.
+ * @param	mod_abs_changed_data	User-defined data passed to
+ *					mod_abs_changed
+ *
+ * @return	0 for success
+ *
+ * @NOTE: If multiple SFP slots are linked together, all subsequent slots
+ *	  will also be registered for the same handler.
+ */
+int cvmx_sfp_register_mod_abs_changed(struct cvmx_fdt_sfp_info *sfp,
+				      int (*mod_abs_changed)(struct cvmx_fdt_sfp_info *sfp,
+							     int val, void *data),
+				      void *mod_abs_changed_data)
+{
+	sfp->mod_abs_changed = mod_abs_changed;
+	sfp->mod_abs_changed_data = mod_abs_changed_data;
+
+	sfp->last_mod_abs = -2; /* undefined */
+
+	return 0;
+}
+
+/**
+ * Parses a SFP slot from the device tree
+ *
+ * @param	sfp		SFP handle to store data in
+ * @param	fdt_addr	Address of flat device tree
+ * @param	of_offset	Node in device tree for SFP slot
+ *
+ * @return	0 on success, -1 on error
+ */
+static int cvmx_sfp_parse_sfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
+{
+	struct ofnode_phandle_args phandle;
+	int err;
+
+	sfp->name = ofnode_get_name(node);
+	sfp->of_offset = ofnode_to_offset(node);
+
+	err = gpio_request_by_name_nodev(node, "tx_disable", 0,
+					 &sfp->tx_disable, GPIOD_IS_OUT);
+	if (err) {
+		printf("%s: tx_disable not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+	dm_gpio_set_value(&sfp->tx_disable, 0);
+
+	err = gpio_request_by_name_nodev(node, "mod_abs", 0,
+					 &sfp->mod_abs, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: mod_abs not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "tx_error", 0,
+					 &sfp->tx_error, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: tx_error not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "rx_los", 0,
+					 &sfp->rx_los, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: rx_los not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
+					     &phandle);
+	if (!err) {
+		sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
+		debug("%s: eeprom address: 0x%x\n", __func__,
+		      sfp->i2c_eeprom_addr);
+
+		debug("%s: Getting eeprom i2c bus for %s\n", __func__,
+		      sfp->name);
+		sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+	}
+
+	err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
+					     &phandle);
+	if (!err) {
+		sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
+		if (!sfp->i2c_bus)
+			sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+	}
+
+	sfp->last_mod_abs = -2;
+	sfp->last_rx_los = -2;
+
+	if (!sfp->i2c_bus) {
+		debug("%s(%s): Error: could not get i2c bus from device tree\n",
+		      __func__, sfp->name);
+		err = -1;
+	}
+
+	if (err) {
+		dm_gpio_free(sfp->tx_disable.dev, &sfp->tx_disable);
+		dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
+		dm_gpio_free(sfp->tx_error.dev, &sfp->tx_error);
+		dm_gpio_free(sfp->rx_los.dev, &sfp->rx_los);
+	} else {
+		sfp->valid = true;
+	}
+
+	return err;
+}
+
+/**
+ * Parses a QSFP slot from the device tree
+ *
+ * @param	sfp		SFP handle to store data in
+ * @param	fdt_addr	Address of flat device tree
+ * @param	of_offset	Node in device tree for SFP slot
+ *
+ * @return	0 on success, -1 on error
+ */
+static int cvmx_sfp_parse_qsfp(struct cvmx_fdt_sfp_info *sfp, ofnode node)
+{
+	struct ofnode_phandle_args phandle;
+	int err;
+
+	sfp->is_qsfp = true;
+	sfp->name = ofnode_get_name(node);
+	sfp->of_offset = ofnode_to_offset(node);
+
+	err = gpio_request_by_name_nodev(node, "lp_mode", 0,
+					 &sfp->lp_mode, GPIOD_IS_OUT);
+	if (err) {
+		printf("%s: lp_mode not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "mod_prs", 0,
+					 &sfp->mod_abs, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: mod_prs not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "select", 0,
+					 &sfp->select, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: select not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "reset", 0,
+					 &sfp->reset, GPIOD_IS_OUT);
+	if (err) {
+		printf("%s: reset not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = gpio_request_by_name_nodev(node, "interrupt", 0,
+					 &sfp->interrupt, GPIOD_IS_IN);
+	if (err) {
+		printf("%s: interrupt not found in DT!\n", __func__);
+		return -ENODEV;
+	}
+
+	err = ofnode_parse_phandle_with_args(node, "eeprom", NULL, 0, 0,
+					     &phandle);
+	if (!err) {
+		sfp->i2c_eeprom_addr = ofnode_get_addr(phandle.node);
+		sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+	}
+
+	err = ofnode_parse_phandle_with_args(node, "diag", NULL, 0, 0,
+					     &phandle);
+	if (!err) {
+		sfp->i2c_diag_addr = ofnode_get_addr(phandle.node);
+		if (!sfp->i2c_bus)
+			sfp->i2c_bus = cvmx_ofnode_get_i2c_bus(ofnode_get_parent(phandle.node));
+	}
+
+	sfp->last_mod_abs = -2;
+	sfp->last_rx_los = -2;
+
+	if (!sfp->i2c_bus) {
+		cvmx_printf("%s(%s): Error: could not get i2c bus from device tree\n",
+			    __func__, sfp->name);
+		err = -1;
+	}
+
+	if (err) {
+		dm_gpio_free(sfp->lp_mode.dev, &sfp->lp_mode);
+		dm_gpio_free(sfp->mod_abs.dev, &sfp->mod_abs);
+		dm_gpio_free(sfp->select.dev, &sfp->select);
+		dm_gpio_free(sfp->reset.dev, &sfp->reset);
+		dm_gpio_free(sfp->interrupt.dev, &sfp->interrupt);
+	} else {
+		sfp->valid = true;
+	}
+
+	return err;
+}
+
+/**
+ * Parses the device tree for SFP and QSFP slots
+ *
+ * @param	fdt_addr	Address of flat device-tree
+ *
+ * @return	0 for success, -1 on error
+ */
+int cvmx_sfp_parse_device_tree(const void *fdt_addr)
+{
+	struct cvmx_fdt_sfp_info *sfp, *first_sfp = NULL, *last_sfp = NULL;
+	ofnode node;
+	int err = 0;
+	int reg;
+	static bool parsed;
+
+	debug("%s(%p): Parsing...\n", __func__, fdt_addr);
+	if (parsed) {
+		debug("%s(%p): Already parsed\n", __func__, fdt_addr);
+		return 0;
+	}
+
+	ofnode_for_each_compatible_node(node, "ethernet,sfp-slot") {
+		if (!ofnode_valid(node))
+			continue;
+
+		sfp = cvm_sfp_alloc(sizeof(*sfp));
+		if (!sfp)
+			return -1;
+
+		err = cvmx_sfp_parse_sfp(sfp, node);
+		if (!err) {
+			if (!sfp_list)
+				sfp_list = sfp;
+			if (last_sfp)
+				last_sfp->next = sfp;
+			sfp->prev = last_sfp;
+			last_sfp = sfp;
+			debug("%s: parsed %s\n", __func__, sfp->name);
+		} else {
+			debug("%s: Error parsing SFP at node %s\n",
+			      __func__, ofnode_get_name(node));
+			return err;
+		}
+	}
+
+	ofnode_for_each_compatible_node(node, "ethernet,qsfp-slot") {
+		if (!ofnode_valid(node))
+			continue;
+
+		sfp = cvm_sfp_alloc(sizeof(*sfp));
+		if (!sfp)
+			return -1;
+
+		err = cvmx_sfp_parse_qsfp(sfp, node);
+		if (!err) {
+			if (!sfp_list)
+				sfp_list = sfp;
+			if (last_sfp)
+				last_sfp->next = sfp;
+			sfp->prev = last_sfp;
+			last_sfp = sfp;
+			debug("%s: parsed %s\n", __func__, sfp->name);
+		} else {
+			debug("%s: Error parsing QSFP at node %s\n",
+			      __func__, ofnode_get_name(node));
+			return err;
+		}
+	}
+
+	if (!octeon_has_feature(OCTEON_FEATURE_BGX))
+		return 0;
+
+	err = 0;
+	ofnode_for_each_compatible_node(node, "cavium,octeon-7890-bgx-port") {
+		int sfp_nodes[4];
+		ofnode sfp_ofnodes[4];
+		int num_sfp_nodes;
+		u64 reg_addr;
+		struct cvmx_xiface xi;
+		int xiface, index;
+		cvmx_helper_interface_mode_t mode;
+		int i;
+		int rc;
+
+		if (!ofnode_valid(node))
+			break;
+
+		num_sfp_nodes = ARRAY_SIZE(sfp_nodes);
+		rc = cvmx_ofnode_lookup_phandles(node, "sfp-slot",
+						 &num_sfp_nodes, sfp_ofnodes);
+		if (rc != 0 || num_sfp_nodes < 1)
+			rc = cvmx_ofnode_lookup_phandles(node, "qsfp-slot",
+							 &num_sfp_nodes,
+							 sfp_ofnodes);
+		/* If no SFP or QSFP slot found, go to next port */
+		if (rc < 0)
+			continue;
+
+		last_sfp = NULL;
+		for (i = 0; i < num_sfp_nodes; i++) {
+			sfp = cvmx_sfp_find_slot_by_fdt_node(ofnode_to_offset(sfp_ofnodes[i]));
+			debug("%s: Adding sfp %s (%p) to BGX port\n",
+			      __func__, sfp->name, sfp);
+			if (last_sfp)
+				last_sfp->next_iface_sfp = sfp;
+			else
+				first_sfp = sfp;
+			last_sfp = sfp;
+		}
+		if (!first_sfp) {
+			debug("%s: Error: could not find SFP slot for BGX port %s\n",
+			      __func__,
+			      fdt_get_name(fdt_addr, sfp_nodes[0],
+					   NULL));
+			err = -1;
+			break;
+		}
+
+		/* Get the port index */
+		reg = ofnode_get_addr(node);
+		if (reg < 0) {
+			debug("%s: Error: could not get BGX port reg value\n",
+			      __func__);
+			err = -1;
+			break;
+		}
+		index = reg;
+
+		/* Get BGX node and address */
+		reg_addr = ofnode_get_addr(ofnode_get_parent(node));
+		/* Extrace node */
+		xi.node = cvmx_csr_addr_to_node(reg_addr);
+		/* Extract reg address */
+		reg_addr = cvmx_csr_addr_strip_node(reg_addr);
+		if ((reg_addr & 0xFFFFFFFFF0000000) !=
+		    0x00011800E0000000) {
+			debug("%s: Invalid BGX address 0x%llx\n",
+			      __func__, (unsigned long long)reg_addr);
+			xi.node = -1;
+			err = -1;
+			break;
+		}
+
+		/* Extract interface from address */
+		xi.interface = (reg_addr >> 24) & 0x0F;
+		/* Convert to xiface */
+		xiface = cvmx_helper_node_interface_to_xiface(xi.node,
+							      xi.interface);
+		debug("%s: Parsed %d SFP slots for interface 0x%x, index %d\n",
+		      __func__, num_sfp_nodes, xiface, index);
+
+		mode = cvmx_helper_interface_get_mode(xiface);
+		for (sfp = first_sfp; sfp; sfp = sfp->next_iface_sfp) {
+			sfp->xiface = xiface;
+			sfp->index = index;
+			/* Convert to IPD port */
+			sfp->ipd_port[0] =
+				cvmx_helper_get_ipd_port(xiface, index);
+			debug("%s: sfp %s (%p) xi: 0x%x, index: 0x%x, node: %d, mode: 0x%x, next: %p\n",
+			      __func__, sfp->name, sfp, sfp->xiface,
+			      sfp->index, xi.node, mode,
+			      sfp->next_iface_sfp);
+			if (mode == CVMX_HELPER_INTERFACE_MODE_XLAUI ||
+			    mode == CVMX_HELPER_INTERFACE_MODE_40G_KR4)
+				for (i = 1; i < 4; i++)
+					sfp->ipd_port[i] = -1;
+			else
+				for (i = 1; i < 4; i++)
+					sfp->ipd_port[i] =
+						cvmx_helper_get_ipd_port(
+							xiface, i);
+		}
+		cvmx_helper_cfg_set_sfp_info(xiface, index, first_sfp);
+	}
+
+	if (!err) {
+		parsed = true;
+		cvmx_sfp_read_all_modules();
+	}
+
+	return err;
+}
+
+/**
+ * Given a fdt node offset find the corresponding SFP or QSFP slot
+ *
+ * @param	of_offset	flat device tree node offset
+ *
+ * @return	pointer to SFP data structure or NULL if not found
+ */
+struct cvmx_fdt_sfp_info *cvmx_sfp_find_slot_by_fdt_node(int of_offset)
+{
+	struct cvmx_fdt_sfp_info *sfp = sfp_list;
+
+	while (sfp) {
+		if (sfp->of_offset == of_offset)
+			return sfp;
+		sfp = sfp->next;
+	}
+	return NULL;
+}
+
+static bool cvmx_sfp_validate_quad(struct cvmx_fdt_sfp_info *sfp,
+				   struct cvmx_phy_gpio_leds *leds)
+{
+	bool multi_led = leds && (leds->next);
+	bool error = false;
+	int mod_abs;
+
+	do {
+		/* Skip missing modules */
+		if (dm_gpio_is_valid(&sfp->mod_abs))
+			mod_abs = dm_gpio_get_value(&sfp->mod_abs);
+		else
+			mod_abs = 0;
+		if (!mod_abs) {
+			if (cvmx_sfp_read_i2c_eeprom(sfp)) {
+				debug("%s: Error reading eeprom for %s\n",
+				      __func__, sfp->name);
+			}
+			if (sfp->sfp_info.rate < CVMX_SFP_RATE_10G) {
+				cvmx_helper_leds_show_error(leds, true);
+				error = true;
+			} else if (sfp->sfp_info.rate >= CVMX_SFP_RATE_10G) {
+				/* We don't support 10GBase-T modules in
+				 * this mode.
+				 */
+				switch (sfp->sfp_info.cable_comp) {
+				case CVMX_SFP_CABLE_10GBASE_T:
+				case CVMX_SFP_CABLE_10GBASE_T_SR:
+				case CVMX_SFP_CABLE_5GBASE_T:
+				case CVMX_SFP_CABLE_2_5GBASE_T:
+					cvmx_helper_leds_show_error(leds, true);
+					error = true;
+					break;
+				default:
+					break;
+				}
+			}
+		} else if (multi_led) {
+			cvmx_helper_leds_show_error(leds, false);
+		}
+
+		if (multi_led && leds->next)
+			leds = leds->next;
+		sfp = sfp->next_iface_sfp;
+	} while (sfp);
+
+	if (!multi_led)
+		cvmx_helper_leds_show_error(leds, error);
+
+	return error;
+}
+
+/**
+ * Validates if the module is correct for the specified port
+ *
+ * @param[in]	sfp	SFP port to check
+ * @param	xiface	interface
+ * @param	index	port index
+ * @param	speed	link speed, -1 if unknown
+ * @param	mode	interface mode
+ *
+ * @return	true if module is valid, false if invalid
+ * NOTE: This will also toggle the error LED, if present
+ */
+bool cvmx_sfp_validate_module(struct cvmx_fdt_sfp_info *sfp, int mode)
+{
+	const struct cvmx_sfp_mod_info *mod_info = &sfp->sfp_info;
+	int xiface = sfp->xiface;
+	int index = sfp->index;
+	struct cvmx_phy_gpio_leds *leds;
+	bool error = false;
+	bool quad_mode = false;
+
+	debug("%s(%s, 0x%x, 0x%x, 0x%x)\n", __func__, sfp->name, xiface, index,
+	      mode);
+	if (!sfp) {
+		debug("%s: Error: sfp is NULL\n", __func__);
+		return false;
+	}
+	/* No module is valid */
+	leds = cvmx_helper_get_port_phy_leds(xiface, index);
+	if (!leds)
+		debug("%s: No leds for 0x%x:0x%x\n", __func__, xiface, index);
+
+	if (mode != CVMX_HELPER_INTERFACE_MODE_XLAUI &&
+	    mode != CVMX_HELPER_INTERFACE_MODE_40G_KR4 && !sfp->is_qsfp &&
+	    sfp->last_mod_abs && leds) {
+		cvmx_helper_leds_show_error(leds, false);
+		debug("%s: %s: last_mod_abs: %d, no error\n", __func__,
+		      sfp->name, sfp->last_mod_abs);
+		return true;
+	}
+
+	switch (mode) {
+	case CVMX_HELPER_INTERFACE_MODE_RGMII:
+	case CVMX_HELPER_INTERFACE_MODE_GMII:
+	case CVMX_HELPER_INTERFACE_MODE_SGMII:
+	case CVMX_HELPER_INTERFACE_MODE_QSGMII:
+	case CVMX_HELPER_INTERFACE_MODE_AGL:
+	case CVMX_HELPER_INTERFACE_MODE_SPI:
+		if ((mod_info->active_cable &&
+		     mod_info->rate != CVMX_SFP_RATE_1G) ||
+		    mod_info->rate < CVMX_SFP_RATE_1G)
+			error = true;
+		break;
+	case CVMX_HELPER_INTERFACE_MODE_RXAUI:
+	case CVMX_HELPER_INTERFACE_MODE_XAUI:
+	case CVMX_HELPER_INTERFACE_MODE_10G_KR:
+	case CVMX_HELPER_INTERFACE_MODE_XFI:
+		if ((mod_info->active_cable &&
+		     mod_info->rate != CVMX_SFP_RATE_10G) ||
+		    mod_info->rate < CVMX_SFP_RATE_10G)
+			error = true;
+		break;
+	case CVMX_HELPER_INTERFACE_MODE_XLAUI:
+	case CVMX_HELPER_INTERFACE_MODE_40G_KR4:
+		if (!sfp->is_qsfp) {
+			quad_mode = true;
+			error = cvmx_sfp_validate_quad(sfp, leds);
+		} else {
+			if ((mod_info->active_cable &&
+			     mod_info->rate != CVMX_SFP_RATE_40G) ||
+			    mod_info->rate < CVMX_SFP_RATE_25G)
+				error = true;
+		}
+		break;
+	default:
+		debug("%s: Unsupported interface mode %d on xiface 0x%x\n",
+		      __func__, mode, xiface);
+		return false;
+	}
+	debug("%s: %s: error: %d\n", __func__, sfp->name, error);
+	if (leds && !quad_mode)
+		cvmx_helper_leds_show_error(leds, error);
+
+	return !error;
+}