Update of new NAND code
Patch by Ladislav Michl, 13 Sep 2005
diff --git a/common/cmd_nand.c b/common/cmd_nand.c
index ae4c68a..0c05255 100644
--- a/common/cmd_nand.c
+++ b/common/cmd_nand.c
@@ -1,15 +1,18 @@
 /*
- * Rick Bronson and Pantelis Antoniou
+ * Driver for NAND support, Rick Bronson
+ * borrowed heavily from:
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * Added 16-bit nand support
+ * (C) 2004 Texas Instruments
  */
 
 #include <common.h>
-
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
 #include <command.h>
-#include <watchdog.h>
 #include <malloc.h>
-#include <asm/byteorder.h>
+#include <asm/io.h>
+#include <watchdog.h>
 
 #ifdef CONFIG_SHOW_BOOT_PROGRESS
 # include <status_led.h>
@@ -18,311 +21,290 @@
 # define SHOW_BOOT_PROGRESS(arg)
 #endif
 
-#include <jffs2/jffs2.h>
-#include <nand.h>
-
-extern nand_info_t nand_info[];       /* info for NAND chips */
-
-static int nand_dump_oob(nand_info_t *nand, ulong off)
-{
-	return 0;
-}
+#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined CONFIG_NEW_NAND_CODE
 
-static int nand_dump(nand_info_t *nand, ulong off)
-{
-	int i;
-	u_char *buf, *p;
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ids.h>
+#include <jffs2/jffs2.h>
 
-	buf = malloc(nand->oobblock + nand->oobsize);
-	if (!buf) {
-		puts("No memory for page buffer\n");
-		return 1;
-	}
-	off &= ~(nand->oobblock - 1);
-	i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
-	if (i < 0) {
-		printf("Error (%d) reading page %08x\n", i, off);
-		free(buf);
-		return 1;
-	}
-	printf("Page %08x dump:\n", off);
-	i = nand->oobblock >> 4; p = buf;
-	while (i--) {
-		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
-			"  %02x %02x %02x %02x %02x %02x %02x %02x\n",
-			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
-			p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
-		p += 16;
-	}
-	puts("OOB:\n");
-	i = nand->oobsize >> 3;
-	while (i--) {
-		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
-			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
-		p += 8;
-	}
-	free(buf);
+#ifdef CONFIG_OMAP1510
+void archflashwp(void *archdata, int wp);
+#endif
 
-	return 0;
-}
+#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))
 
-/* ------------------------------------------------------------------------- */
+/*
+ * Definition of the out of band configuration structure
+ */
+struct nand_oob_config {
+	int ecc_pos[6];		/* position of ECC bytes inside oob */
+	int badblock_pos;	/* position of bad block flag inside oob -1 = inactive */
+	int eccvalid_pos;	/* position of ECC valid flag inside oob -1 = inactive */
+} oob_config = { {0}, 0, 0};
 
-static void
-arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
-{
-	*off = 0;
-	*size = 0;
+#undef	NAND_DEBUG
+#undef	PSYCHO_DEBUG
 
-#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
-	if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
-		int part_num;
-		struct part_info *part;
-		const char *partstr;
+/* ****************** WARNING *********************
+ * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
+ * erase (or at least attempt to erase) blocks that are marked
+ * bad. This can be very handy if you are _sure_ that the block
+ * is OK, say because you marked a good block bad to test bad
+ * block handling and you are done testing, or if you have
+ * accidentally marked blocks bad.
+ *
+ * Erasing factory marked bad blocks is a _bad_ idea. If the
+ * erase succeeds there is no reliable way to find them again,
+ * and attempting to program or erase bad blocks can affect
+ * the data in _other_ (good) blocks.
+ */
+#define	 ALLOW_ERASE_BAD_DEBUG 0
 
-		if (argc >= 2)
-			partstr = argv[1];
-		else
-			partstr = getenv("partition");
+#define CONFIG_MTD_NAND_ECC  /* enable ECC */
+#define CONFIG_MTD_NAND_ECC_JFFS2
 
-		if (partstr)
-			part_num = (int)simple_strtoul(partstr, NULL, 10);
-		else
-			part_num = 0;
+/* bits for nand_rw() `cmd'; or together as needed */
+#define NANDRW_READ	0x01
+#define NANDRW_WRITE	0x00
+#define NANDRW_JFFS2	0x02
+#define NANDRW_JFFS2_SKIP	0x04
 
-		part = jffs2_part_info(part_num);
-		if (part == NULL) {
-			printf("\nInvalid partition %d\n", part_num);
-			return;
-		}
-		*size = part->size;
-		*off = (ulong)part->offset;
-	} else
+/*
+ * Function Prototypes
+ */
+static void nand_print(struct nand_chip *nand);
+int nand_rw (struct nand_chip* nand, int cmd,
+	    size_t start, size_t len,
+	    size_t * retlen, u_char * buf);
+int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+		 size_t * retlen, u_char *buf, u_char *ecc_code);
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+			   size_t * retlen, const u_char * buf, u_char * ecc_code);
+static void nand_print_bad(struct nand_chip *nand);
+static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+		 size_t * retlen, u_char * buf);
+static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+		 size_t * retlen, const u_char * buf);
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
+#ifdef CONFIG_MTD_NAND_ECC
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
 #endif
-	{
-		if (argc >= 1)
-			*off = (ulong)simple_strtoul(argv[0], NULL, 16);
-		else
-			*off = 0;
 
-		if (argc >= 2)
-			*size = (ulong)simple_strtoul(argv[1], NULL, 16);
-		else
-			*size = totsize - *off;
+struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
 
-	}
+/* Current NAND Device	*/
+static int curr_device = -1;
 
-}
+/* ------------------------------------------------------------------------- */
 
-int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
+int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 {
-	int i, dev, ret;
-	ulong addr, off, size;
-	char *cmd, *s;
-	nand_info_t *nand;
-
-	/* at least two arguments please */
-	if (argc < 2)
-		goto usage;
+    int rcode = 0;
 
-	cmd = argv[1];
+    switch (argc) {
+    case 0:
+    case 1:
+	printf ("Usage:\n%s\n", cmdtp->usage);
+	return 1;
+    case 2:
+	if (strcmp(argv[1],"info") == 0) {
+		int i;
 
-	if (strcmp(cmd, "info") == 0) {
+		putc ('\n');
 
-		putc('\n');
-		for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
-			if (nand_info[i].name)
-				printf("Device %d: %s\n", i, nand_info[i].name);
+		for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
+			if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
+				continue; /* list only known devices */
+			printf ("Device %d: ", i);
+			nand_print(&nand_dev_desc[i]);
 		}
 		return 0;
-	}
 
-	if (strcmp(cmd, "device") == 0) {
-
-		if (argc < 3) {
-			if ((nand_curr_device < 0) ||
-			    (nand_curr_device >= CFG_MAX_NAND_DEVICE))
-				puts("\nno devices available\n");
-			else
-				printf("\nDevice %d: %s\n", nand_curr_device,
-					nand_info[nand_curr_device].name);
-			return 0;
-		}
-		dev = (int)simple_strtoul(argv[2], NULL, 10);
-		if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
-			puts("No such device\n");
+	} else if (strcmp(argv[1],"device") == 0) {
+		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
+			puts ("\nno devices available\n");
 			return 1;
 		}
-		printf("Device %d: %s", dev, nand_info[dev].name);
-		puts("... is now current device\n");
-		nand_curr_device = dev;
+		printf ("\nDevice %d: ", curr_device);
+		nand_print(&nand_dev_desc[curr_device]);
 		return 0;
-	}
 
-	if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
-	    strncmp(cmd, "dump", 4) != 0 &&
-	    strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
-#ifdef CONFIG_MTD_NAND_UNSAFE
-	    && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
-	    && strcmp(cmd, "markbad") != 0
-#endif
-	    )
-		goto usage;
-
-	/* the following commands operate on the current device */
-	if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
-	    !nand_info[nand_curr_device].name) {
-		puts("\nno devices available\n");
-		return 1;
-	}
-	nand = &nand_info[nand_curr_device];
-
-	if (strcmp(cmd, "bad") == 0) {
-		printf("\nDevice %d bad blocks:\n", nand_curr_device);
-		for (off = 0; off < nand->size; off += nand->erasesize)
-			if (nand_block_isbad(nand, off))
-				printf("  %08x\n", off);
+	} else if (strcmp(argv[1],"bad") == 0) {
+		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
+			puts ("\nno devices available\n");
+			return 1;
+		}
+		printf ("\nDevice %d bad blocks:\n", curr_device);
+		nand_print_bad(&nand_dev_desc[curr_device]);
 		return 0;
-	}
 
-	if (strcmp(cmd, "erase") == 0
-#ifdef CONFIG_MTD_NAND_UNSAFE
-	    || strcmp(cmd, "scrub") == 0
-#endif
-	    ) {
+	}
+	printf ("Usage:\n%s\n", cmdtp->usage);
+	return 1;
+    case 3:
+	if (strcmp(argv[1],"device") == 0) {
+		int dev = (int)simple_strtoul(argv[2], NULL, 10);
 
-#ifdef CONFIG_MTD_NAND_UNSAFE
-		i = strcmp(cmd, "scrub") == 0;	/* 1 scrub, 0 = erase */
-#endif
+		printf ("\nDevice %d: ", dev);
+		if (dev >= CFG_MAX_NAND_DEVICE) {
+			puts ("unknown device\n");
+			return 1;
+		}
+		nand_print(&nand_dev_desc[dev]);
+		/*nand_print (dev);*/
 
-		arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
-		if (off == 0 && size == 0)
+		if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
 			return 1;
+		}
 
-		printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
-#ifdef CONFIG_MTD_NAND_UNSAFE
-		       i ? "scrub" :
-#endif
-		       "erase",
-		       nand_curr_device, off, size);
+		curr_device = dev;
 
-#ifdef CONFIG_MTD_NAND_UNSAFE
-		if (i)
-			ret = nand_scrub(nand, off, size);
-		else
-#endif
-			ret = nand_erase(nand, off, size);
-
-		printf("%s\n", ret ? "ERROR" : "OK");
+		puts ("... is now current device\n");
 
-		return ret == 0 ? 0 : 1;
+		return 0;
 	}
+	else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
+		struct nand_chip* nand = &nand_dev_desc[curr_device];
+		ulong off = 0;
+		ulong size = nand->totlen;
+		int ret;
 
-	if (strncmp(cmd, "dump", 4) == 0) {
-		if (argc < 3)
-			goto usage;
+		printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
+			curr_device, off, size);
 
-		s = strchr(cmd, '.');
-		off = (int)simple_strtoul(argv[2], NULL, 16);
+		ret = nand_erase (nand, off, size, 1);
 
-		if (s != NULL && strcmp(s, ".oob") == 0)
-			ret = nand_dump_oob(nand, off);
-		else
-			ret = nand_dump(nand, off);
-
-		return ret == 0 ? 1 : 0;
+		printf("%s\n", ret ? "ERROR" : "OK");
 
+		return ret;
 	}
 
-	/* read write */
-	if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
-		if (argc < 4)
-			goto usage;
-/*
-		s = strchr(cmd, '.');
-		clean = CLEAN_NONE;
-		if (s != NULL) {
-			if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
-			    || strcmp(s, ".i"))
-				clean = CLEAN_JFFS2;
-		}
-*/
-		addr = (ulong)simple_strtoul(argv[2], NULL, 16);
+	printf ("Usage:\n%s\n", cmdtp->usage);
+	return 1;
+    default:
+	/* at least 4 args */
 
-		arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
-		if (off == 0 && size == 0)
+	if (strncmp(argv[1], "read", 4) == 0 ||
+	    strncmp(argv[1], "write", 5) == 0) {
+		ulong addr = simple_strtoul(argv[2], NULL, 16);
+		ulong off  = simple_strtoul(argv[3], NULL, 16);
+		ulong size = simple_strtoul(argv[4], NULL, 16);
+		int cmd    = (strncmp(argv[1], "read", 4) == 0) ?
+				NANDRW_READ : NANDRW_WRITE;
+		int ret, total;
+		char* cmdtail = strchr(argv[1], '.');
+
+		if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
+			/* read out-of-band data */
+			if (cmd & NANDRW_READ) {
+				ret = nand_read_oob(nand_dev_desc + curr_device,
+						    off, size, &total,
+						    (u_char*)addr);
+			}
+			else {
+				ret = nand_write_oob(nand_dev_desc + curr_device,
+						     off, size, &total,
+						     (u_char*)addr);
+			}
+			return ret;
+		}
+		else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
+			cmd |= NANDRW_JFFS2;	/* skip bad blocks */
+		else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
+			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */
+			if (cmd & NANDRW_READ)
+				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */
+		}
+#ifdef SXNI855T
+		/* need ".e" same as ".j" for compatibility with older units */
+		else if (cmdtail && !strcmp(cmdtail, ".e"))
+			cmd |= NANDRW_JFFS2;	/* skip bad blocks */
+#endif
+#ifdef CFG_NAND_SKIP_BAD_DOT_I
+		/* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
+		/* ".i" for image -> read skips bad block (no 0xff) */
+		else if (cmdtail && !strcmp(cmdtail, ".i")) {
+			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */
+			if (cmd & NANDRW_READ)
+				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */
+		}
+#endif /* CFG_NAND_SKIP_BAD_DOT_I */
+		else if (cmdtail) {
+			printf ("Usage:\n%s\n", cmdtp->usage);
 			return 1;
+		}
 
-		i = strncmp(cmd, "read", 4) == 0;	/* 1 = read, 0 = write */
-		printf("\nNAND %s: device %d offset %u, size %u ... ",
-		       i ? "read" : "write", nand_curr_device, off, size);
+		printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
+			(cmd & NANDRW_READ) ? "read" : "write",
+			curr_device, off, size);
 
-		if (i)
-			ret = nand_read(nand, off, &size, (u_char *)addr);
-		else
-			ret = nand_write(nand, off, &size, (u_char *)addr);
+		ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
+			     &total, (u_char*)addr);
 
-		printf(" %d bytes %s: %s\n", size,
-		       i ? "read" : "written", ret ? "ERROR" : "OK");
+		printf (" %d bytes %s: %s\n", total,
+			(cmd & NANDRW_READ) ? "read" : "written",
+			ret ? "ERROR" : "OK");
 
-		return ret == 0 ? 0 : 1;
-	}
-#ifdef CONFIG_MTD_NAND_UNSAFE
-	if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
-		if (argc < 3)
-			goto usage;
+		return ret;
+	} else if (strcmp(argv[1],"erase") == 0 &&
+		   (argc == 4 || strcmp("clean", argv[2]) == 0)) {
+		int clean = argc == 5;
+		ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
+		ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
+		int ret;
 
-		i = strcmp(cmd, "biterr") == 0;
+		printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
+			curr_device, off, size);
 
-		off = (int)simple_strtoul(argv[2], NULL, 16);
+		ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
 
-		if (i)
-			ret = nand_make_bit_error(nand, off);
-		else
-			ret = nand_mark_bad(nand, off);
+		printf("%s\n", ret ? "ERROR" : "OK");
 
-		return ret == 0 ? 0 : 1;
+		return ret;
+	} else {
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		rcode = 1;
 	}
-#endif
 
-usage:
-	printf("Usage:\n%s\n", cmdtp->usage);
-	return 1;
+	return rcode;
+    }
 }
 
-U_BOOT_CMD(nand, 5, 1, do_nand,
+U_BOOT_CMD(
+	nand,	5,	1,	do_nand,
 	"nand    - NAND sub-system\n",
-	"info                  - show available NAND devices\n"
-	"nand device [dev]     - show or set current device\n"
-	"nand read[.jffs2]     - addr off size\n"
-	"nand write[.jffs2]    - addr off size - read/write `size' bytes starting\n"
+	"info  - show available NAND devices\n"
+	"nand device [dev] - show or set current device\n"
+	"nand read[.jffs2[s]]  addr off size\n"
+	"nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
 	"    at offset `off' to/from memory address `addr'\n"
 	"nand erase [clean] [off size] - erase `size' bytes from\n"
 	"    offset `off' (entire device if not specified)\n"
 	"nand bad - show bad blocks\n"
-	"nand dump[.oob] off - dump page\n"
-	"nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
-	"nand markbad off - mark bad block at offset (UNSAFE)\n"
-	"nand biterr off - make a bit error at offset (UNSAFE)\n");
+	"nand read.oob addr off size - read out-of-band data\n"
+	"nand write.oob addr off size - read out-of-band data\n"
+);
 
-int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
+int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
 {
 	char *boot_device = NULL;
 	char *ep;
 	int dev;
-	int r;
-	ulong addr, cnt, offset = 0;
+	ulong cnt;
+	ulong addr;
+	ulong offset = 0;
 	image_header_t *hdr;
-	nand_info_t *nand;
-
+	int rcode = 0;
 	switch (argc) {
 	case 1:
 		addr = CFG_LOAD_ADDR;
-		boot_device = getenv("bootdevice");
+		boot_device = getenv ("bootdevice");
 		break;
 	case 2:
 		addr = simple_strtoul(argv[1], NULL, 16);
-		boot_device = getenv("bootdevice");
+		boot_device = getenv ("bootdevice");
 		break;
 	case 3:
 		addr = simple_strtoul(argv[1], NULL, 16);
@@ -334,53 +316,55 @@
 		offset = simple_strtoul(argv[3], NULL, 16);
 		break;
 	default:
-		printf("Usage:\n%s\n", cmdtp->usage);
-		SHOW_BOOT_PROGRESS(-1);
+		printf ("Usage:\n%s\n", cmdtp->usage);
+		SHOW_BOOT_PROGRESS (-1);
 		return 1;
 	}
 
 	if (!boot_device) {
-		puts("\n** No boot device **\n");
-		SHOW_BOOT_PROGRESS(-1);
+		puts ("\n** No boot device **\n");
+		SHOW_BOOT_PROGRESS (-1);
 		return 1;
 	}
 
 	dev = simple_strtoul(boot_device, &ep, 16);
 
-	if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
-		printf("\n** Device %d not available\n", dev);
-		SHOW_BOOT_PROGRESS(-1);
+	if ((dev >= CFG_MAX_NAND_DEVICE) ||
+	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
+		printf ("\n** Device %d not available\n", dev);
+		SHOW_BOOT_PROGRESS (-1);
 		return 1;
 	}
 
-	nand = &nand_info[dev];
-	printf("\nLoading from device %d: %s (offset 0x%lx)\n",
-	       dev, nand->name, offset);
+	printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
+		dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
+		offset);
 
-	cnt = nand->oobblock;
-	r = nand_read(nand, offset, &cnt, (u_char *) addr);
-	if (r) {
-		printf("** Read error on %d\n", dev);
-		SHOW_BOOT_PROGRESS(-1);
+	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
+		    SECTORSIZE, NULL, (u_char *)addr)) {
+		printf ("** Read error on %d\n", dev);
+		SHOW_BOOT_PROGRESS (-1);
 		return 1;
 	}
 
-	hdr = (image_header_t *) addr;
+	hdr = (image_header_t *)addr;
 
-	if (ntohl(hdr->ih_magic) != IH_MAGIC) {
-		printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
-		SHOW_BOOT_PROGRESS(-1);
-		return 1;
-	}
+	if (ntohl(hdr->ih_magic) == IH_MAGIC) {
 
-	print_image_hdr(hdr);
+		print_image_hdr (hdr);
 
-	cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+		cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
+		cnt -= SECTORSIZE;
+	} else {
+		printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+		SHOW_BOOT_PROGRESS (-1);
+		return 1;
+	}
 
-	r = nand_read(nand, offset, &cnt, (u_char *) addr);
-	if (r) {
-		printf("** Read error on %d\n", dev);
-		SHOW_BOOT_PROGRESS(-1);
+	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
+		    NULL, (u_char *)(addr+SECTORSIZE))) {
+		printf ("** Read error on %d\n", dev);
+		SHOW_BOOT_PROGRESS (-1);
 		return 1;
 	}
 
@@ -389,24 +373,1526 @@
 	load_addr = addr;
 
 	/* Check if we should attempt an auto-start */
-	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
+	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
 		char *local_args[2];
-		extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
+		extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
 
 		local_args[0] = argv[0];
 		local_args[1] = NULL;
 
+		printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
+
-		printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
+		do_bootm (cmdtp, 0, 1, local_args);
+		rcode = 1;
+	}
+	return rcode;
+}
+
+U_BOOT_CMD(
+	nboot,	4,	1,	do_nandboot,
+	"nboot   - boot from NAND device\n",
+	"loadAddr dev\n"
+);
 
-		do_bootm(cmdtp, 0, 1, local_args);
+/* returns 0 if block containing pos is OK:
+ *		valid erase block and
+ *		not marked bad, or no bad mark position is specified
+ * returns 1 if marked bad or otherwise invalid
+ */
+int check_block (struct nand_chip *nand, unsigned long pos)
+{
+	int retlen;
+	uint8_t oob_data;
+	uint16_t oob_data16[6];
+	int page0 = pos & (-nand->erasesize);
+	int page1 = page0 + nand->oobblock;
+	int badpos = oob_config.badblock_pos;
+
+	if (pos >= nand->totlen)
 		return 1;
+
+	if (badpos < 0)
+		return 0;	/* no way to check, assume OK */
+
+	if (nand->bus16) {
+		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
+		    || (oob_data16[2] & 0xff00) != 0xff00)
+			return 1;
+		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
+		    || (oob_data16[2] & 0xff00) != 0xff00)
+			return 1;
+	} else {
+		/* Note - bad block marker can be on first or second page */
+		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
+		    || oob_data != 0xff
+		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
+		    || oob_data != 0xff)
+			return 1;
 	}
+
 	return 0;
 }
 
+/* print bad blocks in NAND flash */
+static void nand_print_bad(struct nand_chip* nand)
+{
+	unsigned long pos;
+
+	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
+		if (check_block(nand, pos))
+			printf(" 0x%8.8lx\n", pos);
+	}
+	puts("\n");
+}
+
+/* cmd: 0: NANDRW_WRITE			write, fail on bad block
+ *	1: NANDRW_READ			read, fail on bad block
+ *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks
+ *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks
+ *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
+ */
+int nand_rw (struct nand_chip* nand, int cmd,
+	    size_t start, size_t len,
+	    size_t * retlen, u_char * buf)
+{
+	int ret = 0, n, total = 0;
+	char eccbuf[6];
+	/* eblk (once set) is the start of the erase block containing the
+	 * data being processed.
+	 */
+	unsigned long eblk = ~0;	/* force mismatch on first pass */
+	unsigned long erasesize = nand->erasesize;
+
+	while (len) {
+		if ((start & (-erasesize)) != eblk) {
+			/* have crossed into new erase block, deal with
+			 * it if it is sure marked bad.
+			 */
+			eblk = start & (-erasesize); /* start of block */
+			if (check_block(nand, eblk)) {
+				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
+					while (len > 0 &&
+					       start - eblk < erasesize) {
+						*(buf++) = 0xff;
+						++start;
+						++total;
+						--len;
+					}
+					continue;
+				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
+					start += erasesize;
+					continue;
+				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
+					/* skip bad block */
+					start += erasesize;
+					continue;
+				} else {
+					ret = 1;
+					break;
+				}
+			}
+		}
+		/* The ECC will not be calculated correctly if
+		   less than 512 is written or read */
+		/* Is request at least 512 bytes AND it starts on a proper boundry */
+		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
+			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
+
+		if (cmd & NANDRW_READ) {
+			ret = nand_read_ecc(nand, start,
+					   min(len, eblk + erasesize - start),
+					   &n, (u_char*)buf, eccbuf);
+		} else {
+			ret = nand_write_ecc(nand, start,
+					    min(len, eblk + erasesize - start),
+					    &n, (u_char*)buf, eccbuf);
+		}
+
+		if (ret)
+			break;
+
+		start  += n;
+		buf   += n;
+		total += n;
+		len   -= n;
+	}
+	if (retlen)
+		*retlen = total;
+
+	return ret;
+}
+
-U_BOOT_CMD(nboot, 4, 1, do_nandboot,
-	"nboot   - boot from NAND device\n", "loadAddr dev\n");
+static void nand_print(struct nand_chip *nand)
+{
+	if (nand->numchips > 1) {
+		printf("%s at 0x%lx,\n"
+		       "\t  %d chips %s, size %d MB, \n"
+		       "\t  total size %ld MB, sector size %ld kB\n",
+		       nand->name, nand->IO_ADDR, nand->numchips,
+		       nand->chips_name, 1 << (nand->chipshift - 20),
+		       nand->totlen >> 20, nand->erasesize >> 10);
+	}
+	else {
+		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
+		print_size(nand->totlen, ", ");
+		print_size(nand->erasesize, " sector)\n");
+	}
+}
+
+/* ------------------------------------------------------------------------- */
+
+static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
+{
+	/* This is inline, to optimise the common case, where it's ready instantly */
+	int ret = 0;
+
+#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */
+	if(ale_wait)
+		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */
+	else
+		udelay(10);
+#else	/* has functional r/b signal */
+	NAND_WAIT_READY(nand);
+#endif
+	return ret;
+}
+
+/* NanD_Command: Send a flash command to the flash chip */
+
+static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
+{
+	unsigned long nandptr = nand->IO_ADDR;
+
+	/* Assert the CLE (Command Latch Enable) line to the flash chip */
+	NAND_CTL_SETCLE(nandptr);
+
+	/* Send the command */
+	WRITE_NAND_COMMAND(command, nandptr);
+
+	/* Lower the CLE line */
+	NAND_CTL_CLRCLE(nandptr);
+
+#ifdef NAND_NO_RB
+	if(command == NAND_CMD_RESET){
+		u_char ret_val;
+		NanD_Command(nand, NAND_CMD_STATUS);
+		do {
+			ret_val = READ_NAND(nandptr);/* wait till ready */
+		} while((ret_val & 0x40) != 0x40);
+	}
+#endif
+	return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_Address: Set the current address for the flash chip */
+
+static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
+{
+	unsigned long nandptr;
+	int i;
+
+	nandptr = nand->IO_ADDR;
+
+	/* Assert the ALE (Address Latch Enable) line to the flash chip */
+	NAND_CTL_SETALE(nandptr);
+
+	/* Send the address */
+	/* Devices with 256-byte page are addressed as:
+	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+	 * there is no device on the market with page256
+	 * and more than 24 bits.
+	 * Devices with 512-byte page are addressed as:
+	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+	 * 25-31 is sent only if the chip support it.
+	 * bit 8 changes the read command to be sent
+	 * (NAND_CMD_READ0 or NAND_CMD_READ1).
+	 */
+
+	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
+		WRITE_NAND_ADDRESS(ofs, nandptr);
+
+	ofs = ofs >> nand->page_shift;
+
+	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
+		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
+			WRITE_NAND_ADDRESS(ofs, nandptr);
+		}
+	}
+
+	/* Lower the ALE line */
+	NAND_CTL_CLRALE(nandptr);
+
+	/* Wait for the chip to respond */
+	return NanD_WaitReady(nand, 1);
+}
+
+/* NanD_SelectChip: Select a given flash chip within the current floor */
+
+static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
+{
+	/* Wait for it to be ready */
+	return NanD_WaitReady(nand, 0);
+}
+
+/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
+{
+	int mfr, id, i;
+
+	NAND_ENABLE_CE(nand);  /* set pin low */
+	/* Reset the chip */
+	if (NanD_Command(nand, NAND_CMD_RESET)) {
+#ifdef NAND_DEBUG
+		printf("NanD_Command (reset) for %d,%d returned true\n",
+		       floor, chip);
+#endif
+		NAND_DISABLE_CE(nand);  /* set pin high */
+		return 0;
+	}
+
+	/* Read the NAND chip ID: 1. Send ReadID command */
+	if (NanD_Command(nand, NAND_CMD_READID)) {
+#ifdef NAND_DEBUG
+		printf("NanD_Command (ReadID) for %d,%d returned true\n",
+		       floor, chip);
+#endif
+		NAND_DISABLE_CE(nand);  /* set pin high */
+		return 0;
+	}
+
+	/* Read the NAND chip ID: 2. Send address byte zero */
+	NanD_Address(nand, ADDR_COLUMN, 0);
+
+	/* Read the manufacturer and device id codes from the device */
+
+	mfr = READ_NAND(nand->IO_ADDR);
+
+	id = READ_NAND(nand->IO_ADDR);
+
+	NAND_DISABLE_CE(nand);  /* set pin high */
+
+#ifdef NAND_DEBUG
+	printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
+#endif
+	if (mfr == 0xff || mfr == 0) {
+		/* No response - return failure */
+		return 0;
+	}
+
+	/* Check it's the same as the first chip we identified.
+	 * M-Systems say that any given nand_chip device should only
+	 * contain _one_ type of flash part, although that's not a
+	 * hardware restriction. */
+	if (nand->mfr) {
+		if (nand->mfr == mfr && nand->id == id) {
+			return 1;	/* This is another the same the first */
+		} else {
+			printf("Flash chip at floor %d, chip %d is different:\n",
+			       floor, chip);
+		}
+	}
+
+	/* Print and store the manufacturer and ID codes. */
+	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+		if (mfr == nand_flash_ids[i].manufacture_id &&
+		    id == nand_flash_ids[i].model_id) {
+#ifdef NAND_DEBUG
+			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
+			       "Chip ID: 0x%2.2X (%s)\n", mfr, id,
+			       nand_flash_ids[i].name);
+#endif
+			if (!nand->mfr) {
+				nand->mfr = mfr;
+				nand->id = id;
+				nand->chipshift =
+				    nand_flash_ids[i].chipshift;
+				nand->page256 = nand_flash_ids[i].page256;
+				nand->eccsize = 256;
+				if (nand->page256) {
+					nand->oobblock = 256;
+					nand->oobsize = 8;
+					nand->page_shift = 8;
+				} else {
+					nand->oobblock = 512;
+					nand->oobsize = 16;
+					nand->page_shift = 9;
+				}
+				nand->pageadrlen = nand_flash_ids[i].pageadrlen;
+				nand->erasesize  = nand_flash_ids[i].erasesize;
+				nand->chips_name = nand_flash_ids[i].name;
+				nand->bus16	 = nand_flash_ids[i].bus16;
+ 				return 1;
+			}
+			return 0;
+		}
+	}
+
+
+#ifdef NAND_DEBUG
+	/* We haven't fully identified the chip. Print as much as we know. */
+	printf("Unknown flash chip found: %2.2X %2.2X\n",
+	       id, mfr);
+#endif
+
+	return 0;
+}
+
+/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
+
+static void NanD_ScanChips(struct nand_chip *nand)
+{
+	int floor, chip;
+	int numchips[NAND_MAX_FLOORS];
+	int maxchips = NAND_MAX_CHIPS;
+	int ret = 1;
+
+	nand->numchips = 0;
+	nand->mfr = 0;
+	nand->id = 0;
+
+
+	/* For each floor, find the number of valid chips it contains */
+	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+		ret = 1;
+		numchips[floor] = 0;
+		for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+			ret = NanD_IdentChip(nand, floor, chip);
+			if (ret) {
+				numchips[floor]++;
+				nand->numchips++;
+			}
+		}
+	}
+
+	/* If there are none at all that we recognise, bail */
+	if (!nand->numchips) {
+#ifdef NAND_DEBUG
+		puts ("No NAND flash chips recognised.\n");
+#endif
+		return;
+	}
+
+	/* Allocate an array to hold the information for each chip */
+	nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
+	if (!nand->chips) {
+		puts ("No memory for allocating chip info structures\n");
+		return;
+	}
+
+	ret = 0;
+
+	/* Fill out the chip array with {floor, chipno} for each
+	 * detected chip in the device. */
+	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
+		for (chip = 0; chip < numchips[floor]; chip++) {
+			nand->chips[ret].floor = floor;
+			nand->chips[ret].chip = chip;
+			nand->chips[ret].curadr = 0;
+			nand->chips[ret].curmode = 0x50;
+			ret++;
+		}
+	}
+
+	/* Calculate and print the total size of the device */
+	nand->totlen = nand->numchips * (1 << nand->chipshift);
+
+#ifdef NAND_DEBUG
+	printf("%d flash chips found. Total nand_chip size: %ld MB\n",
+	       nand->numchips, nand->totlen >> 20);
+#endif
+}
+
+/* we need to be fast here, 1 us per read translates to 1 second per meg */
+static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
+{
+	unsigned long nandptr = nand->IO_ADDR;
+
+	NanD_Command (nand, NAND_CMD_READ0);
+
+	if (nand->bus16) {
+		u16 val;
+
+		while (cntr >= 16) {
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			cntr -= 16;
+		}
+
+		while (cntr > 0) {
+			val = READ_NAND (nandptr);
+			*data_buf++ = val & 0xff;
+			*data_buf++ = val >> 8;
+			cntr -= 2;
+		}
+	} else {
+		while (cntr >= 16) {
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			*data_buf++ = READ_NAND (nandptr);
+			cntr -= 16;
+		}
+
+		while (cntr > 0) {
+			*data_buf++ = READ_NAND (nandptr);
+			cntr--;
+		}
+	}
+}
+
+/*
+ * NAND read with ECC
+ */
+static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
+		 size_t * retlen, u_char *buf, u_char *ecc_code)
+{
+	int col, page;
+	int ecc_status = 0;
+#ifdef CONFIG_MTD_NAND_ECC
+	int j;
+	int ecc_failed = 0;
+	u_char *data_poi;
+	u_char ecc_calc[6];
+#endif
+
+	/* Do not allow reads past end of device */
+	if ((start + len) > nand->totlen) {
+		printf ("%s: Attempt read beyond end of device %x %x %x\n",
+			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
+		*retlen = 0;
+		return -1;
+	}
+
+	/* First we calculate the starting page */
+	/*page = shr(start, nand->page_shift);*/
+	page = start >> nand->page_shift;
+
+	/* Get raw starting column */
+	col = start & (nand->oobblock - 1);
+
+	/* Initialize return value */
+	*retlen = 0;
+
+	/* Select the NAND device */
+	NAND_ENABLE_CE(nand);  /* set pin low */
+
+	/* Loop until all data read */
+	while (*retlen < len) {
+
+#ifdef CONFIG_MTD_NAND_ECC
+		/* Do we have this page in cache ? */
+		if (nand->cache_page == page)
+			goto readdata;
+		/* Send the read command */
+		NanD_Command(nand, NAND_CMD_READ0);
+		if (nand->bus16) {
+ 			NanD_Address(nand, ADDR_COLUMN_PAGE,
+				     (page << nand->page_shift) + (col >> 1));
+		} else {
+ 			NanD_Address(nand, ADDR_COLUMN_PAGE,
+				     (page << nand->page_shift) + col);
+		}
+
+		/* Read in a page + oob data */
+		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
+
+		/* copy data into cache, for read out of cache and if ecc fails */
+		if (nand->data_cache) {
+			memcpy (nand->data_cache, nand->data_buf,
+				nand->oobblock + nand->oobsize);
+		}
 
+		/* Pick the ECC bytes out of the oob data */
+		for (j = 0; j < 6; j++) {
+			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
+		}
+
+		/* Calculate the ECC and verify it */
+		/* If block was not written with ECC, skip ECC */
+		if (oob_config.eccvalid_pos != -1 &&
+		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
+
+			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
+			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
+			case -1:
+				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+				ecc_failed++;
+				break;
+			case 1:
+			case 2:	/* transfer ECC corrected data to cache */
+				if (nand->data_cache)
+					memcpy (nand->data_cache, nand->data_buf, 256);
+				break;
+			}
+		}
+
+		if (oob_config.eccvalid_pos != -1 &&
+		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
+
+			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
+			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
+			case -1:
+				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
+				ecc_failed++;
+				break;
+			case 1:
+			case 2:	/* transfer ECC corrected data to cache */
+				if (nand->data_cache)
+					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
+				break;
+			}
+		}
+readdata:
+		/* Read the data from ECC data buffer into return buffer */
+		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
+		data_poi += col;
+		if ((*retlen + (nand->oobblock - col)) >= len) {
+			memcpy (buf + *retlen, data_poi, len - *retlen);
+			*retlen = len;
+		} else {
+			memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
+			*retlen += nand->oobblock - col;
+		}
+		/* Set cache page address, invalidate, if ecc_failed */
+		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
+
+		ecc_status += ecc_failed;
+		ecc_failed = 0;
+
+#else
+		/* Send the read command */
+		NanD_Command(nand, NAND_CMD_READ0);
+		if (nand->bus16) {
+			NanD_Address(nand, ADDR_COLUMN_PAGE,
+				     (page << nand->page_shift) + (col >> 1));
+		} else {
+			NanD_Address(nand, ADDR_COLUMN_PAGE,
+				     (page << nand->page_shift) + col);
+		}
+
+		/* Read the data directly into the return buffer */
+		if ((*retlen + (nand->oobblock - col)) >= len) {
+			NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
+			*retlen = len;
+			/* We're done */
+			continue;
+		} else {
+			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
+			*retlen += nand->oobblock - col;
+			}
+#endif
+		/* For subsequent reads align to page boundary. */
+		col = 0;
+		/* Increment page address */
+		page++;
+	}
+
+	/* De-select the NAND device */
+	NAND_DISABLE_CE(nand);  /* set pin high */
+
+	/*
+	 * Return success, if no ECC failures, else -EIO
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EIO
+	 */
+	return ecc_status ? -1 : 0;
+}
+
+/*
+ *	Nand_page_program function is used for write and writev !
+ */
+static int nand_write_page (struct nand_chip *nand,
+			    int page, int col, int last, u_char * ecc_code)
+{
+
+	int i;
+	unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef CONFIG_MTD_NAND_ECC
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
+#endif
+#endif
+	/* pad oob area */
+	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
+		nand->data_buf[i] = 0xff;
+
+#ifdef CONFIG_MTD_NAND_ECC
+	/* Zero out the ECC array */
+	for (i = 0; i < 6; i++)
+		ecc_code[i] = 0x00;
+
+	/* Read back previous written data, if col > 0 */
+	if (col) {
+		NanD_Command (nand, NAND_CMD_READ0);
+		if (nand->bus16) {
+			NanD_Address (nand, ADDR_COLUMN_PAGE,
+				      (page << nand->page_shift) + (col >> 1));
+		} else {
+			NanD_Address (nand, ADDR_COLUMN_PAGE,
+				      (page << nand->page_shift) + col);
+		}
+
+		if (nand->bus16) {
+			u16 val;
+
+			for (i = 0; i < col; i += 2) {
+				val = READ_NAND (nandptr);
+				nand->data_buf[i] = val & 0xff;
+				nand->data_buf[i + 1] = val >> 8;
+			}
+		} else {
+			for (i = 0; i < col; i++)
+				nand->data_buf[i] = READ_NAND (nandptr);
+		}
+	}
+
+	/* Calculate and write the ECC if we have enough data */
+	if ((col < nand->eccsize) && (last >= nand->eccsize)) {
+		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
+		for (i = 0; i < 3; i++) {
+			nand->data_buf[(nand->oobblock +
+					oob_config.ecc_pos[i])] = ecc_code[i];
+		}
+		if (oob_config.eccvalid_pos != -1) {
+			nand->data_buf[nand->oobblock +
+				       oob_config.eccvalid_pos] = 0xf0;
+		}
+	}
+
+	/* Calculate and write the second ECC if we have enough data */
+	if ((nand->oobblock == 512) && (last == nand->oobblock)) {
+		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
+		for (i = 3; i < 6; i++) {
+			nand->data_buf[(nand->oobblock +
+					oob_config.ecc_pos[i])] = ecc_code[i];
+		}
+		if (oob_config.eccvalid_pos != -1) {
+			nand->data_buf[nand->oobblock +
+				       oob_config.eccvalid_pos] &= 0x0f;
+		}
+	}
+#endif
+	/* Prepad for partial page programming !!! */
+	for (i = 0; i < col; i++)
+		nand->data_buf[i] = 0xff;
+
+	/* Postpad for partial page programming !!! oob is already padded */
+	for (i = last; i < nand->oobblock; i++)
+		nand->data_buf[i] = 0xff;
+
+	/* Send command to begin auto page programming */
+	NanD_Command (nand, NAND_CMD_READ0);
+	NanD_Command (nand, NAND_CMD_SEQIN);
+	if (nand->bus16) {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + (col >> 1));
+	} else {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + col);
+	}
+
+	/* Write out complete page of data */
+	if (nand->bus16) {
+		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
+			WRITE_NAND (nand->data_buf[i] +
+				    (nand->data_buf[i + 1] << 8),
+				    nand->IO_ADDR);
+		}
+	} else {
+		for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
+			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
+	}
+
+	/* Send command to actually program the data */
+	NanD_Command (nand, NAND_CMD_PAGEPROG);
+	NanD_Command (nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+	{
+		u_char ret_val;
+
+		do {
+			ret_val = READ_NAND (nandptr);	/* wait till ready */
+		} while ((ret_val & 0x40) != 0x40);
+	}
+#endif
+	/* See if device thinks it succeeded */
+	if (READ_NAND (nand->IO_ADDR) & 0x01) {
+		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
+			page);
+		return -1;
+	}
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+	/*
+	 * The NAND device assumes that it is always writing to
+	 * a cleanly erased page. Hence, it performs its internal
+	 * write verification only on bits that transitioned from
+	 * 1 to 0. The device does NOT verify the whole page on a
+	 * byte by byte basis. It is possible that the page was
+	 * not completely erased or the page is becoming unusable
+	 * due to wear. The read with ECC would catch the error
+	 * later when the ECC page check fails, but we would rather
+	 * catch it early in the page write stage. Better to write
+	 * no data than invalid data.
+	 */
+
+	/* Send command to read back the page */
+	if (col < nand->eccsize)
+		NanD_Command (nand, NAND_CMD_READ0);
+	else
+		NanD_Command (nand, NAND_CMD_READ1);
+	if (nand->bus16) {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + (col >> 1));
+	} else {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + col);
+	}
+
+	/* Loop through and verify the data */
+	if (nand->bus16) {
+		for (i = col; i < last; i = +2) {
+			if ((nand->data_buf[i] +
+			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
+				printf ("%s: Failed write verify, page 0x%08x ",
+					__FUNCTION__, page);
+				return -1;
+			}
+		}
+	} else {
+		for (i = col; i < last; i++) {
+			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
+				printf ("%s: Failed write verify, page 0x%08x ",
+					__FUNCTION__, page);
+				return -1;
+			}
+		}
+	}
+
+#ifdef CONFIG_MTD_NAND_ECC
+	/*
+	 * We also want to check that the ECC bytes wrote
+	 * correctly for the same reasons stated above.
+	 */
+	NanD_Command (nand, NAND_CMD_READOOB);
+	if (nand->bus16) {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + (col >> 1));
+	} else {
+		NanD_Address (nand, ADDR_COLUMN_PAGE,
+			      (page << nand->page_shift) + col);
+	}
+	if (nand->bus16) {
+		for (i = 0; i < nand->oobsize; i += 2) {
+			u16 val;
+
+			val = READ_NAND (nand->IO_ADDR);
+			nand->data_buf[i] = val & 0xff;
+			nand->data_buf[i + 1] = val >> 8;
+		}
+	} else {
+		for (i = 0; i < nand->oobsize; i++) {
+			nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
+		}
+	}
+	for (i = 0; i < ecc_bytes; i++) {
+		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
+			printf ("%s: Failed ECC write "
+				"verify, page 0x%08x, "
+				"%6i bytes were succesful\n",
+				__FUNCTION__, page, i);
+			return -1;
+		}
+	}
+#endif	/* CONFIG_MTD_NAND_ECC */
+#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */
+	return 0;
+}
+
+static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
+			   size_t * retlen, const u_char * buf, u_char * ecc_code)
+{
+	int i, page, col, cnt, ret = 0;
+
+	/* Do not allow write past end of device */
+	if ((to + len) > nand->totlen) {
+		printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
+		return -1;
+	}
+
+	/* Shift to get page */
+	page = ((int) to) >> nand->page_shift;
+
+	/* Get the starting column */
+	col = to & (nand->oobblock - 1);
+
+	/* Initialize return length value */
+	*retlen = 0;
+
+	/* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+	archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+	NAND_WP_OFF();
+#endif
+
+    	NAND_ENABLE_CE(nand);  /* set pin low */
+
+	/* Check the WP bit */
+	NanD_Command(nand, NAND_CMD_STATUS);
+	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+		ret = -1;
+		goto out;
+	}
+
+	/* Loop until all data is written */
+	while (*retlen < len) {
+		/* Invalidate cache, if we write to this page */
+		if (nand->cache_page == page)
+			nand->cache_page = -1;
+
+		/* Write data into buffer */
+		if ((col + len) >= nand->oobblock) {
+			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
+				nand->data_buf[i] = buf[(*retlen + cnt)];
+			}
+		} else {
+			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
+				nand->data_buf[i] = buf[(*retlen + cnt)];
+			}
+		}
+		/* We use the same function for write and writev !) */
+		ret = nand_write_page (nand, page, col, i, ecc_code);
+		if (ret)
+			goto out;
+
+		/* Next data start at page boundary */
+		col = 0;
+
+		/* Update written bytes count */
+		*retlen += cnt;
+
+		/* Increment page address */
+		page++;
+	}
+
+	/* Return happy */
+	*retlen = len;
+
+out:
+	/* De-select the NAND device */
+	NAND_DISABLE_CE(nand);  /* set pin high */
+#ifdef CONFIG_OMAP1510
+    	archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+	NAND_WP_ON();
+#endif
+
+	return ret;
+}
+
+/* read from the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
+			 size_t * retlen, u_char * buf)
+{
+	int len256 = 0;
+	struct Nand *mychip;
+	int ret = 0;
+
+	mychip = &nand->chips[ofs >> nand->chipshift];
+
+	/* update address for 2M x 8bit devices. OOB starts on the second */
+	/* page to maintain compatibility with nand_read_ecc. */
+	if (nand->page256) {
+		if (!(ofs & 0x8))
+			ofs += 0x100;
+		else
+			ofs -= 0x8;
+	}
+
+	NAND_ENABLE_CE(nand);  /* set pin low */
+	NanD_Command(nand, NAND_CMD_READOOB);
+	if (nand->bus16) {
+ 		NanD_Address(nand, ADDR_COLUMN_PAGE,
+			     ((ofs >> nand->page_shift) << nand->page_shift) +
+ 				((ofs & (nand->oobblock - 1)) >> 1));
+	} else {
+		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+	}
+
+	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
+	/* Note: datasheet says it should automaticaly wrap to the */
+	/*       next OOB block, but it didn't work here. mf.      */
+	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+		len256 = (ofs | 0x7) + 1 - ofs;
+		NanD_ReadBuf(nand, buf, len256);
+
+		NanD_Command(nand, NAND_CMD_READOOB);
+		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+	}
+
+	NanD_ReadBuf(nand, &buf[len256], len - len256);
+
+	*retlen = len;
+	/* Reading the full OOB data drops us off of the end of the page,
+	 * causing the flash device to go into busy mode, so we need
+	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
+
+	ret = NanD_WaitReady(nand, 1);
+	NAND_DISABLE_CE(nand);  /* set pin high */
+
+	return ret;
+
+}
+
+/* write to the 16 bytes of oob data that correspond to a 512 byte
+ * page or 2 256-byte pages.
+ */
+static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
+		  size_t * retlen, const u_char * buf)
+{
+	int len256 = 0;
+	int i;
+	unsigned long nandptr = nand->IO_ADDR;
+
+#ifdef PSYCHO_DEBUG
+	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
+	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
+	       buf[8], buf[9], buf[14],buf[15]);
+#endif
+
+	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */
+
+	/* Reset the chip */
+	NanD_Command(nand, NAND_CMD_RESET);
+
+	/* issue the Read2 command to set the pointer to the Spare Data Area. */
+	NanD_Command(nand, NAND_CMD_READOOB);
+	if (nand->bus16) {
+ 		NanD_Address(nand, ADDR_COLUMN_PAGE,
+			     ((ofs >> nand->page_shift) << nand->page_shift) +
+ 				((ofs & (nand->oobblock - 1)) >> 1));
+	} else {
+ 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+	}
+
+	/* update address for 2M x 8bit devices. OOB starts on the second */
+	/* page to maintain compatibility with nand_read_ecc. */
+	if (nand->page256) {
+		if (!(ofs & 0x8))
+			ofs += 0x100;
+		else
+			ofs -= 0x8;
+	}
+
+	/* issue the Serial Data In command to initial the Page Program process */
+	NanD_Command(nand, NAND_CMD_SEQIN);
+	if (nand->bus16) {
+ 		NanD_Address(nand, ADDR_COLUMN_PAGE,
+			     ((ofs >> nand->page_shift) << nand->page_shift) +
+ 				((ofs & (nand->oobblock - 1)) >> 1));
+	} else {
+ 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
+	}
+
+	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
+	/* Note: datasheet says it should automaticaly wrap to the */
+	/*       next OOB block, but it didn't work here. mf.      */
+	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
+		len256 = (ofs | 0x7) + 1 - ofs;
+		for (i = 0; i < len256; i++)
+			WRITE_NAND(buf[i], nandptr);
+
+		NanD_Command(nand, NAND_CMD_PAGEPROG);
+		NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+   		{ u_char ret_val;
+			do {
+				ret_val = READ_NAND(nandptr); /* wait till ready */
+			} while ((ret_val & 0x40) != 0x40);
+		}
+#endif
+		if (READ_NAND(nandptr) & 1) {
+			puts ("Error programming oob data\n");
+			/* There was an error */
+			NAND_DISABLE_CE(nand);  /* set pin high */
+			*retlen = 0;
+			return -1;
+		}
+		NanD_Command(nand, NAND_CMD_SEQIN);
+		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
+	}
+
+	if (nand->bus16) {
+		for (i = len256; i < len; i += 2) {
+			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
+		}
+	} else {
+		for (i = len256; i < len; i++)
+			WRITE_NAND(buf[i], nandptr);
+	}
+
+	NanD_Command(nand, NAND_CMD_PAGEPROG);
+	NanD_Command(nand, NAND_CMD_STATUS);
+#ifdef NAND_NO_RB
+	{	u_char ret_val;
+		do {
+			ret_val = READ_NAND(nandptr); /* wait till ready */
+		} while ((ret_val & 0x40) != 0x40);
+	}
+#endif
+	if (READ_NAND(nandptr) & 1) {
+		puts ("Error programming oob data\n");
+		/* There was an error */
+		NAND_DISABLE_CE(nand);  /* set pin high */
+		*retlen = 0;
+		return -1;
+	}
+
+	NAND_DISABLE_CE(nand);  /* set pin high */
+	*retlen = len;
+	return 0;
+
+}
+
+int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
+{
+	/* This is defined as a structure so it will work on any system
+	 * using native endian jffs2 (the default).
+	 */
+	static struct jffs2_unknown_node clean_marker = {
+		JFFS2_MAGIC_BITMASK,
+		JFFS2_NODETYPE_CLEANMARKER,
+		8		/* 8 bytes in this node */
+	};
+	unsigned long nandptr;
+	struct Nand *mychip;
+	int ret = 0;
+
+	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
+		printf ("Offset and size must be sector aligned, erasesize = %d\n",
+			(int) nand->erasesize);
+		return -1;
+	}
+
+	nandptr = nand->IO_ADDR;
+
+	/* Select the NAND device */
+#ifdef CONFIG_OMAP1510
+	archflashwp(0,0);
+#endif
+#ifdef CFG_NAND_WP
+	NAND_WP_OFF();
+#endif
+    NAND_ENABLE_CE(nand);  /* set pin low */
+
+	/* Check the WP bit */
+	NanD_Command(nand, NAND_CMD_STATUS);
+	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+		printf ("nand_write_ecc: Device is write protected!!!\n");
+		ret = -1;
+		goto out;
+	}
+
+	/* Check the WP bit */
+	NanD_Command(nand, NAND_CMD_STATUS);
+	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
+		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
+		ret = -1;
+		goto out;
+	}
+
+	/* FIXME: Do nand in the background. Use timers or schedule_task() */
+	while(len) {
+		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
+		mychip = &nand->chips[ofs >> nand->chipshift];
+
+		/* always check for bad block first, genuine bad blocks
+		 * should _never_  be erased.
+		 */
+		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
+			/* Select the NAND device */
+			NAND_ENABLE_CE(nand);  /* set pin low */
+
+			NanD_Command(nand, NAND_CMD_ERASE1);
+			NanD_Address(nand, ADDR_PAGE, ofs);
+			NanD_Command(nand, NAND_CMD_ERASE2);
+
+			NanD_Command(nand, NAND_CMD_STATUS);
+
+#ifdef NAND_NO_RB
+			{	u_char ret_val;
+				do {
+					ret_val = READ_NAND(nandptr); /* wait till ready */
+				} while ((ret_val & 0x40) != 0x40);
+			}
+#endif
+			if (READ_NAND(nandptr) & 1) {
+				printf ("%s: Error erasing at 0x%lx\n",
+					__FUNCTION__, (long)ofs);
+				/* There was an error */
+				ret = -1;
+				goto out;
+			}
+			if (clean) {
+				int n;	/* return value not used */
+				int p, l;
+
+				/* clean marker position and size depend
+				 * on the page size, since 256 byte pages
+				 * only have 8 bytes of oob data
+				 */
+				if (nand->page256) {
+					p = NAND_JFFS2_OOB8_FSDAPOS;
+					l = NAND_JFFS2_OOB8_FSDALEN;
+				} else {
+					p = NAND_JFFS2_OOB16_FSDAPOS;
+					l = NAND_JFFS2_OOB16_FSDALEN;
+				}
+
+				ret = nand_write_oob(nand, ofs + p, l, &n,
+						     (u_char *)&clean_marker);
+				/* quit here if write failed */
+				if (ret)
+					goto out;
+			}
+		}
+		ofs += nand->erasesize;
+		len -= nand->erasesize;
+	}
+
+out:
+	/* De-select the NAND device */
+	NAND_DISABLE_CE(nand);  /* set pin high */
+#ifdef CONFIG_OMAP1510
+    	archflashwp(0,1);
+#endif
+#ifdef CFG_NAND_WP
+	NAND_WP_ON();
+#endif
+
+	return ret;
+}
+
+static inline int nandcheck(unsigned long potential, unsigned long physadr)
+{
+	return 0;
+}
+
+unsigned long nand_probe(unsigned long physadr)
+{
+	struct nand_chip *nand = NULL;
+	int i = 0, ChipID = 1;
+
+#ifdef CONFIG_MTD_NAND_ECC_JFFS2
+	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
+	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
+	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
+	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
+	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
+	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
+	oob_config.eccvalid_pos = 4;
+#else
+	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
+	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
+	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
+	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
+	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
+	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
+	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
+#endif
+	oob_config.badblock_pos = 5;
+
+	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
+		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
+			nand = &nand_dev_desc[i];
+			break;
+		}
+	}
+	if (!nand)
+		return (0);
+
+	memset((char *)nand, 0, sizeof(struct nand_chip));
+
+	nand->IO_ADDR = physadr;
+	nand->cache_page = -1;  /* init the cache page */
+	NanD_ScanChips(nand);
+
+	if (nand->totlen == 0) {
+		/* no chips found, clean up and quit */
+		memset((char *)nand, 0, sizeof(struct nand_chip));
+		nand->ChipID = NAND_ChipID_UNKNOWN;
+		return (0);
+	}
+
+	nand->ChipID = ChipID;
+	if (curr_device == -1)
+		curr_device = i;
+
+	nand->data_buf = malloc (nand->oobblock + nand->oobsize);
+	if (!nand->data_buf) {
+		puts ("Cannot allocate memory for data structures.\n");
+		return (0);
+	}
+
+	return (nand->totlen);
+}
+
+#ifdef CONFIG_MTD_NAND_ECC
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
+	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
+	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
+	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
+	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
+	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
+	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
+	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
+	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/*
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+	u_char *ecc_code)
+{
+	u_char a, b, i, tmp1, tmp2;
+
+	/* Initialize variables */
+	a = b = 0x80;
+	tmp1 = tmp2 = 0;
+
+	/* Calculate first ECC byte */
+	for (i = 0; i < 4; i++) {
+		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */
+			tmp1 |= b;
+		b >>= 1;
+		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */
+			tmp1 |= b;
+		b >>= 1;
+		a >>= 1;
+	}
+
+	/* Calculate second ECC byte */
+	b = 0x80;
+	for (i = 0; i < 4; i++) {
+		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */
+			tmp2 |= b;
+		b >>= 1;
+		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */
+			tmp2 |= b;
+		b >>= 1;
+		a >>= 1;
+	}
+
+	/* Store two of the ECC bytes */
+	ecc_code[0] = tmp1;
+	ecc_code[1] = tmp2;
+}
+
+/*
+ * Calculate 3 byte ECC code for 256 byte block
+ */
+static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+{
+	u_char idx, reg1, reg3;
+	int j;
+
+	/* Initialize variables */
+	reg1 = reg3 = 0;
+	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+	/* Build up column parity */
+	for(j = 0; j < 256; j++) {
+
+		/* Get CP0 - CP5 from table */
+		idx = nand_ecc_precalc_table[dat[j]];
+		reg1 ^= idx;
+
+		/* All bit XOR = 1 ? */
+		if (idx & 0x40) {
+			reg3 ^= (u_char) j;
+		}
+	}
+
+	/* Create non-inverted ECC code from line parity */
+	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
+
+	/* Calculate final ECC code */
+	ecc_code[0] = ~ecc_code[0];
+	ecc_code[1] = ~ecc_code[1];
+	ecc_code[2] = ((~reg1) << 2) | 0x03;
+}
+
+/*
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+	u_char a, b, c, d1, d2, d3, add, bit, i;
+
+	/* Do error detection */
+	d1 = calc_ecc[0] ^ read_ecc[0];
+	d2 = calc_ecc[1] ^ read_ecc[1];
+	d3 = calc_ecc[2] ^ read_ecc[2];
+
+	if ((d1 | d2 | d3) == 0) {
+		/* No errors */
+		return 0;
+	} else {
+		a = (d1 ^ (d1 >> 1)) & 0x55;
+		b = (d2 ^ (d2 >> 1)) & 0x55;
+		c = (d3 ^ (d3 >> 1)) & 0x54;
+
+		/* Found and will correct single bit error in the data */
+		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+			c = 0x80;
+			add = 0;
+			a = 0x80;
+			for (i=0; i<4; i++) {
+				if (d1 & c)
+					add |= a;
+				c >>= 2;
+				a >>= 1;
+			}
+			c = 0x80;
+			for (i=0; i<4; i++) {
+				if (d2 & c)
+					add |= a;
+				c >>= 2;
+				a >>= 1;
+			}
+			bit = 0;
+			b = 0x04;
+			c = 0x80;
+			for (i=0; i<3; i++) {
+				if (d3 & c)
+					bit |= b;
+				c >>= 2;
+				b >>= 1;
+			}
+			b = 0x01;
+			a = dat[add];
+			a ^= (b << bit);
+			dat[add] = a;
+			return 1;
+		}
+		else {
+			i = 0;
+			while (d1) {
+				if (d1 & 0x01)
+					++i;
+				d1 >>= 1;
+			}
+			while (d2) {
+				if (d2 & 0x01)
+					++i;
+				d2 >>= 1;
+			}
+			while (d3) {
+				if (d3 & 0x01)
+					++i;
+				d3 >>= 1;
+			}
+			if (i == 1) {
+				/* ECC Code Error Correction */
+				read_ecc[0] = calc_ecc[0];
+				read_ecc[1] = calc_ecc[1];
+				read_ecc[2] = calc_ecc[2];
+				return 2;
+			}
+			else {
+				/* Uncorrectable Error */
+				return -1;
+			}
+		}
+	}
+
+	/* Should never happen */
+	return -1;
+}
+
+#endif
+
+#ifdef CONFIG_JFFS2_NAND
+
+int read_jffs2_nand(size_t start, size_t len,
+		    size_t * retlen, u_char * buf, int nanddev)
+{
+	return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
+		       start, len, retlen, buf);
+}
+
+#endif /* CONFIG_JFFS2_NAND */
 
-#endif				/* (CONFIG_COMMANDS & CFG_CMD_NAND) */
 
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */