k2hk: add support for k2hk SOC and EVM
k2hk EVM is based on Texas Instruments Keystone2 Hawking/Kepler
SoC. Keystone2 SoC has ARM v7 Cortex-A15 MPCore processor. Please
refer the ti/k2hk_evm/README for details on the board, build and other
information.
This patch add support for keystone architecture and k2hk evm.
Signed-off-by: Vitaly Andrianov <vitalya@ti.com>
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: WingMan Kwok <w-kwok2@ti.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
diff --git a/arch/arm/cpu/armv7/keystone/clock.c b/arch/arm/cpu/armv7/keystone/clock.c
new file mode 100644
index 0000000..bfa4c9d
--- /dev/null
+++ b/arch/arm/cpu/armv7/keystone/clock.c
@@ -0,0 +1,318 @@
+/*
+ * Keystone2: pll initialization
+ *
+ * (C) Copyright 2012-2014
+ * Texas Instruments Incorporated, <www.ti.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <asm-generic/errno.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/clock_defs.h>
+
+static void wait_for_completion(const struct pll_init_data *data)
+{
+ int i;
+ for (i = 0; i < 100; i++) {
+ sdelay(450);
+ if ((pllctl_reg_read(data->pll, stat) & PLLSTAT_GO) == 0)
+ break;
+ }
+}
+
+struct pll_regs {
+ u32 reg0, reg1;
+};
+
+static const struct pll_regs pll_regs[] = {
+ [CORE_PLL] = { K2HK_MAINPLLCTL0, K2HK_MAINPLLCTL1},
+ [PASS_PLL] = { K2HK_PASSPLLCTL0, K2HK_PASSPLLCTL1},
+ [TETRIS_PLL] = { K2HK_ARMPLLCTL0, K2HK_ARMPLLCTL1},
+ [DDR3A_PLL] = { K2HK_DDR3APLLCTL0, K2HK_DDR3APLLCTL1},
+ [DDR3B_PLL] = { K2HK_DDR3BPLLCTL0, K2HK_DDR3BPLLCTL1},
+};
+
+/* Fout = Fref * NF(mult) / NR(prediv) / OD */
+static unsigned long pll_freq_get(int pll)
+{
+ unsigned long mult = 1, prediv = 1, output_div = 2;
+ unsigned long ret;
+ u32 tmp, reg;
+
+ if (pll == CORE_PLL) {
+ ret = external_clk[sys_clk];
+ if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN) {
+ /* PLL mode */
+ tmp = __raw_readl(K2HK_MAINPLLCTL0);
+ prediv = (tmp & PLL_DIV_MASK) + 1;
+ mult = (((tmp & PLLM_MULT_HI_SMASK) >> 6) |
+ (pllctl_reg_read(pll, mult) &
+ PLLM_MULT_LO_MASK)) + 1;
+ output_div = ((pllctl_reg_read(pll, secctl) >>
+ PLL_CLKOD_SHIFT) & PLL_CLKOD_MASK) + 1;
+
+ ret = ret / prediv / output_div * mult;
+ }
+ } else {
+ switch (pll) {
+ case PASS_PLL:
+ ret = external_clk[pa_clk];
+ reg = K2HK_PASSPLLCTL0;
+ break;
+ case TETRIS_PLL:
+ ret = external_clk[tetris_clk];
+ reg = K2HK_ARMPLLCTL0;
+ break;
+ case DDR3A_PLL:
+ ret = external_clk[ddr3a_clk];
+ reg = K2HK_DDR3APLLCTL0;
+ break;
+ case DDR3B_PLL:
+ ret = external_clk[ddr3b_clk];
+ reg = K2HK_DDR3BPLLCTL0;
+ break;
+ default:
+ return 0;
+ }
+
+ tmp = __raw_readl(reg);
+
+ if (!(tmp & PLLCTL_BYPASS)) {
+ /* Bypass disabled */
+ prediv = (tmp & PLL_DIV_MASK) + 1;
+ mult = ((tmp >> PLL_MULT_SHIFT) & PLL_MULT_MASK) + 1;
+ output_div = ((tmp >> PLL_CLKOD_SHIFT) &
+ PLL_CLKOD_MASK) + 1;
+ ret = ((ret / prediv) * mult) / output_div;
+ }
+ }
+
+ return ret;
+}
+
+unsigned long clk_get_rate(unsigned int clk)
+{
+ switch (clk) {
+ case core_pll_clk: return pll_freq_get(CORE_PLL);
+ case pass_pll_clk: return pll_freq_get(PASS_PLL);
+ case tetris_pll_clk: return pll_freq_get(TETRIS_PLL);
+ case ddr3a_pll_clk: return pll_freq_get(DDR3A_PLL);
+ case ddr3b_pll_clk: return pll_freq_get(DDR3B_PLL);
+ case sys_clk0_1_clk:
+ case sys_clk0_clk: return pll_freq_get(CORE_PLL) / pll0div_read(1);
+ case sys_clk1_clk: return pll_freq_get(CORE_PLL) / pll0div_read(2);
+ case sys_clk2_clk: return pll_freq_get(CORE_PLL) / pll0div_read(3);
+ case sys_clk3_clk: return pll_freq_get(CORE_PLL) / pll0div_read(4);
+ case sys_clk0_2_clk: return clk_get_rate(sys_clk0_clk) / 2;
+ case sys_clk0_3_clk: return clk_get_rate(sys_clk0_clk) / 3;
+ case sys_clk0_4_clk: return clk_get_rate(sys_clk0_clk) / 4;
+ case sys_clk0_6_clk: return clk_get_rate(sys_clk0_clk) / 6;
+ case sys_clk0_8_clk: return clk_get_rate(sys_clk0_clk) / 8;
+ case sys_clk0_12_clk: return clk_get_rate(sys_clk0_clk) / 12;
+ case sys_clk0_24_clk: return clk_get_rate(sys_clk0_clk) / 24;
+ case sys_clk1_3_clk: return clk_get_rate(sys_clk1_clk) / 3;
+ case sys_clk1_4_clk: return clk_get_rate(sys_clk1_clk) / 4;
+ case sys_clk1_6_clk: return clk_get_rate(sys_clk1_clk) / 6;
+ case sys_clk1_12_clk: return clk_get_rate(sys_clk1_clk) / 12;
+ default:
+ break;
+ }
+ return 0;
+}
+
+void init_pll(const struct pll_init_data *data)
+{
+ u32 tmp, tmp_ctl, pllm, plld, pllod, bwadj;
+
+ pllm = data->pll_m - 1;
+ plld = (data->pll_d - 1) & PLL_DIV_MASK;
+ pllod = (data->pll_od - 1) & PLL_CLKOD_MASK;
+
+ if (data->pll == MAIN_PLL) {
+ /* The requered delay before main PLL configuration */
+ sdelay(210000);
+
+ tmp = pllctl_reg_read(data->pll, secctl);
+
+ if (tmp & (PLLCTL_BYPASS)) {
+ setbits_le32(pll_regs[data->pll].reg1,
+ BIT(MAIN_ENSAT_OFFSET));
+
+ pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
+ PLLCTL_PLLENSRC);
+ sdelay(340);
+
+ pllctl_reg_setbits(data->pll, secctl, PLLCTL_BYPASS);
+ pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN);
+ sdelay(21000);
+
+ pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN);
+ } else {
+ pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN |
+ PLLCTL_PLLENSRC);
+ sdelay(340);
+ }
+
+ pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
+
+ clrsetbits_le32(pll_regs[data->pll].reg0, PLLM_MULT_HI_SMASK,
+ (pllm << 6));
+
+ /* Set the BWADJ (12 bit field) */
+ tmp_ctl = pllm >> 1; /* Divide the pllm by 2 */
+ clrsetbits_le32(pll_regs[data->pll].reg0, PLL_BWADJ_LO_SMASK,
+ (tmp_ctl << PLL_BWADJ_LO_SHIFT));
+ clrsetbits_le32(pll_regs[data->pll].reg1, PLL_BWADJ_HI_MASK,
+ (tmp_ctl >> 8));
+
+ /*
+ * Set the pll divider (6 bit field) *
+ * PLLD[5:0] is located in MAINPLLCTL0
+ */
+ clrsetbits_le32(pll_regs[data->pll].reg0, PLL_DIV_MASK, plld);
+
+ /* Set the OUTPUT DIVIDE (4 bit field) in SECCTL */
+ pllctl_reg_rmw(data->pll, secctl, PLL_CLKOD_SMASK,
+ (pllod << PLL_CLKOD_SHIFT));
+ wait_for_completion(data);
+
+ pllctl_reg_write(data->pll, div1, PLLM_RATIO_DIV1);
+ pllctl_reg_write(data->pll, div2, PLLM_RATIO_DIV2);
+ pllctl_reg_write(data->pll, div3, PLLM_RATIO_DIV3);
+ pllctl_reg_write(data->pll, div4, PLLM_RATIO_DIV4);
+ pllctl_reg_write(data->pll, div5, PLLM_RATIO_DIV5);
+
+ pllctl_reg_setbits(data->pll, alnctl, 0x1f);
+
+ /*
+ * Set GOSET bit in PLLCMD to initiate the GO operation
+ * to change the divide
+ */
+ pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GO);
+ sdelay(1500); /* wait for the phase adj */
+ wait_for_completion(data);
+
+ /* Reset PLL */
+ pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST);
+ sdelay(21000); /* Wait for a minimum of 7 us*/
+ pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST);
+ sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
+
+ pllctl_reg_clrbits(data->pll, secctl, PLLCTL_BYPASS);
+
+ tmp = pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN);
+
+ } else if (data->pll == TETRIS_PLL) {
+ bwadj = pllm >> 1;
+ /* 1.5 Set PLLCTL0[BYPASS] =1 (enable bypass), */
+ setbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
+ /*
+ * Set CHIPMISCCTL1[13] = 0 (enable glitchfree bypass)
+ * only applicable for Kepler
+ */
+ clrbits_le32(K2HK_MISC_CTRL, ARM_PLL_EN);
+ /* 2 In PLLCTL1, write PLLRST = 1 (PLL is reset) */
+ setbits_le32(pll_regs[data->pll].reg1 ,
+ PLL_PLLRST | PLLCTL_ENSAT);
+
+ /*
+ * 3 Program PLLM and PLLD in PLLCTL0 register
+ * 4 Program BWADJ[7:0] in PLLCTL0 and BWADJ[11:8] in
+ * PLLCTL1 register. BWADJ value must be set
+ * to ((PLLM + 1) >> 1) – 1)
+ */
+ tmp = ((bwadj & PLL_BWADJ_LO_MASK) << PLL_BWADJ_LO_SHIFT) |
+ (pllm << 6) |
+ (plld & PLL_DIV_MASK) |
+ (pllod << PLL_CLKOD_SHIFT) | PLLCTL_BYPASS;
+ __raw_writel(tmp, pll_regs[data->pll].reg0);
+
+ /* Set BWADJ[11:8] bits */
+ tmp = __raw_readl(pll_regs[data->pll].reg1);
+ tmp &= ~(PLL_BWADJ_HI_MASK);
+ tmp |= ((bwadj>>8) & PLL_BWADJ_HI_MASK);
+ __raw_writel(tmp, pll_regs[data->pll].reg1);
+ /*
+ * 5 Wait for at least 5 us based on the reference
+ * clock (PLL reset time)
+ */
+ sdelay(21000); /* Wait for a minimum of 7 us*/
+
+ /* 6 In PLLCTL1, write PLLRST = 0 (PLL reset is released) */
+ clrbits_le32(pll_regs[data->pll].reg1, PLL_PLLRST);
+ /*
+ * 7 Wait for at least 500 * REFCLK cycles * (PLLD + 1)
+ * (PLL lock time)
+ */
+ sdelay(105000);
+ /* 8 disable bypass */
+ clrbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
+ /*
+ * 9 Set CHIPMISCCTL1[13] = 1 (disable glitchfree bypass)
+ * only applicable for Kepler
+ */
+ setbits_le32(K2HK_MISC_CTRL, ARM_PLL_EN);
+ } else {
+ setbits_le32(pll_regs[data->pll].reg1, PLLCTL_ENSAT);
+ /*
+ * process keeps state of Bypass bit while programming
+ * all other DDR PLL settings
+ */
+ tmp = __raw_readl(pll_regs[data->pll].reg0);
+ tmp &= PLLCTL_BYPASS; /* clear everything except Bypass */
+
+ /*
+ * Set the BWADJ[7:0], PLLD[5:0] and PLLM to PLLCTL0,
+ * bypass disabled
+ */
+ bwadj = pllm >> 1;
+ tmp |= ((bwadj & PLL_BWADJ_LO_SHIFT) << PLL_BWADJ_LO_SHIFT) |
+ (pllm << PLL_MULT_SHIFT) |
+ (plld & PLL_DIV_MASK) |
+ (pllod << PLL_CLKOD_SHIFT);
+ __raw_writel(tmp, pll_regs[data->pll].reg0);
+
+ /* Set BWADJ[11:8] bits */
+ tmp = __raw_readl(pll_regs[data->pll].reg1);
+ tmp &= ~(PLL_BWADJ_HI_MASK);
+ tmp |= ((bwadj >> 8) & PLL_BWADJ_HI_MASK);
+
+ /* set PLL Select (bit 13) for PASS PLL */
+ if (data->pll == PASS_PLL)
+ tmp |= PLLCTL_PAPLL;
+
+ __raw_writel(tmp, pll_regs[data->pll].reg1);
+
+ /* Reset bit: bit 14 for both DDR3 & PASS PLL */
+ tmp = PLL_PLLRST;
+ /* Set RESET bit = 1 */
+ setbits_le32(pll_regs[data->pll].reg1, tmp);
+ /* Wait for a minimum of 7 us*/
+ sdelay(21000);
+ /* Clear RESET bit */
+ clrbits_le32(pll_regs[data->pll].reg1, tmp);
+ sdelay(105000);
+
+ /* clear BYPASS (Enable PLL Mode) */
+ clrbits_le32(pll_regs[data->pll].reg0, PLLCTL_BYPASS);
+ sdelay(21000); /* Wait for a minimum of 7 us*/
+ }
+
+ /*
+ * This is required to provide a delay between multiple
+ * consequent PPL configurations
+ */
+ sdelay(210000);
+}
+
+void init_plls(int num_pll, struct pll_init_data *config)
+{
+ int i;
+
+ for (i = 0; i < num_pll; i++)
+ init_pll(&config[i]);
+}