mtd: nand: denali: sync with Linux 4.15-rc1
I largely reworked the Denali NAND controller driver in Linux.
This commit imports the improvements from Linux. The code is
almost synced with Linux 4.15-rc1.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index ca98193..cbdbd2f 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -23,17 +23,6 @@
Enable the driver for NAND flash on platforms using a Denali NAND
controller as a DT device.
-config SYS_NAND_DENALI_64BIT
- bool "Use 64-bit variant of Denali NAND controller"
- depends on NAND_DENALI
- help
- The Denali NAND controller IP has some variations in terms of
- the bus interface. The DMA setup sequence is completely differenct
- between 32bit / 64bit AXI bus variants.
-
- If your Denali NAND controller is the 64-bit variant, say Y.
- Otherwise (32 bit), say N.
-
config NAND_DENALI_SPARE_AREA_SKIP_BYTES
int "Number of bytes skipped in OOB area"
depends on NAND_DENALI
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 54718f4..b116d3a 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -9,1144 +9,1076 @@
#include <common.h>
#include <malloc.h>
#include <nand.h>
+#include <dm.h>
+#include <linux/bitfield.h>
+#include <linux/dma-direction.h>
#include <linux/errno.h>
#include <linux/io.h>
#include "denali.h"
-#define NAND_DEFAULT_TIMINGS -1
-
-static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
-
-/*
- * We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience.
- */
-#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
- INTR_STATUS__ECC_TRANSACTION_DONE | \
- INTR_STATUS__ECC_ERR | \
- INTR_STATUS__PROGRAM_FAIL | \
- INTR_STATUS__LOAD_COMP | \
- INTR_STATUS__PROGRAM_COMP | \
- INTR_STATUS__TIME_OUT | \
- INTR_STATUS__ERASE_FAIL | \
- INTR_STATUS__RST_COMP | \
- INTR_STATUS__ERASE_COMP | \
- INTR_STATUS__ECC_UNCOR_ERR | \
- INTR_STATUS__INT_ACT | \
- INTR_STATUS__LOCKED_BLK)
+static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
+ enum dma_data_direction dir)
+{
+ unsigned long addr = (unsigned long)ptr;
-/*
- * indicates whether or not the internal value for the flash bank is
- * valid or not
- */
-#define CHIP_SELECT_INVALID -1
+ if (dir == DMA_FROM_DEVICE)
+ invalidate_dcache_range(addr, addr + size);
+ else
+ flush_dcache_range(addr, addr + size);
-#define SUPPORT_8BITECC 1
+ return addr;
+}
-/*
- * this macro allows us to convert from an MTD structure to our own
- * device context (denali) structure.
- */
-static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
+static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir)
{
- return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
+ if (dir != DMA_TO_DEVICE)
+ invalidate_dcache_range(addr, addr + size);
}
-/*
- * These constants are defined by the driver to enable common driver
- * configuration options.
- */
-#define SPARE_ACCESS 0x41
-#define MAIN_ACCESS 0x42
-#define MAIN_SPARE_ACCESS 0x43
-#define PIPELINE_ACCESS 0x2000
-
-#define DENALI_UNLOCK_START 0x10
-#define DENALI_UNLOCK_END 0x11
-#define DENALI_LOCK 0x21
-#define DENALI_LOCK_TIGHT 0x31
-#define DENALI_BUFFER_LOAD 0x60
-#define DENALI_BUFFER_WRITE 0x62
-
-#define DENALI_READ 0
-#define DENALI_WRITE 0x100
-
-/* types of device accesses. We can issue commands and get status */
-#define COMMAND_CYCLE 0
-#define ADDR_CYCLE 1
-#define STATUS_CYCLE 2
-
-/*
- * this is a helper macro that allows us to
- * format the bank into the proper bits for the controller
- */
-#define BANK(x) ((x) << 24)
-
-/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali,
- uint32_t irq_mask)
+static int dma_mapping_error(void *dev, dma_addr_t addr)
{
- uint32_t intr_status_reg;
-
- intr_status_reg = INTR_STATUS(denali->flash_bank);
-
- writel(irq_mask, denali->flash_reg + intr_status_reg);
+ return 0;
}
-static uint32_t read_interrupt_status(struct denali_nand_info *denali)
-{
- uint32_t intr_status_reg;
+#define DENALI_NAND_NAME "denali-nand"
- intr_status_reg = INTR_STATUS(denali->flash_bank);
+/* for Indexed Addressing */
+#define DENALI_INDEXED_CTRL 0x00
+#define DENALI_INDEXED_DATA 0x10
- return readl(denali->flash_reg + intr_status_reg);
-}
+#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
+#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
+#define DENALI_MAP10 (2 << 26) /* high-level control plane */
+#define DENALI_MAP11 (3 << 26) /* direct controller access */
-static void clear_interrupts(struct denali_nand_info *denali)
-{
- uint32_t status;
+/* MAP11 access cycle type */
+#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */
+#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */
+#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */
- status = read_interrupt_status(denali);
- clear_interrupt(denali, status);
+/* MAP10 commands */
+#define DENALI_ERASE 0x01
- denali->irq_status = 0;
-}
+#define DENALI_BANK(denali) ((denali)->active_bank << 24)
-static void denali_irq_enable(struct denali_nand_info *denali,
- uint32_t int_mask)
-{
- int i;
+#define DENALI_INVALID_BANK -1
+#define DENALI_NR_BANKS 4
- for (i = 0; i < denali->max_banks; ++i)
- writel(int_mask, denali->flash_reg + INTR_EN(i));
-}
+/*
+ * The bus interface clock, clk_x, is phase aligned with the core clock. The
+ * clk_x is an integral multiple N of the core clk. The value N is configured
+ * at IP delivery time, and its available value is 4, 5, or 6. We need to align
+ * to the largest value to make it work with any possible configuration.
+ */
+#define DENALI_CLK_X_MULT 6
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
- unsigned long timeout = 1000000;
- uint32_t intr_status;
-
- do {
- intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
- if (intr_status & irq_mask) {
- denali->irq_status &= ~irq_mask;
- /* our interrupt was detected */
- break;
- }
- udelay(1);
- timeout--;
- } while (timeout != 0);
-
- if (timeout == 0) {
- /* timeout */
- printf("Denali timeout with interrupt status %08x\n",
- read_interrupt_status(denali));
- intr_status = 0;
- }
- return intr_status;
+ return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
/*
- * Certain operations for the denali NAND controller use an indexed mode to
- * read/write data. The operation is performed by writing the address value
- * of the command to the device memory followed by the data. This function
- * abstracts this common operation.
+ * Direct Addressing - the slave address forms the control information (command
+ * type, bank, block, and page address). The slave data is the actual data to
+ * be transferred. This mode requires 28 bits of address region allocated.
*/
-static void index_addr(struct denali_nand_info *denali,
- uint32_t address, uint32_t data)
+static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
{
- writel(address, denali->flash_mem + INDEX_CTRL_REG);
- writel(data, denali->flash_mem + INDEX_DATA_REG);
+ return ioread32(denali->host + addr);
}
-/* Perform an indexed read of the device */
-static void index_addr_read_data(struct denali_nand_info *denali,
- uint32_t address, uint32_t *pdata)
+static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
+ u32 data)
{
- writel(address, denali->flash_mem + INDEX_CTRL_REG);
- *pdata = readl(denali->flash_mem + INDEX_DATA_REG);
+ iowrite32(data, denali->host + addr);
}
/*
- * We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data.
+ * Indexed Addressing - address translation module intervenes in passing the
+ * control information. This mode reduces the required address range. The
+ * control information and transferred data are latched by the registers in
+ * the translation module.
*/
-static void reset_buf(struct denali_nand_info *denali)
+static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
{
- denali->buf.head = 0;
- denali->buf.tail = 0;
+ iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+ return ioread32(denali->host + DENALI_INDEXED_DATA);
}
-static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
+ u32 data)
{
- denali->buf.buf[denali->buf.tail++] = byte;
+ iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+ iowrite32(data, denali->host + DENALI_INDEXED_DATA);
}
-/* resets a specific device connected to the core */
-static void reset_bank(struct denali_nand_info *denali)
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void denali_detect_max_banks(struct denali_nand_info *denali)
{
- uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
-
- clear_interrupts(denali);
+ uint32_t features = ioread32(denali->reg + FEATURES);
- writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+ denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status & INTR_STATUS__TIME_OUT)
- debug("reset bank failed.\n");
+ /* the encoding changed from rev 5.0 to 5.1 */
+ if (denali->revision < 0x0501)
+ denali->max_banks <<= 1;
}
-/* Reset the flash controller */
-static uint32_t denali_nand_reset(struct denali_nand_info *denali)
+static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
{
int i;
- for (i = 0; i < denali->max_banks; i++)
- writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali->flash_reg + INTR_STATUS(i));
-
- for (i = 0; i < denali->max_banks; i++) {
- writel(1 << i, denali->flash_reg + DEVICE_RESET);
- while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
- (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
- if (readl(denali->flash_reg + INTR_STATUS(i)) &
- INTR_STATUS__TIME_OUT)
- debug("NAND Reset operation timed out on bank"
- " %d\n", i);
- }
-
- for (i = 0; i < denali->max_banks; i++)
- writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali->flash_reg + INTR_STATUS(i));
-
- return 0;
+ for (i = 0; i < DENALI_NR_BANKS; i++)
+ iowrite32(U32_MAX, denali->reg + INTR_EN(i));
+ iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
}
-/*
- * this routine calculates the ONFI timing values for a given mode and
- * programs the clocking register accordingly. The mode is determined by
- * the get_onfi_nand_para routine.
- */
-static void nand_onfi_timing_set(struct denali_nand_info *denali,
- uint16_t mode)
+static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
{
- uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
- uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
- uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
- uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
- uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
- uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
- uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
- uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
- uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
- uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
- uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
- uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
-
- uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
- uint32_t dv_window = 0;
- uint32_t en_lo, en_hi;
- uint32_t acc_clks;
- uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+ int i;
- en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
- en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
- if ((en_hi * CLK_X) < (treh[mode] + 2))
- en_hi++;
+ for (i = 0; i < DENALI_NR_BANKS; i++)
+ iowrite32(0, denali->reg + INTR_EN(i));
+ iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
+}
- if ((en_lo + en_hi) * CLK_X < trc[mode])
- en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
- CLK_X);
+static void denali_clear_irq(struct denali_nand_info *denali,
+ int bank, uint32_t irq_status)
+{
+ /* write one to clear bits */
+ iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
+}
- if ((en_lo + en_hi) < CLK_MULTI)
- en_lo += CLK_MULTI - en_lo - en_hi;
+static void denali_clear_irq_all(struct denali_nand_info *denali)
+{
+ int i;
- while (dv_window < 8) {
- data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
+ for (i = 0; i < DENALI_NR_BANKS; i++)
+ denali_clear_irq(denali, i, U32_MAX);
+}
- data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
+static void __denali_check_irq(struct denali_nand_info *denali)
+{
+ uint32_t irq_status;
+ int i;
- data_invalid = data_invalid_rhoh < data_invalid_rloh ?
- data_invalid_rhoh : data_invalid_rloh;
+ for (i = 0; i < DENALI_NR_BANKS; i++) {
+ irq_status = ioread32(denali->reg + INTR_STATUS(i));
+ denali_clear_irq(denali, i, irq_status);
- dv_window = data_invalid - trea[mode];
+ if (i != denali->active_bank)
+ continue;
- if (dv_window < 8)
- en_lo++;
+ denali->irq_status |= irq_status;
}
-
- acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
+}
- while (acc_clks * CLK_X - trea[mode] < 3)
- acc_clks++;
+static void denali_reset_irq(struct denali_nand_info *denali)
+{
+ denali->irq_status = 0;
+ denali->irq_mask = 0;
+}
- if (data_invalid - acc_clks * CLK_X < 2)
- debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask)
+{
+ unsigned long time_left = 1000000;
- addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
- re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
- re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
- we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
- cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
- if (cs_cnt == 0)
- cs_cnt = 1;
+ while (time_left) {
+ __denali_check_irq(denali);
- if (tcea[mode]) {
- while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
- cs_cnt++;
+ if (irq_mask & denali->irq_status)
+ return denali->irq_status;
+ udelay(1);
+ time_left--;
}
- /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
- if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
- readl(denali->flash_reg + DEVICE_ID) == 0x88)
- acc_clks = 6;
+ if (!time_left) {
+ dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+ irq_mask);
+ return 0;
+ }
- writel(acc_clks, denali->flash_reg + ACC_CLKS);
- writel(re_2_we, denali->flash_reg + RE_2_WE);
- writel(re_2_re, denali->flash_reg + RE_2_RE);
- writel(we_2_re, denali->flash_reg + WE_2_RE);
- writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
- writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
- writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
- writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+ return denali->irq_status;
}
-/* queries the NAND device to see what ONFI modes it supports. */
-static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
{
- int i;
+ __denali_check_irq(denali);
- /*
- * we needn't to do a reset here because driver has already
- * reset all the banks before
- */
- if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
- ONFI_TIMING_MODE__VALUE))
- return -EIO;
-
- for (i = 5; i > 0; i--) {
- if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
- (0x01 << i))
- break;
- }
-
- nand_onfi_timing_set(denali, i);
-
- /*
- * By now, all the ONFI devices we know support the page cache
- * rw feature. So here we enable the pipeline_rw_ahead feature
- */
-
- return 0;
+ return denali->irq_status;
}
-static void get_samsung_nand_para(struct denali_nand_info *denali,
- uint8_t device_id)
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
- if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
- /* Set timing register values according to datasheet */
- writel(5, denali->flash_reg + ACC_CLKS);
- writel(20, denali->flash_reg + RE_2_WE);
- writel(12, denali->flash_reg + WE_2_RE);
- writel(14, denali->flash_reg + ADDR_2_DATA);
- writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
- writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
- writel(2, denali->flash_reg + CS_SETUP_CNT);
- }
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = denali->host_read(denali, addr);
}
-static void get_toshiba_nand_para(struct denali_nand_info *denali)
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
- uint32_t tmp;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+ int i;
- /*
- * Workaround to fix a controller bug which reports a wrong
- * spare area size for some kind of Toshiba NAND device
- */
- if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
- (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
- writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
- readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- }
+ for (i = 0; i < len; i++)
+ denali->host_write(denali, addr, buf[i]);
}
-static void get_hynix_nand_para(struct denali_nand_info *denali,
- uint8_t device_id)
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
- uint32_t main_size, spare_size;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+ uint16_t *buf16 = (uint16_t *)buf;
+ int i;
- switch (device_id) {
- case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
- case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
- writel(128, denali->flash_reg + PAGES_PER_BLOCK);
- writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 *
- readl(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 *
- readl(denali->flash_reg + DEVICES_CONNECTED);
- writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- writel(0, denali->flash_reg + DEVICE_WIDTH);
- break;
- default:
- debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
- "Will use default parameter values instead.\n",
- device_id);
- }
+ for (i = 0; i < len / 2; i++)
+ buf16[i] = denali->host_read(denali, addr);
}
-/*
- * determines how many NAND chips are connected to the controller. Note for
- * Intel CE4100 devices we don't support more than one device.
- */
-static void find_valid_banks(struct denali_nand_info *denali)
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+ int len)
{
- uint32_t id[denali->max_banks];
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+ const uint16_t *buf16 = (const uint16_t *)buf;
int i;
- denali->total_used_banks = 1;
- for (i = 0; i < denali->max_banks; i++) {
- index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
- index_addr(denali, MODE_11 | (i << 24) | 1, 0);
- index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
-
- if (i == 0) {
- if (!(id[i] & 0x0ff))
- break;
- } else {
- if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
- denali->total_used_banks++;
- else
- break;
- }
- }
+ for (i = 0; i < len / 2; i++)
+ denali->host_write(denali, addr, buf16[i]);
}
-/*
- * Use the configuration feature register to determine the maximum number of
- * banks that the hardware supports.
- */
-static void detect_max_banks(struct denali_nand_info *denali)
+static uint8_t denali_read_byte(struct mtd_info *mtd)
{
- uint32_t features = ioread32(denali->flash_reg + FEATURES);
+ uint8_t byte;
- denali->max_banks = 1 << (features & FEATURES__N_BANKS);
+ denali_read_buf(mtd, &byte, 1);
- /* the encoding changed from rev 5.0 to 5.1 */
- if (denali->revision < 0x0501)
- denali->max_banks <<= 1;
+ return byte;
}
-static void detect_partition_feature(struct denali_nand_info *denali)
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
{
- /*
- * For MRST platform, denali->fwblks represent the
- * number of blocks firmware is taken,
- * FW is in protect partition and MTD driver has no
- * permission to access it. So let driver know how many
- * blocks it can't touch.
- */
- if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
- if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
- PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
- denali->fwblks =
- ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
- MIN_MAX_BANK__MIN_VALUE) *
- denali->blksperchip)
- +
- (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
- MIN_BLK_ADDR__VALUE);
- } else {
- denali->fwblks = SPECTRA_START_BLOCK;
- }
- } else {
- denali->fwblks = SPECTRA_START_BLOCK;
- }
+ denali_write_buf(mtd, &byte, 1);
}
-static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
+static uint16_t denali_read_word(struct mtd_info *mtd)
{
- uint32_t id_bytes[8], addr;
- uint8_t maf_id, device_id;
- int i;
+ uint16_t word;
- /*
- * Use read id method to get device ID and other params.
- * For some NAND chips, controller can't report the correct
- * device ID by reading from DEVICE_ID register
- */
- addr = MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, addr | 0, 0x90);
- index_addr(denali, addr | 1, 0);
- for (i = 0; i < 8; i++)
- index_addr_read_data(denali, addr | 2, &id_bytes[i]);
- maf_id = id_bytes[0];
- device_id = id_bytes[1];
+ denali_read_buf16(mtd, (uint8_t *)&word, 2);
- if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
- if (get_onfi_nand_para(denali))
- return -EIO;
- } else if (maf_id == 0xEC) { /* Samsung NAND */
- get_samsung_nand_para(denali, device_id);
- } else if (maf_id == 0x98) { /* Toshiba NAND */
- get_toshiba_nand_para(denali);
- } else if (maf_id == 0xAD) { /* Hynix NAND */
- get_hynix_nand_para(denali, device_id);
- }
+ return word;
+}
- find_valid_banks(denali);
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t type;
- detect_partition_feature(denali);
+ if (ctrl & NAND_CLE)
+ type = DENALI_MAP11_CMD;
+ else if (ctrl & NAND_ALE)
+ type = DENALI_MAP11_ADDR;
+ else
+ return;
/*
- * If the user specified to override the default timings
- * with a specific ONFI mode, we apply those changes here.
+ * Some commands are followed by chip->dev_ready or chip->waitfunc.
+ * irq_status must be cleared here to catch the R/B# interrupt later.
*/
- if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
- nand_onfi_timing_set(denali, onfi_timing_mode);
+ if (ctrl & NAND_CTRL_CHANGE)
+ denali_reset_irq(denali);
- return 0;
+ denali->host_write(denali, DENALI_BANK(denali) | type, dat);
}
-/*
- * validation function to verify that the controlling software is making
- * a valid request
- */
-static inline bool is_flash_bank_valid(int flash_bank)
+static int denali_dev_ready(struct mtd_info *mtd)
{
- return flash_bank >= 0 && flash_bank < 4;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+ return !!(denali_check_irq(denali) & INTR__INT_ACT);
}
-static void denali_irq_init(struct denali_nand_info *denali)
+static int denali_check_erased_page(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf,
+ unsigned long uncor_ecc_flags,
+ unsigned int max_bitflips)
{
- uint32_t int_mask;
- int i;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ int i, ret, stat;
- /* Disable global interrupts */
- writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
- int_mask = DENALI_IRQ_ALL;
+ for (i = 0; i < ecc_steps; i++) {
+ if (!(uncor_ecc_flags & BIT(i)))
+ continue;
- /* Clear all status bits */
- for (i = 0; i < denali->max_banks; ++i)
- writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+ stat = nand_check_erased_ecc_chunk(buf, ecc_size,
+ ecc_code, ecc_bytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
- denali_irq_enable(denali, int_mask);
+ buf += ecc_size;
+ ecc_code += ecc_bytes;
+ }
+
+ return max_bitflips;
}
-/*
- * This helper function setups the registers for ECC and whether or not
- * the spare area will be transferred.
- */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare)
+static int denali_hw_ecc_fixup(struct mtd_info *mtd,
+ struct denali_nand_info *denali,
+ unsigned long *uncor_ecc_flags)
{
- int ecc_en_flag, transfer_spare_flag;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int bank = denali->active_bank;
+ uint32_t ecc_cor;
+ unsigned int max_bitflips;
- /* set ECC, transfer spare bits if needed */
- ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
- transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+ ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
+ ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
+
+ if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
+ /*
+ * This flag is set when uncorrectable error occurs at least in
+ * one ECC sector. We can not know "how many sectors", or
+ * "which sector(s)". We need erase-page check for all sectors.
+ */
+ *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
+ return 0;
+ }
- /* Enable spare area/ECC per user's request. */
- writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- /* applicable for MAP01 only */
- writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+ max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
+
+ /*
+ * The register holds the maximum of per-sector corrected bitflips.
+ * This is suitable for the return value of the ->read_page() callback.
+ * Unfortunately, we can not know the total number of corrected bits in
+ * the page. Increase the stats by max_bitflips. (compromised solution)
+ */
+ mtd->ecc_stats.corrected += max_bitflips;
+
+ return max_bitflips;
}
-/*
- * sends a pipeline command operation to the controller. See the Denali NAND
- * controller's user guide for more information (section 4.2.3.6).
- */
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
- bool ecc_en, bool transfer_spare,
- int access_type, int op)
+static int denali_sw_ecc_fixup(struct mtd_info *mtd,
+ struct denali_nand_info *denali,
+ unsigned long *uncor_ecc_flags, uint8_t *buf)
{
- uint32_t addr, cmd, irq_status;
- static uint32_t page_count = 1;
-
- setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+ unsigned int ecc_size = denali->nand.ecc.size;
+ unsigned int bitflips = 0;
+ unsigned int max_bitflips = 0;
+ uint32_t err_addr, err_cor_info;
+ unsigned int err_byte, err_sector, err_device;
+ uint8_t err_cor_value;
+ unsigned int prev_sector = 0;
+ uint32_t irq_status;
- clear_interrupts(denali);
+ denali_reset_irq(denali);
- addr = BANK(denali->flash_bank) | denali->page;
+ do {
+ err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
+ err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
+ err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
- /* setup the acccess type */
- cmd = MODE_10 | addr;
- index_addr(denali, cmd, access_type);
+ err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
+ err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
+ err_cor_info);
+ err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
+ err_cor_info);
- /* setup the pipeline command */
- index_addr(denali, cmd, 0x2000 | op | page_count);
+ /* reset the bitflip counter when crossing ECC sector */
+ if (err_sector != prev_sector)
+ bitflips = 0;
- cmd = MODE_01 | addr;
- writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
+ if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
+ /*
+ * Check later if this is a real ECC error, or
+ * an erased sector.
+ */
+ *uncor_ecc_flags |= BIT(err_sector);
+ } else if (err_byte < ecc_size) {
+ /*
+ * If err_byte is larger than ecc_size, means error
+ * happened in OOB, so we ignore it. It's no need for
+ * us to correct it err_device is represented the NAND
+ * error bits are happened in if there are more than
+ * one NAND connected.
+ */
+ int offset;
+ unsigned int flips_in_byte;
- if (op == DENALI_READ) {
- /* wait for command to be accepted */
- irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
+ offset = (err_sector * ecc_size + err_byte) *
+ denali->devs_per_cs + err_device;
- if (irq_status == 0)
- return -EIO;
- }
+ /* correct the ECC error */
+ flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
+ buf[offset] ^= err_cor_value;
+ mtd->ecc_stats.corrected += flips_in_byte;
+ bitflips += flips_in_byte;
- return 0;
-}
+ max_bitflips = max(max_bitflips, bitflips);
+ }
-/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali,
- const uint8_t *buf, int len)
-{
- uint32_t *buf32;
- int i;
+ prev_sector = err_sector;
+ } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
/*
- * verify that the len is a multiple of 4.
- * see comment in read_data_from_flash_mem()
+ * Once handle all ECC errors, controller will trigger an
+ * ECC_TRANSACTION_DONE interrupt.
*/
- BUG_ON((len % 4) != 0);
+ irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+ if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+ return -EIO;
- /* write the data to the flash memory */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
- return i * 4; /* intent is to return the number of bytes read */
+ return max_bitflips;
}
-/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali,
- uint8_t *buf, int len)
+static void denali_setup_dma64(struct denali_nand_info *denali,
+ dma_addr_t dma_addr, int page, int write)
{
- uint32_t *buf32;
- int i;
+ uint32_t mode;
+ const int page_count = 1;
- /*
- * we assume that len will be a multiple of 4, if not it would be nice
- * to know about it ASAP rather than have random failures...
- * This assumption is based on the fact that this function is designed
- * to be used to read flash pages, which are typically multiples of 4.
- */
- BUG_ON((len % 4) != 0);
+ mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
- /* transfer the data from the flash */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- *buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
+ /* DMA is a three step process */
- return i * 4; /* intent is to return the number of bytes read */
-}
+ /*
+ * 1. setup transfer type, interrupt when complete,
+ * burst len = 64 bytes, the number of pages
+ */
+ denali->host_write(denali, mode,
+ 0x01002000 | (64 << 16) | (write << 8) | page_count);
-static void denali_mode_main_access(struct denali_nand_info *denali)
-{
- uint32_t addr, cmd;
+ /* 2. set memory low address */
+ denali->host_write(denali, mode, lower_32_bits(dma_addr));
- addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
- index_addr(denali, cmd, MAIN_ACCESS);
+ /* 3. set memory high address */
+ denali->host_write(denali, mode, upper_32_bits(dma_addr));
}
-static void denali_mode_main_spare_access(struct denali_nand_info *denali)
+static void denali_setup_dma32(struct denali_nand_info *denali,
+ dma_addr_t dma_addr, int page, int write)
{
- uint32_t addr, cmd;
+ uint32_t mode;
+ const int page_count = 1;
- addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
- index_addr(denali, cmd, MAIN_SPARE_ACCESS);
-}
+ mode = DENALI_MAP10 | DENALI_BANK(denali);
-/* writes OOB data to the device */
-static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_status;
- uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
- INTR_STATUS__PROGRAM_FAIL;
- int status = 0;
+ /* DMA is a four step process */
- denali->page = page;
+ /* 1. setup transfer type and # of pages */
+ denali->host_write(denali, mode | page,
+ 0x2000 | (write << 8) | page_count);
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_WRITE) == 0) {
- write_data_to_flash_mem(denali, buf, mtd->oobsize);
+ /* 2. set memory high address bits 23:8 */
+ denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
+ /* 3. set memory low address bits 23:8 */
+ denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
- if (irq_status == 0) {
- dev_err(denali->dev, "OOB write failed\n");
- status = -EIO;
- }
- } else {
- printf("unable to send pipeline command\n");
- status = -EIO;
- }
- return status;
+ /* 4. interrupt when complete, burst len = 64 bytes */
+ denali->host_write(denali, mode | 0x14000, 0x2400);
}
-/* reads OOB data from the device */
-static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+ size_t size, int page, int raw)
{
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
- uint32_t irq_status, addr, cmd;
+ u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+ uint32_t *buf32 = (uint32_t *)buf;
+ uint32_t irq_status, ecc_err_mask;
+ int i;
- denali->page = page;
+ if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+ ecc_err_mask = INTR__ECC_UNCOR_ERR;
+ else
+ ecc_err_mask = INTR__ECC_ERR;
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_READ) == 0) {
- read_data_from_flash_mem(denali, buf, mtd->oobsize);
+ denali_reset_irq(denali);
- /*
- * wait for command to be accepted
- * can always use status0 bit as the
- * mask is identical for each bank.
- */
- irq_status = wait_for_irq(denali, irq_mask);
+ for (i = 0; i < size / 4; i++)
+ *buf32++ = denali->host_read(denali, addr);
- if (irq_status == 0)
- printf("page on OOB timeout %d\n", denali->page);
+ irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+ if (!(irq_status & INTR__PAGE_XFER_INC))
+ return -EIO;
- /*
- * We set the device back to MAIN_ACCESS here as I observed
- * instability with the controller if you do a block erase
- * and the last transaction was a SPARE_ACCESS. Block erase
- * is reliable (according to the MTD test infrastructure)
- * if you are in MAIN_ACCESS.
- */
- addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
- index_addr(denali, cmd, MAIN_ACCESS);
- }
+ if (irq_status & INTR__ERASED_PAGE)
+ memset(buf, 0xff, size);
+
+ return irq_status & ecc_err_mask ? -EBADMSG : 0;
}
-/*
- * this function examines buffers to see if they contain data that
- * indicate that the buffer is part of an erased region of flash.
- */
-static bool is_erased(uint8_t *buf, int len)
+static int denali_pio_write(struct denali_nand_info *denali,
+ const void *buf, size_t size, int page, int raw)
{
+ u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+ const uint32_t *buf32 = (uint32_t *)buf;
+ uint32_t irq_status;
int i;
- for (i = 0; i < len; i++)
- if (buf[i] != 0xFF)
- return false;
- return true;
+ denali_reset_irq(denali);
+
+ for (i = 0; i < size / 4; i++)
+ denali->host_write(denali, addr, *buf32++);
+
+ irq_status = denali_wait_for_irq(denali,
+ INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+ if (!(irq_status & INTR__PROGRAM_COMP))
+ return -EIO;
+
+ return 0;
}
-/* programs the controller to either enable/disable DMA transfers */
-static void denali_enable_dma(struct denali_nand_info *denali, bool en)
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+ size_t size, int page, int raw, int write)
{
- writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
- readl(denali->flash_reg + DMA_ENABLE);
+ if (write)
+ return denali_pio_write(denali, buf, size, page, raw);
+ else
+ return denali_pio_read(denali, buf, size, page, raw);
}
-/* setups the HW to perform the data DMA */
-static void denali_setup_dma(struct denali_nand_info *denali, int op)
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+ size_t size, int page, int raw, int write)
{
- uint32_t mode;
- const int page_count = 1;
- uint64_t addr = (unsigned long)denali->buf.dma_buf;
-
- flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
-
-/* For Denali controller that is 64 bit bus IP core */
-#ifdef CONFIG_SYS_NAND_DENALI_64BIT
- mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
+ dma_addr_t dma_addr;
+ uint32_t irq_mask, irq_status, ecc_err_mask;
+ enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+ int ret = 0;
- /* DMA is a three step process */
+ dma_addr = dma_map_single(denali->dev, buf, size, dir);
+ if (dma_mapping_error(denali->dev, dma_addr)) {
+ dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+ return denali_pio_xfer(denali, buf, size, page, raw, write);
+ }
- /* 1. setup transfer type, interrupt when complete,
- burst len = 64 bytes, the number of pages */
- index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
+ if (write) {
+ /*
+ * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
+ * We can use INTR__DMA_CMD_COMP instead. This flag is asserted
+ * when the page program is completed.
+ */
+ irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+ ecc_err_mask = 0;
+ } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+ irq_mask = INTR__DMA_CMD_COMP;
+ ecc_err_mask = INTR__ECC_UNCOR_ERR;
+ } else {
+ irq_mask = INTR__DMA_CMD_COMP;
+ ecc_err_mask = INTR__ECC_ERR;
+ }
- /* 2. set memory low address bits 31:0 */
- index_addr(denali, mode, addr);
+ iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
- /* 3. set memory high address bits 64:32 */
- index_addr(denali, mode, addr >> 32);
-#else
- mode = MODE_10 | BANK(denali->flash_bank);
+ denali_reset_irq(denali);
+ denali->setup_dma(denali, dma_addr, page, write);
- /* DMA is a four step process */
+ irq_status = denali_wait_for_irq(denali, irq_mask);
+ if (!(irq_status & INTR__DMA_CMD_COMP))
+ ret = -EIO;
+ else if (irq_status & ecc_err_mask)
+ ret = -EBADMSG;
- /* 1. setup transfer type and # of pages */
- index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+ iowrite32(0, denali->reg + DMA_ENABLE);
- /* 2. set memory high address bits 23:8 */
- index_addr(denali, mode | (((addr >> 16) & 0xffff) << 8), 0x2200);
+ dma_unmap_single(denali->dev, dma_addr, size, dir);
- /* 3. set memory low address bits 23:8 */
- index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+ if (irq_status & INTR__ERASED_PAGE)
+ memset(buf, 0xff, size);
- /* 4. interrupt when complete, burst len = 64 bytes */
- index_addr(denali, mode | 0x14000, 0x2400);
-#endif
+ return ret;
}
-/* Common DMA function */
-static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
- uint32_t ops, bool raw_xfer,
- uint32_t irq_mask, int oob_required)
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+ size_t size, int page, int raw, int write)
{
- uint32_t irq_status = 0;
- /* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
- setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
+ iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
+ iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
+ denali->reg + TRANSFER_SPARE_REG);
- /* clear any previous interrupt flags */
- clear_interrupts(denali);
+ if (denali->dma_avail)
+ return denali_dma_xfer(denali, buf, size, page, raw, write);
+ else
+ return denali_pio_xfer(denali, buf, size, page, raw, write);
+}
- /* enable the DMA */
- denali_enable_dma(denali, true);
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int write)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
+ unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ uint8_t *bufpoi = chip->oob_poi;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ int oob_skip = denali->oob_skip_bytes;
+ size_t size = writesize + oobsize;
+ int i, pos, len;
- /* setup the DMA */
- denali_setup_dma(denali, ops);
+ /* BBM at the beginning of the OOB area */
+ chip->cmdfunc(mtd, start_cmd, writesize, page);
+ if (write)
+ chip->write_buf(mtd, bufpoi, oob_skip);
+ else
+ chip->read_buf(mtd, bufpoi, oob_skip);
+ bufpoi += oob_skip;
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
- /* if ECC fault happen, seems we need delay before turning off DMA.
- * If not, the controller will go into non responsive condition */
- if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
- udelay(100);
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
- /* disable the DMA */
- denali_enable_dma(denali, false);
+ chip->cmdfunc(mtd, rnd_cmd, pos, -1);
+ if (write)
+ chip->write_buf(mtd, bufpoi, len);
+ else
+ chip->read_buf(mtd, bufpoi, len);
+ bufpoi += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
+ if (write)
+ chip->write_buf(mtd, bufpoi, len);
+ else
+ chip->read_buf(mtd, bufpoi, len);
+ bufpoi += len;
+ }
+ }
- return irq_status;
+ /* OOB free */
+ len = oobsize - (bufpoi - chip->oob_poi);
+ chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
+ if (write)
+ chip->write_buf(mtd, bufpoi, len);
+ else
+ chip->read_buf(mtd, bufpoi, len);
}
-static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, bool raw_xfer, int oob_required)
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = denali->buf;
+ int oob_skip = denali->oob_skip_bytes;
+ size_t size = writesize + oobsize;
+ int ret, i, pos, len;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+ ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
+ if (ret)
+ return ret;
- denali->status = 0;
+ /* Arrange the buffer for syndrome payload/ecc layout */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
- /* copy buffer into DMA buffer */
- memcpy(denali->buf.dma_buf, buf, mtd->writesize);
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
- /* need extra memcpy for raw transfer */
- if (raw_xfer)
- memcpy(denali->buf.dma_buf + mtd->writesize,
- chip->oob_poi, mtd->oobsize);
+ memcpy(buf, tmp_buf + pos, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(buf, tmp_buf + writesize + oob_skip,
+ len);
+ buf += len;
+ }
+ }
+ }
- /* setting up DMA */
- irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
- irq_mask, oob_required);
+ if (oob_required) {
+ uint8_t *oob = chip->oob_poi;
- /* if timeout happen, error out */
- if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
- debug("DMA timeout for denali write_page\n");
- denali->status = NAND_STATUS_FAIL;
- return -EIO;
- }
+ /* BBM at the beginning of the OOB area */
+ memcpy(oob, tmp_buf + writesize, oob_skip);
+ oob += oob_skip;
- if (irq_status & INTR_STATUS__LOCKED_BLK) {
- debug("Failed as write to locked block\n");
- denali->status = NAND_STATUS_FAIL;
- return -EIO;
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(oob, tmp_buf + pos, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(oob, tmp_buf + writesize + oob_skip,
+ len);
+ oob += len;
+ }
+ }
+
+ /* OOB free */
+ len = oobsize - (oob - chip->oob_poi);
+ memcpy(oob, tmp_buf + size - len, len);
}
+
return 0;
}
-/* NAND core entry points */
-
-/*
- * this is the callback that the NAND core calls to write a page. Since
- * writing a page with ECC or without is similar, all the work is done
- * by write_page above.
- */
-static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required, int page)
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
{
- struct denali_nand_info *denali = mtd_to_denali(mtd);
-
- /*
- * for regular page writes, we let HW handle all the ECC
- * data written to the device.
- */
- if (oob_required)
- /* switch to main + spare access */
- denali_mode_main_spare_access(denali);
- else
- /* switch to main access only */
- denali_mode_main_access(denali);
+ denali_oob_xfer(mtd, chip, page, 0);
- return write_page(mtd, chip, buf, false, oob_required);
+ return 0;
}
-/*
- * This is the callback that the NAND core calls to write a page without ECC.
- * raw access is similar to ECC page writes, so all the work is done in the
- * write_page() function above.
- */
-static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required,
- int page)
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ int status;
- /*
- * for raw page writes, we want to disable ECC and simply write
- * whatever data is in the buffer.
- */
+ denali_reset_irq(denali);
- if (oob_required)
- /* switch to main + spare access */
- denali_mode_main_spare_access(denali);
- else
- /* switch to main access only */
- denali_mode_main_access(denali);
+ denali_oob_xfer(mtd, chip, page, 1);
- return write_page(mtd, chip, buf, true, oob_required);
-}
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
-{
- return write_oob_data(mtd, chip->oob_poi, page);
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
}
-/* raw include ECC value and all the spare area */
-static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ unsigned long uncor_ecc_flags = 0;
+ int stat = 0;
+ int ret;
- uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+ ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+ if (ret && ret != -EBADMSG)
+ return ret;
- if (denali->page != page) {
- debug("Missing NAND_CMD_READ0 command\n");
- return -EIO;
- }
+ if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+ stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+ else if (ret == -EBADMSG)
+ stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
- if (oob_required)
- /* switch to main + spare access */
- denali_mode_main_spare_access(denali);
- else
- /* switch to main access only */
- denali_mode_main_access(denali);
+ if (stat < 0)
+ return stat;
- /* setting up the DMA where ecc_enable is false */
- irq_status = denali_dma_configuration(denali, DENALI_READ, true,
- irq_mask, oob_required);
+ if (uncor_ecc_flags) {
+ ret = denali_read_oob(mtd, chip, page);
+ if (ret)
+ return ret;
- /* if timeout happen, error out */
- if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
- debug("DMA timeout for denali_read_page_raw\n");
- return -EIO;
+ stat = denali_check_erased_page(mtd, chip, buf,
+ uncor_ecc_flags, stat);
}
- /* splitting the content to destination buffer holder */
- memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
- mtd->oobsize);
- memcpy(buf, denali->buf.dma_buf, mtd->writesize);
-
- return 0;
+ return stat;
}
-static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = denali->buf;
+ int oob_skip = denali->oob_skip_bytes;
+ size_t size = writesize + oobsize;
+ int i, pos, len;
- if (denali->page != page) {
- debug("Missing NAND_CMD_READ0 command\n");
- return -EIO;
+ /*
+ * Fill the buffer with 0xff first except the full page transfer.
+ * This simplifies the logic.
+ */
+ if (!buf || !oob_required)
+ memset(tmp_buf, 0xff, size);
+
+ /* Arrange the buffer for syndrome payload/ecc layout */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, buf, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(tmp_buf + writesize + oob_skip, buf,
+ len);
+ buf += len;
+ }
+ }
}
- if (oob_required)
- /* switch to main + spare access */
- denali_mode_main_spare_access(denali);
- else
- /* switch to main access only */
- denali_mode_main_access(denali);
+ if (oob_required) {
+ const uint8_t *oob = chip->oob_poi;
- /* setting up the DMA where ecc_enable is true */
- irq_status = denali_dma_configuration(denali, DENALI_READ, false,
- irq_mask, oob_required);
+ /* BBM at the beginning of the OOB area */
+ memcpy(tmp_buf + writesize, oob, oob_skip);
+ oob += oob_skip;
- memcpy(buf, denali->buf.dma_buf, mtd->writesize);
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
- /* check whether any ECC error */
- if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
- /* is the ECC cause by erase page, check using read_page_raw */
- debug(" Uncorrected ECC detected\n");
- denali_read_page_raw(mtd, chip, buf, oob_required,
- denali->page);
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
- if (is_erased(buf, mtd->writesize) == true &&
- is_erased(chip->oob_poi, mtd->oobsize) == true) {
- debug(" ECC error cause by erased block\n");
- /* false alarm, return the 0xFF */
- } else {
- return -EBADMSG;
+ memcpy(tmp_buf + pos, oob, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(tmp_buf + writesize + oob_skip, oob,
+ len);
+ oob += len;
+ }
}
+
+ /* OOB free */
+ len = oobsize - (oob - chip->oob_poi);
+ memcpy(tmp_buf + size - len, oob, len);
}
- memcpy(buf, denali->buf.dma_buf, mtd->writesize);
- return 0;
+
+ return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
}
-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
{
- read_oob_data(mtd, chip->oob_poi, page);
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
- return 0;
+ return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+ page, 0, 1);
}
-static uint8_t denali_read_byte(struct mtd_info *mtd)
+static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t addr, result;
- addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
- index_addr_read_data(denali, addr | 2, &result);
- return (uint8_t)result & 0xFF;
+ denali->active_bank = chip;
}
-static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t i, addr, result;
-
- /* delay for tR (data transfer from Flash array to data register) */
- udelay(25);
+ uint32_t irq_status;
- /* ensure device completed else additional delay and polling */
- wait_for_irq(denali, INTR_STATUS__INT_ACT);
+ /* R/B# pin transitioned from low to high? */
+ irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
- addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
- for (i = 0; i < len; i++) {
- index_addr_read_data(denali, (uint32_t)addr | 2, &result);
- write_byte_to_buf(denali, result);
- }
- memcpy(buf, denali->buf.buf, len);
+ return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
}
-static void denali_select_chip(struct mtd_info *mtd, int chip)
+static int denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t irq_status;
- denali->flash_bank = chip;
-}
+ denali_reset_irq(denali);
-static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
-{
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- int status = denali->status;
+ denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
+ DENALI_ERASE);
- denali->status = 0;
+ /* wait for erase to complete or failure to occur */
+ irq_status = denali_wait_for_irq(denali,
+ INTR__ERASE_COMP | INTR__ERASE_FAIL);
- return status;
+ return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
}
-static int denali_erase(struct mtd_info *mtd, int page)
+static int __maybe_unused denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ const struct nand_sdr_timings *timings;
+ unsigned long t_clk;
+ int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+ int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+ int addr_2_data_mask;
+ uint32_t tmp;
- uint32_t cmd, irq_status;
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return PTR_ERR(timings);
- clear_interrupts(denali);
+ /* clk_x period in picoseconds */
+ t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+ if (!t_clk)
+ return -EINVAL;
- /* setup page read request for access type */
- cmd = MODE_10 | BANK(denali->flash_bank) | page;
- index_addr(denali, cmd, 0x1);
+ if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
- /* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
- INTR_STATUS__ERASE_FAIL);
+ /* tREA -> ACC_CLKS */
+ acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
+ acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+ tmp = ioread32(denali->reg + ACC_CLKS);
+ tmp &= ~ACC_CLKS__VALUE;
+ tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
+ iowrite32(tmp, denali->reg + ACC_CLKS);
+
+ /* tRWH -> RE_2_WE */
+ re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
+ re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
- if (irq_status & INTR_STATUS__ERASE_FAIL ||
- irq_status & INTR_STATUS__LOCKED_BLK)
- return NAND_STATUS_FAIL;
+ tmp = ioread32(denali->reg + RE_2_WE);
+ tmp &= ~RE_2_WE__VALUE;
+ tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
+ iowrite32(tmp, denali->reg + RE_2_WE);
+
+ /* tRHZ -> RE_2_RE */
+ re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
+ re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+ tmp = ioread32(denali->reg + RE_2_RE);
+ tmp &= ~RE_2_RE__VALUE;
+ tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
+ iowrite32(tmp, denali->reg + RE_2_RE);
+
+ /*
+ * tCCS, tWHR -> WE_2_RE
+ *
+ * With WE_2_RE properly set, the Denali controller automatically takes
+ * care of the delay; the driver need not set NAND_WAIT_TCCS.
+ */
+ we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
+ t_clk);
+ we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+ tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
+ tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+ tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
+ iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+
+ /* tADL -> ADDR_2_DATA */
+
+ /* for older versions, ADDR_2_DATA is only 6 bit wide */
+ addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+ if (denali->revision < 0x0501)
+ addr_2_data_mask >>= 1;
+
+ addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
+ addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+ tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
+ tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+ tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
+ iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+
+ /* tREH, tWH -> RDWR_EN_HI_CNT */
+ rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+ t_clk);
+ rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+ tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
+ tmp &= ~RDWR_EN_HI_CNT__VALUE;
+ tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
+ iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+
+ /* tRP, tWP -> RDWR_EN_LO_CNT */
+ rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
+ t_clk);
+ rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+ t_clk);
+ rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
+ rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+ rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+ tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
+ tmp &= ~RDWR_EN_LO_CNT__VALUE;
+ tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
+ iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+
+ /* tCS, tCEA -> CS_SETUP_CNT */
+ cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
+ (int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
+ 0);
+ cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+ tmp = ioread32(denali->reg + CS_SETUP_CNT);
+ tmp &= ~CS_SETUP_CNT__VALUE;
+ tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
+ iowrite32(tmp, denali->reg + CS_SETUP_CNT);
return 0;
}
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
- int page)
+static void denali_reset_banks(struct denali_nand_info *denali)
{
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t addr;
+ u32 irq_status;
+ int i;
- switch (cmd) {
- case NAND_CMD_PAGEPROG:
- break;
- case NAND_CMD_STATUS:
- addr = MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, addr | 0, cmd);
- break;
- case NAND_CMD_READID:
- case NAND_CMD_PARAM:
- reset_buf(denali);
- /*
- * sometimes ManufactureId read from register is not right
- * e.g. some of Micron MT29F32G08QAA MLC NAND chips
- * So here we send READID cmd to NAND insteand
- */
- addr = MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, addr | 0, cmd);
- index_addr(denali, addr | 1, col & 0xFF);
- if (cmd == NAND_CMD_PARAM)
- udelay(50);
- break;
- case NAND_CMD_RNDOUT:
- addr = MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, addr | 0, cmd);
- index_addr(denali, addr | 1, col & 0xFF);
- index_addr(denali, addr | 1, col >> 8);
- index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
- denali->page = page;
- break;
- case NAND_CMD_RESET:
- reset_bank(denali);
- break;
- case NAND_CMD_READOOB:
- /* TODO: Read OOB data */
- break;
- case NAND_CMD_ERASE1:
- /*
- * supporting block erase only, not multiblock erase as
- * it will cross plane and software need complex calculation
- * to identify the block count for the cross plane
- */
- denali_erase(mtd, page);
- break;
- case NAND_CMD_ERASE2:
- /* nothing to do here as it was done during NAND_CMD_ERASE1 */
- break;
- case NAND_CMD_UNLOCK1:
- addr = MODE_10 | BANK(denali->flash_bank) | page;
- index_addr(denali, addr | 0, DENALI_UNLOCK_START);
- break;
- case NAND_CMD_UNLOCK2:
- addr = MODE_10 | BANK(denali->flash_bank) | page;
- index_addr(denali, addr | 0, DENALI_UNLOCK_END);
- break;
- case NAND_CMD_LOCK:
- addr = MODE_10 | BANK(denali->flash_bank);
- index_addr(denali, addr | 0, DENALI_LOCK);
- break;
- default:
- printf(": unsupported command received 0x%x\n", cmd);
- break;
+ for (i = 0; i < denali->max_banks; i++) {
+ denali->active_bank = i;
+
+ denali_reset_irq(denali);
+
+ iowrite32(DEVICE_RESET__BANK(i),
+ denali->reg + DEVICE_RESET);
+
+ irq_status = denali_wait_for_irq(denali,
+ INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+ if (!(irq_status & INTR__INT_ACT))
+ break;
}
+
+ dev_dbg(denali->dev, "%d chips connected\n", i);
+ denali->max_banks = i;
}
-/* end NAND core entry points */
-/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
/*
@@ -1154,125 +1086,284 @@
* override it.
*/
if (!denali->revision)
- denali->revision = swab16(ioread32(denali->flash_reg + REVISION));
+ denali->revision = swab16(ioread32(denali->reg + REVISION));
/*
* tell driver how many bit controller will skip before writing
* ECC code in OOB. This is normally used for bad block marker
*/
- writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
- denali->flash_reg + SPARE_AREA_SKIP_BYTES);
- detect_max_banks(denali);
- denali_nand_reset(denali);
- writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- writel(CHIP_EN_DONT_CARE__FLAG,
- denali->flash_reg + CHIP_ENABLE_DONT_CARE);
- writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+ denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
+ iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
+ denali_detect_max_banks(denali);
+ iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
+ iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
- /* Should set value for these registers when init */
- writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
- writel(1, denali->flash_reg + ECC_ENABLE);
- denali_nand_timing_set(denali);
- denali_irq_init(denali);
+ iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
}
-static struct nand_ecclayout nand_oob;
+int denali_calc_ecc_bytes(int step_size, int strength)
+{
+ /* BCH code. Denali requires ecc.bytes to be multiple of 2 */
+ return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
+}
+EXPORT_SYMBOL(denali_calc_ecc_bytes);
-int denali_init(struct denali_nand_info *denali)
+static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
+ struct denali_nand_info *denali)
{
- struct mtd_info *mtd = nand_to_mtd(&denali->nand);
+ int oobavail = mtd->oobsize - denali->oob_skip_bytes;
int ret;
- denali_hw_init(denali);
+ /*
+ * If .size and .strength are already set (usually by DT),
+ * check if they are supported by this controller.
+ */
+ if (chip->ecc.size && chip->ecc.strength)
+ return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
+
+ /*
+ * We want .size and .strength closest to the chip's requirement
+ * unless NAND_ECC_MAXIMIZE is requested.
+ */
+ if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+ ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
+ if (!ret)
+ return 0;
+ }
+
+ /* Max ECC strength is the last thing we can do */
+ return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
+}
+
+static struct nand_ecclayout nand_oob;
+
+static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = denali->oob_skip_bytes;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static int denali_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+
+ return 0;
+}
- mtd->name = "denali-nand";
- mtd->owner = THIS_MODULE;
+static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
+ .ecc = denali_ooblayout_ecc,
+ .free = denali_ooblayout_free,
+};
- /* register the driver with the NAND core subsystem */
- denali->nand.select_chip = denali_select_chip;
- denali->nand.cmdfunc = denali_cmdfunc;
- denali->nand.read_byte = denali_read_byte;
- denali->nand.read_buf = denali_read_buf;
- denali->nand.waitfunc = denali_waitfunc;
+static int denali_multidev_fixup(struct denali_nand_info *denali)
+{
+ struct nand_chip *chip = &denali->nand;
+ struct mtd_info *mtd = nand_to_mtd(chip);
/*
- * scan for NAND devices attached to the controller
- * this is the first stage in a two step process to register
- * with the nand subsystem
+ * Support for multi device:
+ * When the IP configuration is x16 capable and two x8 chips are
+ * connected in parallel, DEVICES_CONNECTED should be set to 2.
+ * In this case, the core framework knows nothing about this fact,
+ * so we should tell it the _logical_ pagesize and anything necessary.
*/
- if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
- ret = -ENXIO;
- goto fail;
- }
+ denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
-#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
- /* check whether flash got BBT table (located at end of flash). As we
- * use NAND_BBT_NO_OOB, the BBT page will start with
- * bbt_pattern. We will have mirror pattern too */
- denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
/*
- * We are using main + spare with ECC support. As BBT need ECC support,
- * we need to ensure BBT code don't write to OOB for the BBT pattern.
- * All BBT info will be stored into data area with ECC support.
+ * On some SoCs, DEVICES_CONNECTED is not auto-detected.
+ * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case.
*/
- denali->nand.bbt_options |= NAND_BBT_NO_OOB;
-#endif
+ if (denali->devs_per_cs == 0) {
+ denali->devs_per_cs = 1;
+ iowrite32(1, denali->reg + DEVICES_CONNECTED);
+ }
+
+ if (denali->devs_per_cs == 1)
+ return 0;
+
+ if (denali->devs_per_cs != 2) {
+ dev_err(denali->dev, "unsupported number of devices %d\n",
+ denali->devs_per_cs);
+ return -EINVAL;
+ }
+
+ /* 2 chips in parallel */
+ mtd->size <<= 1;
+ mtd->erasesize <<= 1;
+ mtd->writesize <<= 1;
+ mtd->oobsize <<= 1;
+ chip->chipsize <<= 1;
+ chip->page_shift += 1;
+ chip->phys_erase_shift += 1;
+ chip->bbt_erase_shift += 1;
+ chip->chip_shift += 1;
+ chip->pagemask <<= 1;
+ chip->ecc.size <<= 1;
+ chip->ecc.bytes <<= 1;
+ chip->ecc.strength <<= 1;
+ denali->oob_skip_bytes <<= 1;
+
+ return 0;
+}
+
+int denali_init(struct denali_nand_info *denali)
+{
+ struct nand_chip *chip = &denali->nand;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 features = ioread32(denali->reg + FEATURES);
+ int ret;
+
+ denali_hw_init(denali);
+
+ denali_clear_irq_all(denali);
+
+ denali_reset_banks(denali);
+
+ denali->active_bank = DENALI_INVALID_BANK;
+
+ chip->flash_node = dev_of_offset(denali->dev);
+ /* Fallback to the default name if DT did not give "label" property */
+ if (!mtd->name)
+ mtd->name = "denali-nand";
- denali->nand.ecc.mode = NAND_ECC_HW;
- denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
+ chip->select_chip = denali_select_chip;
+ chip->read_byte = denali_read_byte;
+ chip->write_byte = denali_write_byte;
+ chip->read_word = denali_read_word;
+ chip->cmd_ctrl = denali_cmd_ctrl;
+ chip->dev_ready = denali_dev_ready;
+ chip->waitfunc = denali_waitfunc;
+
+ if (features & FEATURES__INDEX_ADDR) {
+ denali->host_read = denali_indexed_read;
+ denali->host_write = denali_indexed_write;
+ } else {
+ denali->host_read = denali_direct_read;
+ denali->host_write = denali_direct_write;
+ }
+
+ /* clk rate info is needed for setup_data_interface */
+ if (denali->clk_x_rate)
+ chip->setup_data_interface = denali_setup_data_interface;
+
+ ret = nand_scan_ident(mtd, denali->max_banks, NULL);
+ if (ret)
+ return ret;
+
+ if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
+ denali->dma_avail = 1;
+
+ if (denali->dma_avail) {
+ chip->buf_align = 16;
+ if (denali->caps & DENALI_CAP_DMA_64BIT)
+ denali->setup_dma = denali_setup_dma64;
+ else
+ denali->setup_dma = denali_setup_dma32;
+ } else {
+ chip->buf_align = 4;
+ }
+
+ chip->options |= NAND_USE_BOUNCE_BUFFER;
+ chip->bbt_options |= NAND_BBT_USE_FLASH;
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+ denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
/* no subpage writes on denali */
- denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
- /*
- * Tell driver the ecc strength. This register may be already set
- * correctly. So we read this value out.
- */
- denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
- switch (denali->nand.ecc.size) {
- case 512:
- denali->nand.ecc.bytes =
- (denali->nand.ecc.strength * 13 + 15) / 16 * 2;
- break;
- case 1024:
- denali->nand.ecc.bytes =
- (denali->nand.ecc.strength * 14 + 15) / 16 * 2;
- break;
- default:
- pr_err("Unsupported ECC size\n");
- ret = -EINVAL;
- goto fail;
+ ret = denali_ecc_setup(mtd, chip, denali);
+ if (ret) {
+ dev_err(denali->dev, "Failed to setup ECC settings.\n");
+ return ret;
}
+
+ dev_dbg(denali->dev,
+ "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+ chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+ iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
+ FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
+ denali->reg + ECC_CORRECTION);
+ iowrite32(mtd->erasesize / mtd->writesize,
+ denali->reg + PAGES_PER_BLOCK);
+ iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+ denali->reg + DEVICE_WIDTH);
+ iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
+ denali->reg + TWO_ROW_ADDR_CYCLES);
+ iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+ iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+
+ iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+ iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+ /* chip->ecc.steps is set by nand_scan_tail(); not available here */
+ iowrite32(mtd->writesize / chip->ecc.size,
+ denali->reg + CFG_NUM_DATA_BLOCKS);
+
+ mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
+
nand_oob.eccbytes = denali->nand.ecc.bytes;
denali->nand.ecc.layout = &nand_oob;
- writel(mtd->erasesize / mtd->writesize,
- denali->flash_reg + PAGES_PER_BLOCK);
- writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
- denali->flash_reg + DEVICE_WIDTH);
- writel(mtd->writesize,
- denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- writel(mtd->oobsize,
- denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
- writel(1, denali->flash_reg + DEVICES_CONNECTED);
+ if (chip->options & NAND_BUSWIDTH_16) {
+ chip->read_buf = denali_read_buf16;
+ chip->write_buf = denali_write_buf16;
+ } else {
+ chip->read_buf = denali_read_buf;
+ chip->write_buf = denali_write_buf;
+ }
+ chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
+ chip->ecc.read_page = denali_read_page;
+ chip->ecc.read_page_raw = denali_read_page_raw;
+ chip->ecc.write_page = denali_write_page;
+ chip->ecc.write_page_raw = denali_write_page_raw;
+ chip->ecc.read_oob = denali_read_oob;
+ chip->ecc.write_oob = denali_write_oob;
+ chip->erase = denali_erase;
- /* override the default operations */
- denali->nand.ecc.read_page = denali_read_page;
- denali->nand.ecc.read_page_raw = denali_read_page_raw;
- denali->nand.ecc.write_page = denali_write_page;
- denali->nand.ecc.write_page_raw = denali_write_page_raw;
- denali->nand.ecc.read_oob = denali_read_oob;
- denali->nand.ecc.write_oob = denali_write_oob;
+ ret = denali_multidev_fixup(denali);
+ if (ret)
+ return ret;
- if (nand_scan_tail(mtd)) {
- ret = -ENXIO;
- goto fail;
- }
+ /*
+ * This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not
+ * use devm_kmalloc() because the memory allocated by devm_ does not
+ * guarantee DMA-safe alignment.
+ */
+ denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+ if (!denali->buf)
+ return -ENOMEM;
+
+ ret = nand_scan_tail(mtd);
+ if (ret)
+ goto free_buf;
ret = nand_register(0, mtd);
+ if (ret) {
+ dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
+ goto free_buf;
+ }
+ return 0;
+
+free_buf:
+ kfree(denali->buf);
-fail:
return ret;
}
@@ -1289,8 +1380,8 @@
* In the future, these base addresses should be taken from
* Device Tree or platform data.
*/
- denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
- denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+ denali->reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+ denali->host = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
return denali_init(denali);
}
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
index f796f0d..04b4ae2 100644
--- a/drivers/mtd/nand/denali.h
+++ b/drivers/mtd/nand/denali.h
@@ -8,466 +8,319 @@
#ifndef __DENALI_H__
#define __DENALI_H__
+#include <linux/bitops.h>
#include <linux/mtd/nand.h>
+#include <linux/types.h>
#define DEVICE_RESET 0x0
-#define DEVICE_RESET__BANK0 0x0001
-#define DEVICE_RESET__BANK1 0x0002
-#define DEVICE_RESET__BANK2 0x0004
-#define DEVICE_RESET__BANK3 0x0008
+#define DEVICE_RESET__BANK(bank) BIT(bank)
#define TRANSFER_SPARE_REG 0x10
-#define TRANSFER_SPARE_REG__FLAG 0x0001
+#define TRANSFER_SPARE_REG__FLAG BIT(0)
#define LOAD_WAIT_CNT 0x20
-#define LOAD_WAIT_CNT__VALUE 0xffff
+#define LOAD_WAIT_CNT__VALUE GENMASK(15, 0)
#define PROGRAM_WAIT_CNT 0x30
-#define PROGRAM_WAIT_CNT__VALUE 0xffff
+#define PROGRAM_WAIT_CNT__VALUE GENMASK(15, 0)
#define ERASE_WAIT_CNT 0x40
-#define ERASE_WAIT_CNT__VALUE 0xffff
+#define ERASE_WAIT_CNT__VALUE GENMASK(15, 0)
#define INT_MON_CYCCNT 0x50
-#define INT_MON_CYCCNT__VALUE 0xffff
+#define INT_MON_CYCCNT__VALUE GENMASK(15, 0)
#define RB_PIN_ENABLED 0x60
-#define RB_PIN_ENABLED__BANK0 0x0001
-#define RB_PIN_ENABLED__BANK1 0x0002
-#define RB_PIN_ENABLED__BANK2 0x0004
-#define RB_PIN_ENABLED__BANK3 0x0008
+#define RB_PIN_ENABLED__BANK(bank) BIT(bank)
#define MULTIPLANE_OPERATION 0x70
-#define MULTIPLANE_OPERATION__FLAG 0x0001
+#define MULTIPLANE_OPERATION__FLAG BIT(0)
#define MULTIPLANE_READ_ENABLE 0x80
-#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
+#define MULTIPLANE_READ_ENABLE__FLAG BIT(0)
#define COPYBACK_DISABLE 0x90
-#define COPYBACK_DISABLE__FLAG 0x0001
+#define COPYBACK_DISABLE__FLAG BIT(0)
#define CACHE_WRITE_ENABLE 0xa0
-#define CACHE_WRITE_ENABLE__FLAG 0x0001
+#define CACHE_WRITE_ENABLE__FLAG BIT(0)
#define CACHE_READ_ENABLE 0xb0
-#define CACHE_READ_ENABLE__FLAG 0x0001
+#define CACHE_READ_ENABLE__FLAG BIT(0)
#define PREFETCH_MODE 0xc0
-#define PREFETCH_MODE__PREFETCH_EN 0x0001
-#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
+#define PREFETCH_MODE__PREFETCH_EN BIT(0)
+#define PREFETCH_MODE__PREFETCH_BURST_LENGTH GENMASK(15, 4)
#define CHIP_ENABLE_DONT_CARE 0xd0
-#define CHIP_EN_DONT_CARE__FLAG 0x01
+#define CHIP_EN_DONT_CARE__FLAG BIT(0)
#define ECC_ENABLE 0xe0
-#define ECC_ENABLE__FLAG 0x0001
+#define ECC_ENABLE__FLAG BIT(0)
#define GLOBAL_INT_ENABLE 0xf0
-#define GLOBAL_INT_EN_FLAG 0x01
+#define GLOBAL_INT_EN_FLAG BIT(0)
-#define WE_2_RE 0x100
-#define WE_2_RE__VALUE 0x003f
+#define TWHR2_AND_WE_2_RE 0x100
+#define TWHR2_AND_WE_2_RE__WE_2_RE GENMASK(5, 0)
+#define TWHR2_AND_WE_2_RE__TWHR2 GENMASK(13, 8)
-#define ADDR_2_DATA 0x110
-#define ADDR_2_DATA__VALUE 0x003f
+#define TCWAW_AND_ADDR_2_DATA 0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA GENMASK(6, 0)
+#define TCWAW_AND_ADDR_2_DATA__TCWAW GENMASK(13, 8)
#define RE_2_WE 0x120
-#define RE_2_WE__VALUE 0x003f
+#define RE_2_WE__VALUE GENMASK(5, 0)
#define ACC_CLKS 0x130
-#define ACC_CLKS__VALUE 0x000f
+#define ACC_CLKS__VALUE GENMASK(3, 0)
#define NUMBER_OF_PLANES 0x140
-#define NUMBER_OF_PLANES__VALUE 0x0007
+#define NUMBER_OF_PLANES__VALUE GENMASK(2, 0)
#define PAGES_PER_BLOCK 0x150
-#define PAGES_PER_BLOCK__VALUE 0xffff
+#define PAGES_PER_BLOCK__VALUE GENMASK(15, 0)
#define DEVICE_WIDTH 0x160
-#define DEVICE_WIDTH__VALUE 0x0003
+#define DEVICE_WIDTH__VALUE GENMASK(1, 0)
#define DEVICE_MAIN_AREA_SIZE 0x170
-#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
+#define DEVICE_MAIN_AREA_SIZE__VALUE GENMASK(15, 0)
#define DEVICE_SPARE_AREA_SIZE 0x180
-#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
+#define DEVICE_SPARE_AREA_SIZE__VALUE GENMASK(15, 0)
#define TWO_ROW_ADDR_CYCLES 0x190
-#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
+#define TWO_ROW_ADDR_CYCLES__FLAG BIT(0)
#define MULTIPLANE_ADDR_RESTRICT 0x1a0
-#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
+#define MULTIPLANE_ADDR_RESTRICT__FLAG BIT(0)
#define ECC_CORRECTION 0x1b0
-#define ECC_CORRECTION__VALUE 0x001f
+#define ECC_CORRECTION__VALUE GENMASK(4, 0)
+#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16)
#define READ_MODE 0x1c0
-#define READ_MODE__VALUE 0x000f
+#define READ_MODE__VALUE GENMASK(3, 0)
#define WRITE_MODE 0x1d0
-#define WRITE_MODE__VALUE 0x000f
+#define WRITE_MODE__VALUE GENMASK(3, 0)
#define COPYBACK_MODE 0x1e0
-#define COPYBACK_MODE__VALUE 0x000f
+#define COPYBACK_MODE__VALUE GENMASK(3, 0)
#define RDWR_EN_LO_CNT 0x1f0
-#define RDWR_EN_LO_CNT__VALUE 0x001f
+#define RDWR_EN_LO_CNT__VALUE GENMASK(4, 0)
#define RDWR_EN_HI_CNT 0x200
-#define RDWR_EN_HI_CNT__VALUE 0x001f
+#define RDWR_EN_HI_CNT__VALUE GENMASK(4, 0)
#define MAX_RD_DELAY 0x210
-#define MAX_RD_DELAY__VALUE 0x000f
+#define MAX_RD_DELAY__VALUE GENMASK(3, 0)
#define CS_SETUP_CNT 0x220
-#define CS_SETUP_CNT__VALUE 0x001f
+#define CS_SETUP_CNT__VALUE GENMASK(4, 0)
+#define CS_SETUP_CNT__TWB GENMASK(17, 12)
#define SPARE_AREA_SKIP_BYTES 0x230
-#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
+#define SPARE_AREA_SKIP_BYTES__VALUE GENMASK(5, 0)
#define SPARE_AREA_MARKER 0x240
-#define SPARE_AREA_MARKER__VALUE 0xffff
+#define SPARE_AREA_MARKER__VALUE GENMASK(15, 0)
#define DEVICES_CONNECTED 0x250
-#define DEVICES_CONNECTED__VALUE 0x0007
+#define DEVICES_CONNECTED__VALUE GENMASK(2, 0)
#define DIE_MASK 0x260
-#define DIE_MASK__VALUE 0x00ff
+#define DIE_MASK__VALUE GENMASK(7, 0)
#define FIRST_BLOCK_OF_NEXT_PLANE 0x270
-#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
+#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE GENMASK(15, 0)
#define WRITE_PROTECT 0x280
-#define WRITE_PROTECT__FLAG 0x0001
+#define WRITE_PROTECT__FLAG BIT(0)
#define RE_2_RE 0x290
-#define RE_2_RE__VALUE 0x003f
+#define RE_2_RE__VALUE GENMASK(5, 0)
#define MANUFACTURER_ID 0x300
-#define MANUFACTURER_ID__VALUE 0x00ff
+#define MANUFACTURER_ID__VALUE GENMASK(7, 0)
#define DEVICE_ID 0x310
-#define DEVICE_ID__VALUE 0x00ff
+#define DEVICE_ID__VALUE GENMASK(7, 0)
#define DEVICE_PARAM_0 0x320
-#define DEVICE_PARAM_0__VALUE 0x00ff
+#define DEVICE_PARAM_0__VALUE GENMASK(7, 0)
#define DEVICE_PARAM_1 0x330
-#define DEVICE_PARAM_1__VALUE 0x00ff
+#define DEVICE_PARAM_1__VALUE GENMASK(7, 0)
#define DEVICE_PARAM_2 0x340
-#define DEVICE_PARAM_2__VALUE 0x00ff
+#define DEVICE_PARAM_2__VALUE GENMASK(7, 0)
#define LOGICAL_PAGE_DATA_SIZE 0x350
-#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
+#define LOGICAL_PAGE_DATA_SIZE__VALUE GENMASK(15, 0)
#define LOGICAL_PAGE_SPARE_SIZE 0x360
-#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
+#define LOGICAL_PAGE_SPARE_SIZE__VALUE GENMASK(15, 0)
#define REVISION 0x370
-#define REVISION__VALUE 0xffff
+#define REVISION__VALUE GENMASK(15, 0)
#define ONFI_DEVICE_FEATURES 0x380
-#define ONFI_DEVICE_FEATURES__VALUE 0x003f
+#define ONFI_DEVICE_FEATURES__VALUE GENMASK(5, 0)
#define ONFI_OPTIONAL_COMMANDS 0x390
-#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
+#define ONFI_OPTIONAL_COMMANDS__VALUE GENMASK(5, 0)
#define ONFI_TIMING_MODE 0x3a0
-#define ONFI_TIMING_MODE__VALUE 0x003f
+#define ONFI_TIMING_MODE__VALUE GENMASK(5, 0)
#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0
-#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
+#define ONFI_PGM_CACHE_TIMING_MODE__VALUE GENMASK(5, 0)
#define ONFI_DEVICE_NO_OF_LUNS 0x3c0
-#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff
-#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
+#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS GENMASK(7, 0)
+#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE BIT(8)
#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0
-#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE GENMASK(15, 0)
#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0
-#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE GENMASK(15, 0)
-#define FEATURES 0x3f0
-#define FEATURES__N_BANKS 0x0003
-#define FEATURES__ECC_MAX_ERR 0x003c
-#define FEATURES__DMA 0x0040
-#define FEATURES__CMD_DMA 0x0080
-#define FEATURES__PARTITION 0x0100
-#define FEATURES__XDMA_SIDEBAND 0x0200
-#define FEATURES__GPREG 0x0400
-#define FEATURES__INDEX_ADDR 0x0800
+#define FEATURES 0x3f0
+#define FEATURES__N_BANKS GENMASK(1, 0)
+#define FEATURES__ECC_MAX_ERR GENMASK(5, 2)
+#define FEATURES__DMA BIT(6)
+#define FEATURES__CMD_DMA BIT(7)
+#define FEATURES__PARTITION BIT(8)
+#define FEATURES__XDMA_SIDEBAND BIT(9)
+#define FEATURES__GPREG BIT(10)
+#define FEATURES__INDEX_ADDR BIT(11)
#define TRANSFER_MODE 0x400
-#define TRANSFER_MODE__VALUE 0x0003
+#define TRANSFER_MODE__VALUE GENMASK(1, 0)
-#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50))
-#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
+#define INTR_STATUS(bank) (0x410 + (bank) * 0x50)
+#define INTR_EN(bank) (0x420 + (bank) * 0x50)
+/* bit[1:0] is used differently depending on IP version */
+#define INTR__ECC_UNCOR_ERR BIT(0) /* new IP */
+#define INTR__ECC_TRANSACTION_DONE BIT(0) /* old IP */
+#define INTR__ECC_ERR BIT(1) /* old IP */
+#define INTR__DMA_CMD_COMP BIT(2)
+#define INTR__TIME_OUT BIT(3)
+#define INTR__PROGRAM_FAIL BIT(4)
+#define INTR__ERASE_FAIL BIT(5)
+#define INTR__LOAD_COMP BIT(6)
+#define INTR__PROGRAM_COMP BIT(7)
+#define INTR__ERASE_COMP BIT(8)
+#define INTR__PIPE_CPYBCK_CMD_COMP BIT(9)
+#define INTR__LOCKED_BLK BIT(10)
+#define INTR__UNSUP_CMD BIT(11)
+#define INTR__INT_ACT BIT(12)
+#define INTR__RST_COMP BIT(13)
+#define INTR__PIPE_CMD_ERR BIT(14)
+#define INTR__PAGE_XFER_INC BIT(15)
+#define INTR__ERASED_PAGE BIT(16)
-/*
- * Some versions of the IP have the ECC fixup handled in hardware. In this
- * configuration we only get interrupted when the error is uncorrectable.
- * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
- * old IP.
- */
-#define INTR_STATUS__ECC_UNCOR_ERR 0x0001
-#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001
-#define INTR_STATUS__ECC_ERR 0x0002
-#define INTR_STATUS__DMA_CMD_COMP 0x0004
-#define INTR_STATUS__TIME_OUT 0x0008
-#define INTR_STATUS__PROGRAM_FAIL 0x0010
-#define INTR_STATUS__ERASE_FAIL 0x0020
-#define INTR_STATUS__LOAD_COMP 0x0040
-#define INTR_STATUS__PROGRAM_COMP 0x0080
-#define INTR_STATUS__ERASE_COMP 0x0100
-#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200
-#define INTR_STATUS__LOCKED_BLK 0x0400
-#define INTR_STATUS__UNSUP_CMD 0x0800
-#define INTR_STATUS__INT_ACT 0x1000
-#define INTR_STATUS__RST_COMP 0x2000
-#define INTR_STATUS__PIPE_CMD_ERR 0x4000
-#define INTR_STATUS__PAGE_XFER_INC 0x8000
-
-#define INTR_EN__ECC_TRANSACTION_DONE 0x0001
-#define INTR_EN__ECC_ERR 0x0002
-#define INTR_EN__DMA_CMD_COMP 0x0004
-#define INTR_EN__TIME_OUT 0x0008
-#define INTR_EN__PROGRAM_FAIL 0x0010
-#define INTR_EN__ERASE_FAIL 0x0020
-#define INTR_EN__LOAD_COMP 0x0040
-#define INTR_EN__PROGRAM_COMP 0x0080
-#define INTR_EN__ERASE_COMP 0x0100
-#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200
-#define INTR_EN__LOCKED_BLK 0x0400
-#define INTR_EN__UNSUP_CMD 0x0800
-#define INTR_EN__INT_ACT 0x1000
-#define INTR_EN__RST_COMP 0x2000
-#define INTR_EN__PIPE_CMD_ERR 0x4000
-#define INTR_EN__PAGE_XFER_INC 0x8000
-
-#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50))
-#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50))
-#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
-
-#define DATA_INTR 0x550
-#define DATA_INTR__WRITE_SPACE_AV 0x0001
-#define DATA_INTR__READ_DATA_AV 0x0002
-
-#define DATA_INTR_EN 0x560
-#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
-#define DATA_INTR_EN__READ_DATA_AV 0x0002
-
-#define GPREG_0 0x570
-#define GPREG_0__VALUE 0xffff
-
-#define GPREG_1 0x580
-#define GPREG_1__VALUE 0xffff
-
-#define GPREG_2 0x590
-#define GPREG_2__VALUE 0xffff
-
-#define GPREG_3 0x5a0
-#define GPREG_3__VALUE 0xffff
+#define PAGE_CNT(bank) (0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank) (0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank) (0x450 + (bank) * 0x50)
#define ECC_THRESHOLD 0x600
-#define ECC_THRESHOLD__VALUE 0x03ff
+#define ECC_THRESHOLD__VALUE GENMASK(9, 0)
#define ECC_ERROR_BLOCK_ADDRESS 0x610
-#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
+#define ECC_ERROR_BLOCK_ADDRESS__VALUE GENMASK(15, 0)
#define ECC_ERROR_PAGE_ADDRESS 0x620
-#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff
-#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
+#define ECC_ERROR_PAGE_ADDRESS__VALUE GENMASK(11, 0)
+#define ECC_ERROR_PAGE_ADDRESS__BANK GENMASK(15, 12)
#define ECC_ERROR_ADDRESS 0x630
-#define ECC_ERROR_ADDRESS__OFFSET 0x0fff
-#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
+#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0)
+#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12)
#define ERR_CORRECTION_INFO 0x640
-#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff
-#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00
-#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
-#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0)
+#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8)
+#define ERR_CORRECTION_INFO__UNCOR BIT(14)
+#define ERR_CORRECTION_INFO__LAST_ERR BIT(15)
+
+#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10)
+#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8)
+#define ECC_COR_INFO__MAX_ERRORS GENMASK(6, 0)
+#define ECC_COR_INFO__UNCOR_ERR BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE 0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE 0x6c0
+
+#define CFG_NUM_DATA_BLOCKS 0x6d0
+
+#define CFG_META_DATA_SIZE 0x6e0
#define DMA_ENABLE 0x700
-#define DMA_ENABLE__FLAG 0x0001
+#define DMA_ENABLE__FLAG BIT(0)
#define IGNORE_ECC_DONE 0x710
-#define IGNORE_ECC_DONE__FLAG 0x0001
+#define IGNORE_ECC_DONE__FLAG BIT(0)
#define DMA_INTR 0x720
-#define DMA_INTR__TARGET_ERROR 0x0001
-#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
-#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
-#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
-#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
-#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
-
#define DMA_INTR_EN 0x730
-#define DMA_INTR_EN__TARGET_ERROR 0x0001
-#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
-#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
-#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
-#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
-#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+#define DMA_INTR__TARGET_ERROR BIT(0)
+#define DMA_INTR__DESC_COMP_CHANNEL0 BIT(1)
+#define DMA_INTR__DESC_COMP_CHANNEL1 BIT(2)
+#define DMA_INTR__DESC_COMP_CHANNEL2 BIT(3)
+#define DMA_INTR__DESC_COMP_CHANNEL3 BIT(4)
+#define DMA_INTR__MEMCOPY_DESC_COMP BIT(5)
#define TARGET_ERR_ADDR_LO 0x740
-#define TARGET_ERR_ADDR_LO__VALUE 0xffff
+#define TARGET_ERR_ADDR_LO__VALUE GENMASK(15, 0)
#define TARGET_ERR_ADDR_HI 0x750
-#define TARGET_ERR_ADDR_HI__VALUE 0xffff
+#define TARGET_ERR_ADDR_HI__VALUE GENMASK(15, 0)
#define CHNL_ACTIVE 0x760
-#define CHNL_ACTIVE__CHANNEL0 0x0001
-#define CHNL_ACTIVE__CHANNEL1 0x0002
-#define CHNL_ACTIVE__CHANNEL2 0x0004
-#define CHNL_ACTIVE__CHANNEL3 0x0008
-
-#define ACTIVE_SRC_ID 0x800
-#define ACTIVE_SRC_ID__VALUE 0x00ff
+#define CHNL_ACTIVE__CHANNEL0 BIT(0)
+#define CHNL_ACTIVE__CHANNEL1 BIT(1)
+#define CHNL_ACTIVE__CHANNEL2 BIT(2)
+#define CHNL_ACTIVE__CHANNEL3 BIT(3)
-#define PTN_INTR 0x810
-#define PTN_INTR__CONFIG_ERROR 0x0001
-#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
-#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
-#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
-#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
-#define PTN_INTR__REG_ACCESS_ERROR 0x0020
-
-#define PTN_INTR_EN 0x820
-#define PTN_INTR_EN__CONFIG_ERROR 0x0001
-#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
-#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
-#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
-#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
-#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
-
-#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40))
-#define PERM_SRC_ID__SRCID 0x00ff
-#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800
-#define PERM_SRC_ID__WRITE_ACTIVE 0x2000
-#define PERM_SRC_ID__READ_ACTIVE 0x4000
-#define PERM_SRC_ID__PARTITION_VALID 0x8000
-
-#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40))
-#define MIN_BLK_ADDR__VALUE 0xffff
-
-#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40))
-#define MAX_BLK_ADDR__VALUE 0xffff
-
-#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40))
-#define MIN_MAX_BANK__MIN_VALUE 0x0003
-#define MIN_MAX_BANK__MAX_VALUE 0x000c
-
-/* lld.h */
-#define GOOD_BLOCK 0
-#define DEFECTIVE_BLOCK 1
-#define READ_ERROR 2
-
-#define CLK_X 5
-#define CLK_MULTI 4
-
-/* spectraswconfig.h */
-#define CMD_DMA 0
-
-#define SPECTRA_PARTITION_ID 0
-/**** Block Table and Reserved Block Parameters *****/
-#define SPECTRA_START_BLOCK 3
-#define NUM_FREE_BLOCKS_GATE 30
-
-/* KBV - Updated to LNW scratch register address */
-#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
-#define SCRATCH_REG_SIZE 64
-
-#define GLOB_HWCTL_DEFAULT_BLKS 2048
-
-#define CUSTOM_CONF_PARAMS 0
-
-#define INDEX_CTRL_REG 0x0
-#define INDEX_DATA_REG 0x10
-
-#define MODE_00 0x00000000
-#define MODE_01 0x04000000
-#define MODE_10 0x08000000
-#define MODE_11 0x0C000000
-
-
-#define DATA_TRANSFER_MODE 0
-#define PROTECTION_PER_BLOCK 1
-#define LOAD_WAIT_COUNT 2
-#define PROGRAM_WAIT_COUNT 3
-#define ERASE_WAIT_COUNT 4
-#define INT_MONITOR_CYCLE_COUNT 5
-#define READ_BUSY_PIN_ENABLED 6
-#define MULTIPLANE_OPERATION_SUPPORT 7
-#define PRE_FETCH_MODE 8
-#define CE_DONT_CARE_SUPPORT 9
-#define COPYBACK_SUPPORT 10
-#define CACHE_WRITE_SUPPORT 11
-#define CACHE_READ_SUPPORT 12
-#define NUM_PAGES_IN_BLOCK 13
-#define ECC_ENABLE_SELECT 14
-#define WRITE_ENABLE_2_READ_ENABLE 15
-#define ADDRESS_2_DATA 16
-#define READ_ENABLE_2_WRITE_ENABLE 17
-#define TWO_ROW_ADDRESS_CYCLES 18
-#define MULTIPLANE_ADDRESS_RESTRICT 19
-#define ACC_CLOCKS 20
-#define READ_WRITE_ENABLE_LOW_COUNT 21
-#define READ_WRITE_ENABLE_HIGH_COUNT 22
-
-#define ECC_SECTOR_SIZE 512
-
-#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
-
-struct nand_buf {
- int head;
- int tail;
- /* seprating dma_buf as buf can be used for status read purpose */
- uint8_t dma_buf[DENALI_BUF_SIZE] __aligned(64);
- uint8_t buf[DENALI_BUF_SIZE];
-};
-
-#define INTEL_CE4100 1
-#define INTEL_MRST 2
-#define DT 3
+struct udevice;
struct denali_nand_info {
struct nand_chip nand;
unsigned long clk_x_rate; /* bus interface clock rate */
- int flash_bank; /* currently selected chip */
- int status;
- int platform;
- struct nand_buf buf;
- struct device *dev;
- int total_used_banks;
- uint32_t block; /* stored for future use */
+ int active_bank; /* currently selected bank */
+ struct udevice *dev;
uint32_t page;
- void __iomem *flash_reg; /* Mapped io reg base address */
- void __iomem *flash_mem; /* Mapped io reg base address */
-
- /* elements used by ISR */
- /*struct completion complete;*/
-
- uint32_t irq_status;
- int irq_debug_array[32];
- int idx;
+ void __iomem *reg; /* Register Interface */
+ void __iomem *host; /* Host Data/Command Interface */
+ u32 irq_mask; /* interrupts we are waiting for */
+ u32 irq_status; /* interrupts that have happened */
int irq;
-
- uint32_t devnum; /* represent how many nands connected */
- uint32_t fwblks; /* represent how many blocks FW used */
- uint32_t totalblks;
- uint32_t blksperchip;
- uint32_t bbtskipbytes;
- uint32_t max_banks;
- unsigned int revision;
- unsigned int caps;
+ void *buf; /* for syndrome layout conversion */
+ dma_addr_t dma_addr;
+ int dma_avail; /* can support DMA? */
+ int devs_per_cs; /* devices connected in parallel */
+ int oob_skip_bytes; /* number of bytes reserved for BBM */
+ int max_banks;
+ unsigned int revision; /* IP revision */
+ unsigned int caps; /* IP capability (or quirk) */
+ const struct nand_ecc_caps *ecc_caps;
+ u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
+ void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
+ void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
+ int page, int write);
};
#define DENALI_CAP_HW_ECC_FIXUP BIT(0)
#define DENALI_CAP_DMA_64BIT BIT(1)
+int denali_calc_ecc_bytes(int step_size, int strength);
int denali_init(struct denali_nand_info *denali);
#endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c
index 805c066..9d6cb09 100644
--- a/drivers/mtd/nand/denali_dt.c
+++ b/drivers/mtd/nand/denali_dt.c
@@ -16,21 +16,31 @@
struct denali_dt_data {
unsigned int revision;
unsigned int caps;
+ const struct nand_ecc_caps *ecc_caps;
};
+NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes,
+ 512, 8, 15);
static const struct denali_dt_data denali_socfpga_data = {
.caps = DENALI_CAP_HW_ECC_FIXUP,
+ .ecc_caps = &denali_socfpga_ecc_caps,
};
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes,
+ 1024, 8, 16, 24);
static const struct denali_dt_data denali_uniphier_v5a_data = {
.caps = DENALI_CAP_HW_ECC_FIXUP |
DENALI_CAP_DMA_64BIT,
+ .ecc_caps = &denali_uniphier_v5a_ecc_caps,
};
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes,
+ 1024, 8, 16);
static const struct denali_dt_data denali_uniphier_v5b_data = {
.revision = 0x0501,
.caps = DENALI_CAP_HW_ECC_FIXUP |
DENALI_CAP_DMA_64BIT,
+ .ecc_caps = &denali_uniphier_v5b_ecc_caps,
};
static const struct udevice_id denali_nand_dt_ids[] = {
@@ -61,19 +71,22 @@
if (data) {
denali->revision = data->revision;
denali->caps = data->caps;
+ denali->ecc_caps = data->ecc_caps;
}
+ denali->dev = dev;
+
ret = dev_read_resource_byname(dev, "denali_reg", &res);
if (ret)
return ret;
- denali->flash_reg = devm_ioremap(dev, res.start, resource_size(&res));
+ denali->reg = devm_ioremap(dev, res.start, resource_size(&res));
ret = dev_read_resource_byname(dev, "nand_data", &res);
if (ret)
return ret;
- denali->flash_mem = devm_ioremap(dev, res.start, resource_size(&res));
+ denali->host = devm_ioremap(dev, res.start, resource_size(&res));
ret = clk_get_by_index(dev, 0, &clk);
if (ret)
diff --git a/drivers/mtd/nand/denali_spl.c b/drivers/mtd/nand/denali_spl.c
index c693032..3cb9849 100644
--- a/drivers/mtd/nand/denali_spl.c
+++ b/drivers/mtd/nand/denali_spl.c
@@ -11,6 +11,12 @@
#include <linux/mtd/nand.h>
#include "denali.h"
+#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
+#define DENALI_MAP10 (2 << 26) /* high-level control plane */
+
+#define INDEX_CTRL_REG 0x0
+#define INDEX_DATA_REG 0x10
+
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define PIPELINE_ACCESS 0x2000
@@ -39,7 +45,7 @@
do {
intr_status = readl(denali_flash_reg + INTR_STATUS(flash_bank));
- if (intr_status & INTR_STATUS__ECC_UNCOR_ERR) {
+ if (intr_status & INTR__ECC_UNCOR_ERR) {
debug("Uncorrected ECC detected\n");
return -EBADMSG;
}
@@ -106,16 +112,16 @@
addr = BANK(flash_bank) | page;
/* setup the acccess type */
- cmd = MODE_10 | addr;
+ cmd = DENALI_MAP10 | addr;
index_addr(cmd, access_type);
/* setup the pipeline command */
index_addr(cmd, PIPELINE_ACCESS | page_count);
- cmd = MODE_01 | addr;
+ cmd = DENALI_MAP01 | addr;
writel(cmd, denali_flash_mem + INDEX_CTRL_REG);
- return wait_for_irq(INTR_STATUS__LOAD_COMP);
+ return wait_for_irq(INTR__LOAD_COMP);
}
static int nand_read_oob(void *buf, int page)