Initial revision
diff --git a/common/cmd_i2c.c b/common/cmd_i2c.c
new file mode 100644
index 0000000..fe5841e
--- /dev/null
+++ b/common/cmd_i2c.c
@@ -0,0 +1,868 @@
+/*
+ * (C) Copyright 2001
+ * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+/*
+ * I2C Functions similar to the standard memory functions.
+ *
+ * There are several parameters in many of the commands that bear further
+ * explanations:
+ *
+ * Two of the commands (imm and imw) take a byte/word/long modifier
+ * (e.g. imm.w specifies the word-length modifier).  This was done to
+ * allow manipulating word-length registers.  It was not done on any other
+ * commands because it was not deemed useful.
+ *
+ * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
+ *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
+ *   the address is the upper seven bits and the LSB is the "read/write"
+ *   bit.  Note that the {i2c_chip} address specified on the command
+ *   line is not shifted up: e.g. a typical EEPROM memory chip may have
+ *   an I2C address of 0x50, but the data put on the bus will be 0xA0
+ *   for write and 0xA1 for read.  This "non shifted" address notation
+ *   matches at least half of the data sheets :-/.
+ *
+ * {addr} is the address (or offset) within the chip.  Small memory
+ *   chips have 8 bit addresses.  Large memory chips have 16 bit
+ *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
+ *   Many non-memory chips have multiple registers and {addr} is used
+ *   as the register index.  Some non-memory chips have only one register
+ *   and therefore don't need any {addr} parameter.
+ *
+ *   The default {addr} parameter is one byte (.1) which works well for
+ *   memories and registers with 8 bits of address space.
+ *
+ *   You can specify the length of the {addr} field with the optional .0,
+ *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
+ *   manipulating a single register device which doesn't use an address
+ *   field, use "0.0" for the address and the ".0" length field will
+ *   suppress the address in the I2C data stream.  This also works for
+ *   successive reads using the I2C auto-incrementing memory pointer.
+ *
+ *   If you are manipulating a large memory with 2-byte addresses, use
+ *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
+ *
+ *   Then there are the unfortunate memory chips that spill the most
+ *   significant 1, 2, or 3 bits of address into the chip address byte.
+ *   This effectively makes one chip (logically) look like 2, 4, or
+ *   8 chips.  This is handled (awkwardly) by #defining
+ *   CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
+ *   {addr} field (since .1 is the default, it doesn't actually have to
+ *   be specified).  Examples: given a memory chip at I2C chip address
+ *   0x50, the following would happen...
+ *     imd 50 0 10      display 16 bytes starting at 0x000
+ *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
+ *     imd 50 100 10    display 16 bytes starting at 0x100
+ *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
+ *     imd 50 210 10    display 16 bytes starting at 0x210
+ *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
+ *   This is awfully ugly.  It would be nice if someone would think up
+ *   a better way of handling this.
+ *
+ * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
+ */
+
+#include <common.h>
+#include <command.h>
+#include <cmd_i2c.h>
+#include <i2c.h>
+#include <asm/byteorder.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_I2C)
+
+
+/* Display values from last command.
+ * Memory modify remembered values are different from display memory.
+ */
+static uchar	i2c_dp_last_chip;
+static uint	i2c_dp_last_addr;
+static uint	i2c_dp_last_alen;
+static uint	i2c_dp_last_length = 0x10;
+
+static uchar	i2c_mm_last_chip;
+static uint	i2c_mm_last_addr;
+static uint	i2c_mm_last_alen;
+
+#if defined(CFG_I2C_NOPROBES)
+static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
+#endif
+
+static int
+mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
+extern int cmd_get_data_size(char* arg, int default_size);
+
+/*
+ * Syntax:
+ *	imd {i2c_chip} {addr}{.0, .1, .2} {len}
+ */
+#define DISP_LINE_LEN	16
+
+int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	u_char	chip;
+	uint	addr, alen, length;
+	int	j, nbytes, linebytes;
+
+	/* We use the last specified parameters, unless new ones are
+	 * entered.
+	 */
+	chip   = i2c_dp_last_chip;
+	addr   = i2c_dp_last_addr;
+	alen   = i2c_dp_last_alen;
+	length = i2c_dp_last_length;
+
+	if (argc < 3) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+
+	if ((flag & CMD_FLAG_REPEAT) == 0) {
+		/*
+		 * New command specified.
+		 */
+		alen = 1;
+
+		/*
+		 * I2C chip address
+		 */
+		chip = simple_strtoul(argv[1], NULL, 16);
+
+		/*
+		 * I2C data address within the chip.  This can be 1 or
+		 * 2 bytes long.  Some day it might be 3 bytes long :-).
+		 */
+		addr = simple_strtoul(argv[2], NULL, 16);
+		alen = 1;
+		for(j = 0; j < 8; j++) {
+			if (argv[2][j] == '.') {
+				alen = argv[2][j+1] - '0';
+				if (alen > 4) {
+					printf ("Usage:\n%s\n", cmdtp->usage);
+					return 1;
+				}
+				break;
+			} else if (argv[2][j] == '\0') {
+				break;
+			}
+		}
+
+		/*
+		 * If another parameter, it is the length to display.
+		 * Length is the number of objects, not number of bytes.
+		 */
+		if (argc > 3)
+			length = simple_strtoul(argv[3], NULL, 16);
+	}
+
+	/*
+	 * Print the lines.
+	 *
+	 * We buffer all read data, so we can make sure data is read only
+	 * once.
+	 */
+	nbytes = length;
+	do {
+		unsigned char	linebuf[DISP_LINE_LEN];
+		unsigned char	*cp;
+
+		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
+
+		if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
+			printf("Error reading the chip.\n");
+		} else {
+			printf("%04x:", addr);
+			cp = linebuf;
+			for (j=0; j<linebytes; j++) {
+				printf(" %02x", *cp++);
+				addr++;
+			}
+			printf("    ");
+			cp = linebuf;
+			for (j=0; j<linebytes; j++) {
+				if ((*cp < 0x20) || (*cp > 0x7e))
+					printf(".");
+				else
+					printf("%c", *cp);
+				cp++;
+			}
+			printf("\n");
+		}
+		nbytes -= linebytes;
+	} while (nbytes > 0);
+
+	i2c_dp_last_chip   = chip;
+	i2c_dp_last_addr   = addr;
+	i2c_dp_last_alen   = alen;
+	i2c_dp_last_length = length;
+
+	return 0;
+}
+
+int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
+}
+
+
+int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
+}
+
+/* Write (fill) memory
+ *
+ * Syntax:
+ *	imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
+ */
+int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	uchar	chip;
+	ulong	addr;
+	uint	alen;
+	uchar	byte;
+	int	count;
+	int	j;
+
+	if ((argc < 4) || (argc > 5)) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+
+	/*
+ 	 * Chip is always specified.
+ 	 */
+	chip = simple_strtoul(argv[1], NULL, 16);
+
+	/*
+	 * Address is always specified.
+	 */
+	addr = simple_strtoul(argv[2], NULL, 16);
+	alen = 1;
+	for(j = 0; j < 8; j++) {
+		if (argv[2][j] == '.') {
+			alen = argv[2][j+1] - '0';
+			if(alen > 4) {
+				printf ("Usage:\n%s\n", cmdtp->usage);
+				return 1;
+			}
+			break;
+		} else if (argv[2][j] == '\0') {
+			break;
+		}
+	}
+
+	/*
+	 * Value to write is always specified.
+	 */
+	byte = simple_strtoul(argv[3], NULL, 16);
+
+	/*
+	 * Optional count
+	 */
+	if(argc == 5) {
+		count = simple_strtoul(argv[4], NULL, 16);
+	} else {
+		count = 1;
+	}
+
+	while (count-- > 0) {
+		if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
+			printf("Error writing the chip.\n");
+		}
+		/*
+		 * Wait for the write to complete.  The write can take
+		 * up to 10mSec (we allow a little more time).
+		 *
+		 * On some chips, while the write is in progress, the
+		 * chip doesn't respond.  This apparently isn't a
+		 * universal feature so we don't take advantage of it.
+		 */
+		udelay(11000);
+#if 0
+		for(timeout = 0; timeout < 10; timeout++) {
+			udelay(2000);
+			if(i2c_probe(chip) == 0)
+				break;
+		}
+#endif
+	}
+
+	return (0);
+}
+
+
+/* Calculate a CRC on memory
+ *
+ * Syntax:
+ *	icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
+ */
+int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	uchar	chip;
+	ulong	addr;
+	uint	alen;
+	int	count;
+	uchar	byte;
+	ulong	crc;
+	ulong	err;
+	int	j;
+
+	if (argc < 4) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+
+	/*
+ 	 * Chip is always specified.
+ 	 */
+	chip = simple_strtoul(argv[1], NULL, 16);
+
+	/*
+	 * Address is always specified.
+	 */
+	addr = simple_strtoul(argv[2], NULL, 16);
+	alen = 1;
+	for(j = 0; j < 8; j++) {
+		if (argv[2][j] == '.') {
+			alen = argv[2][j+1] - '0';
+			if(alen > 4) {
+				printf ("Usage:\n%s\n", cmdtp->usage);
+				return 1;
+			}
+			break;
+		} else if (argv[2][j] == '\0') {
+			break;
+		}
+	}
+
+	/*
+	 * Count is always specified
+	 */
+	count = simple_strtoul(argv[3], NULL, 16);
+
+	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
+	/*
+	 * CRC a byte at a time.  This is going to be slooow, but hey, the
+	 * memories are small and slow too so hopefully nobody notices.
+	 */
+	crc = 0;
+	err = 0;
+	while(count-- > 0) {
+		if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
+			err++;
+		}
+		crc = crc32 (crc, &byte, 1);
+		addr++;
+	}
+	if(err > 0)
+	{
+		printf("Error reading the chip,\n");
+	} else {
+		printf ("%08lx\n", crc);
+	}
+
+	return 0;
+}
+
+
+/* Modify memory.
+ *
+ * Syntax:
+ *	imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
+ *	inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
+ */
+
+static int
+mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
+{
+	uchar	chip;
+	ulong	addr;
+	uint	alen;
+	ulong	data;
+	int	size = 1;
+	int	nbytes;
+	int	j;
+	extern char console_buffer[];
+
+	if (argc != 3) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+
+#ifdef CONFIG_BOOT_RETRY_TIME
+	reset_cmd_timeout();	/* got a good command to get here */
+#endif
+	/*
+	 * We use the last specified parameters, unless new ones are
+	 * entered.
+	 */
+	chip = i2c_mm_last_chip;
+	addr = i2c_mm_last_addr;
+	alen = i2c_mm_last_alen;
+
+	if ((flag & CMD_FLAG_REPEAT) == 0) {
+		/*
+		 * New command specified.  Check for a size specification.
+		 * Defaults to byte if no or incorrect specification.
+		 */
+		size = cmd_get_data_size(argv[0], 1);
+
+		/*
+	 	 * Chip is always specified.
+	 	 */
+		chip = simple_strtoul(argv[1], NULL, 16);
+
+		/*
+		 * Address is always specified.
+		 */
+		addr = simple_strtoul(argv[2], NULL, 16);
+		alen = 1;
+		for(j = 0; j < 8; j++) {
+			if (argv[2][j] == '.') {
+				alen = argv[2][j+1] - '0';
+				if(alen > 4) {
+					printf ("Usage:\n%s\n", cmdtp->usage);
+					return 1;
+				}
+				break;
+			} else if (argv[2][j] == '\0') {
+				break;
+			}
+		}
+	}
+
+	/*
+	 * Print the address, followed by value.  Then accept input for
+	 * the next value.  A non-converted value exits.
+	 */
+	do {
+		printf("%08lx:", addr);
+		if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
+			printf("\nError reading the chip,\n");
+		} else {
+			data = cpu_to_be32(data);
+			if(size == 1) {
+				printf(" %02lx", (data >> 24) & 0x000000FF);
+			} else if(size == 2) {
+				printf(" %04lx", (data >> 16) & 0x0000FFFF);
+			} else {
+				printf(" %08lx", data);
+			}
+		}
+
+		nbytes = readline (" ? ");
+		if (nbytes == 0) {
+			/*
+			 * <CR> pressed as only input, don't modify current
+			 * location and move to next.
+			 */
+			if (incrflag)
+				addr += size;
+			nbytes = size;
+#ifdef CONFIG_BOOT_RETRY_TIME
+			reset_cmd_timeout(); /* good enough to not time out */
+#endif
+		}
+#ifdef CONFIG_BOOT_RETRY_TIME
+		else if (nbytes == -2) {
+			break;	/* timed out, exit the command	*/
+		}
+#endif
+		else {
+			char *endp;
+
+			data = simple_strtoul(console_buffer, &endp, 16);
+			if(size == 1) {
+				data = data << 24;
+			} else if(size == 2) {
+				data = data << 16;
+			}
+			data = be32_to_cpu(data);
+			nbytes = endp - console_buffer;
+			if (nbytes) {
+#ifdef CONFIG_BOOT_RETRY_TIME
+				/*
+				 * good enough to not time out
+				 */
+				reset_cmd_timeout();
+#endif
+				if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
+					printf("Error writing the chip.\n");
+				}
+				if (incrflag)
+					addr += size;
+			}
+		}
+	} while (nbytes);
+
+	chip = i2c_mm_last_chip;
+	addr = i2c_mm_last_addr;
+	alen = i2c_mm_last_alen;
+
+	return 0;
+}
+
+/*
+ * Syntax:
+ *	iprobe {addr}{.0, .1, .2}
+ */
+int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	int j;
+#if defined(CFG_I2C_NOPROBES)
+	int k, skip;
+#endif
+
+	printf("Valid chip addresses:");
+	for(j = 0; j < 128; j++) {
+#if defined(CFG_I2C_NOPROBES)
+		skip = 0;
+		for (k = 0; k < sizeof(i2c_no_probes); k++){
+			if (j == i2c_no_probes[k]){
+				skip = 1;
+				break;
+			}
+		}
+		if (skip)
+			continue;
+#endif
+		if(i2c_probe(j) == 0) {
+			printf(" %02X", j);
+		}
+	}
+	printf("\n");
+
+#if defined(CFG_I2C_NOPROBES)
+	puts ("Excluded chip addresses:");
+	for( k = 0; k < sizeof(i2c_no_probes); k++ )
+		printf(" %02X", i2c_no_probes[k] );
+	puts ("\n");
+#endif
+
+	return 0;
+}
+
+
+/*
+ * Syntax:
+ *	iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
+ *	{length} - Number of bytes to read
+ *	{delay}  - A DECIMAL number and defaults to 1000 uSec
+ */
+int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	u_char	chip;
+	ulong	alen;
+	uint	addr;
+	uint	length;
+	u_char	bytes[16];
+	int	delay;
+	int	j;
+
+	if (argc < 3) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+
+	/*
+	 * Chip is always specified.
+	 */
+	chip = simple_strtoul(argv[1], NULL, 16);
+
+	/*
+	 * Address is always specified.
+	 */
+	addr = simple_strtoul(argv[2], NULL, 16);
+	alen = 1;
+	for(j = 0; j < 8; j++) {
+		if (argv[2][j] == '.') {
+			alen = argv[2][j+1] - '0';
+			if (alen > 4) {
+				printf ("Usage:\n%s\n", cmdtp->usage);
+				return 1;
+			}
+			break;
+		} else if (argv[2][j] == '\0') {
+			break;
+		}
+	}
+
+	/*
+	 * Length is the number of objects, not number of bytes.
+	 */
+	length = 1;
+	length = simple_strtoul(argv[3], NULL, 16);
+	if(length > sizeof(bytes)) {
+		length = sizeof(bytes);
+	}
+
+	/*
+	 * The delay time (uSec) is optional.
+	 */
+	delay = 1000;
+	if (argc > 3) {
+		delay = simple_strtoul(argv[4], NULL, 10);
+	}
+	/*
+	 * Run the loop...
+	 */
+	while(1) {
+		if(i2c_read(chip, addr, alen, bytes, length) != 0) {
+			printf("Error reading the chip.\n");
+		}
+		udelay(delay);
+	}
+
+	/* NOTREACHED */
+	return 0;
+}
+
+
+/*
+ * The SDRAM command is separately configured because many
+ * (most?) embedded boards don't use SDRAM DIMMs.
+ */
+#if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
+
+/*
+ * Syntax:
+ *	sdram {i2c_chip}
+ */
+int do_sdram  ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+	u_char	chip;
+	u_char	data[128];
+	u_char	cksum;
+	int	j;
+
+	if (argc < 2) {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		return 1;
+	}
+	/*
+	 * Chip is always specified.
+ 	 */
+	chip = simple_strtoul(argv[1], NULL, 16);
+
+	if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
+		printf("No SDRAM Serial Presence Detect found.\n");
+		return 1;
+	}
+
+	cksum = 0;
+	for (j = 0; j < 63; j++) {
+		cksum += data[j];
+	}
+	if(cksum != data[63]) {
+		printf ("WARNING: Configuration data checksum failure:\n"
+			"  is 0x%02x, calculated 0x%02x\n",
+			data[63], cksum);
+	}
+	printf("SPD data revision            %d.%d\n",
+		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
+	printf("Bytes used                   0x%02X\n", data[0]);
+	printf("Serial memory size           0x%02X\n", 1 << data[1]);
+	printf("Memory type                  ");
+	switch(data[2]) {
+		case 2:  printf("EDO\n");	break;
+		case 4:  printf("SDRAM\n");	break;
+		default: printf("unknown\n");	break;
+	}
+	printf("Row address bits             ");
+	if((data[3] & 0x00F0) == 0) {
+		printf("%d\n", data[3] & 0x0F);
+	} else {
+		printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
+	}
+	printf("Column address bits          ");
+	if((data[4] & 0x00F0) == 0) {
+		printf("%d\n", data[4] & 0x0F);
+	} else {
+		printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
+	}
+	printf("Module rows                  %d\n", data[5]);
+	printf("Module data width            %d bits\n", (data[7] << 8) | data[6]);
+	printf("Interface signal levels      ");
+	switch(data[8]) {
+		case 0:  printf("5.0v/TTL\n");	break;
+		case 1:  printf("LVTTL\n");	break;
+		case 2:  printf("HSTL 1.5\n");	break;
+		case 3:  printf("SSTL 3.3\n");	break;
+		case 4:  printf("SSTL 2.5\n");	break;
+		default: printf("unknown\n");	break;
+	}
+	printf("SDRAM cycle time             %d.%d nS\n",
+		(data[9] >> 4) & 0x0F, data[9] & 0x0F);
+	printf("SDRAM access time            %d.%d nS\n",
+		(data[10] >> 4) & 0x0F, data[10] & 0x0F);
+	printf("EDC configuration            ");
+	switch(data[11]) {
+		case 0:  printf("None\n");	break;
+		case 1:  printf("Parity\n");	break;
+		case 2:  printf("ECC\n");	break;
+		default: printf("unknown\n");	break;
+	}
+	if((data[12] & 0x80) == 0) {
+		printf("No self refresh, rate        ");
+	} else {
+		printf("Self refresh, rate           ");
+	}
+	switch(data[12] & 0x7F) {
+		case 0:  printf("15.625uS\n");	break;
+		case 1:  printf("3.9uS\n");	break;
+		case 2:  printf("7.8uS\n");	break;
+		case 3:  printf("31.3uS\n");	break;
+		case 4:  printf("62.5uS\n");	break;
+		case 5:  printf("125uS\n");	break;
+		default: printf("unknown\n");	break;
+	}
+	printf("SDRAM width (primary)        %d\n", data[13] & 0x7F);
+	if((data[13] & 0x80) != 0) {
+		printf("  (second bank)              %d\n",
+			2 * (data[13] & 0x7F));
+	}
+	if(data[14] != 0) {
+		printf("EDC width                    %d\n",
+			data[14] & 0x7F);
+		if((data[14] & 0x80) != 0) {
+			printf("  (second bank)              %d\n",
+				2 * (data[14] & 0x7F));
+		}
+	}
+	printf("Min clock delay, back-to-back random column addresses %d\n",
+		data[15]);
+	printf("Burst length(s)             ");
+	if(data[16] & 0x80) printf(" Page");
+	if(data[16] & 0x08) printf(" 8");
+	if(data[16] & 0x04) printf(" 4");
+	if(data[16] & 0x02) printf(" 2");
+	if(data[16] & 0x01) printf(" 1");
+	printf("\n");
+	printf("Number of banks              %d\n", data[17]);
+	printf("CAS latency(s)              ");
+	if(data[18] & 0x80) printf(" TBD");
+	if(data[18] & 0x40) printf(" 7");
+	if(data[18] & 0x20) printf(" 6");
+	if(data[18] & 0x10) printf(" 5");
+	if(data[18] & 0x08) printf(" 4");
+	if(data[18] & 0x04) printf(" 3");
+	if(data[18] & 0x02) printf(" 2");
+	if(data[18] & 0x01) printf(" 1");
+	printf("\n");
+	printf("CS latency(s)               ");
+	if(data[19] & 0x80) printf(" TBD");
+	if(data[19] & 0x40) printf(" 6");
+	if(data[19] & 0x20) printf(" 5");
+	if(data[19] & 0x10) printf(" 4");
+	if(data[19] & 0x08) printf(" 3");
+	if(data[19] & 0x04) printf(" 2");
+	if(data[19] & 0x02) printf(" 1");
+	if(data[19] & 0x01) printf(" 0");
+	printf("\n");
+	printf("WE latency(s)               ");
+	if(data[20] & 0x80) printf(" TBD");
+	if(data[20] & 0x40) printf(" 6");
+	if(data[20] & 0x20) printf(" 5");
+	if(data[20] & 0x10) printf(" 4");
+	if(data[20] & 0x08) printf(" 3");
+	if(data[20] & 0x04) printf(" 2");
+	if(data[20] & 0x02) printf(" 1");
+	if(data[20] & 0x01) printf(" 0");
+	printf("\n");
+	printf("Module attributes:\n");
+	if(!data[21])       printf("  (none)\n");
+	if(data[21] & 0x80) printf("  TBD (bit 7)\n");
+	if(data[21] & 0x40) printf("  Redundant row address\n");
+	if(data[21] & 0x20) printf("  Differential clock input\n");
+	if(data[21] & 0x10) printf("  Registerd DQMB inputs\n");
+	if(data[21] & 0x08) printf("  Buffered DQMB inputs\n");
+	if(data[21] & 0x04) printf("  On-card PLL\n");
+	if(data[21] & 0x02) printf("  Registered address/control lines\n");
+	if(data[21] & 0x01) printf("  Buffered address/control lines\n");
+	printf("Device attributes:\n");
+	if(data[22] & 0x80) printf("  TBD (bit 7)\n");
+	if(data[22] & 0x40) printf("  TBD (bit 6)\n");
+	if(data[22] & 0x20) printf("  Upper Vcc tolerance 5%%\n");
+	else                printf("  Upper Vcc tolerance 10%%\n");
+	if(data[22] & 0x10) printf("  Lower Vcc tolerance 5%%\n");
+	else                printf("  Lower Vcc tolerance 10%%\n");
+	if(data[22] & 0x08) printf("  Supports write1/read burst\n");
+	if(data[22] & 0x04) printf("  Supports precharge all\n");
+	if(data[22] & 0x02) printf("  Supports auto precharge\n");
+	if(data[22] & 0x01) printf("  Supports early RAS# precharge\n");
+	printf("SDRAM cycle time (2nd highest CAS latency)        %d.%d nS\n",
+		(data[23] >> 4) & 0x0F, data[23] & 0x0F);
+	printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
+		(data[24] >> 4) & 0x0F, data[24] & 0x0F);
+	printf("SDRAM cycle time (3rd highest CAS latency)        %d.%d nS\n",
+		(data[25] >> 4) & 0x0F, data[25] & 0x0F);
+	printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
+		(data[26] >> 4) & 0x0F, data[26] & 0x0F);
+	printf("Minimum row precharge        %d nS\n", data[27]);
+	printf("Row active to row active min %d nS\n", data[28]);
+	printf("RAS to CAS delay min         %d nS\n", data[29]);
+	printf("Minimum RAS pulse width      %d nS\n", data[30]);
+	printf("Density of each row         ");
+	if(data[31] & 0x80) printf(" 512MByte");
+	if(data[31] & 0x40) printf(" 256MByte");
+	if(data[31] & 0x20) printf(" 128MByte");
+	if(data[31] & 0x10) printf(" 64MByte");
+	if(data[31] & 0x08) printf(" 32MByte");
+	if(data[31] & 0x04) printf(" 16MByte");
+	if(data[31] & 0x02) printf(" 8MByte");
+	if(data[31] & 0x01) printf(" 4MByte");
+	printf("\n");
+	printf("Command and Address setup    %c%d.%d nS\n",
+		(data[32] & 0x80) ? '-' : '+',
+		(data[32] >> 4) & 0x07, data[32] & 0x0F);
+	printf("Command and Address hold     %c%d.%d nS\n",
+		(data[33] & 0x80) ? '-' : '+',
+		(data[33] >> 4) & 0x07, data[33] & 0x0F);
+	printf("Data signal input setup      %c%d.%d nS\n",
+		(data[34] & 0x80) ? '-' : '+',
+		(data[34] >> 4) & 0x07, data[34] & 0x0F);
+	printf("Data signal input hold       %c%d.%d nS\n",
+		(data[35] & 0x80) ? '-' : '+',
+		(data[35] >> 4) & 0x07, data[35] & 0x0F);
+	printf("Manufacturer's JEDEC ID      ");
+	for(j = 64; j <= 71; j++)
+		printf("%02X ", data[j]);
+	printf("\n");
+	printf("Manufacturing Location       %02X\n", data[72]);
+	printf("Manufacturer's Part Number   ");
+	for(j = 73; j <= 90; j++)
+		printf("%02X ", data[j]);
+	printf("\n");
+	printf("Revision Code                %02X %02X\n", data[91], data[92]);
+	printf("Manufacturing Date           %02X %02X\n", data[93], data[94]);
+	printf("Assembly Serial Number       ");
+	for(j = 95; j <= 98; j++)
+		printf("%02X ", data[j]);
+	printf("\n");
+	printf("Speed rating                 PC%d\n",
+		data[126] == 0x66 ? 66 : data[126]);
+
+	return 0;
+}
+#endif	/* CFG_CMD_SDRAM */
+
+#endif	/* CFG_CMD_I2C */