blob: f202b2f49f587e765a02202ab8c56c6bf2051391 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// Mediatek SPI-NOR controller driver
//
// Copyright (C) 2020 SkyLake Huang <SkyLake.Huang@mediatek.com>
//
// Some parts are based on drivers/spi/spi-mtk-nor.c of linux version
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <spi.h>
#include <spi-mem.h>
#include <stdbool.h>
#include <watchdog.h>
#include <linux/dma-mapping.h>
#define DRIVER_NAME "mtk-spi-nor"
#define MTK_NOR_REG_CMD 0x00
#define MTK_NOR_CMD_WRSR BIT(5)
#define MTK_NOR_CMD_WRITE BIT(4)
#define MTK_NOR_CMD_PROGRAM BIT(2)
#define MTK_NOR_CMD_RDSR BIT(1)
#define MTK_NOR_CMD_READ BIT(0)
#define MTK_NOR_CMD_MASK GENMASK(5, 0)
#define MTK_NOR_REG_PRG_CNT 0x04
#define MTK_NOR_REG_RDSR 0x08
#define MTK_NOR_REG_RDATA 0x0c
#define MTK_NOR_REG_RADR0 0x10
#define MTK_NOR_REG_RADR(n) (MTK_NOR_REG_RADR0 + 4 * (n))
#define MTK_NOR_REG_RADR3 0xc8
#define MTK_NOR_REG_WDATA 0x1c
#define MTK_NOR_REG_PRGDATA0 0x20
#define MTK_NOR_REG_PRGDATA(n) (MTK_NOR_REG_PRGDATA0 + 4 * (n))
#define MTK_NOR_REG_PRGDATA_MAX 5
#define MTK_NOR_REG_SHIFT0 0x38
#define MTK_NOR_REG_SHIFT(n) (MTK_NOR_REG_SHIFT0 + 4 * (n))
#define MTK_NOR_REG_SHIFT_MAX 9
#define MTK_NOR_REG_CFG1 0x60
#define MTK_NOR_FAST_READ BIT(0)
#define MTK_NOR_REG_CFG2 0x64
#define MTK_NOR_WR_CUSTOM_OP_EN BIT(4)
#define MTK_NOR_WR_BUF_EN BIT(0)
#define MTK_NOR_REG_PP_DATA 0x98
#define MTK_NOR_REG_IRQ_STAT 0xa8
#define MTK_NOR_REG_IRQ_EN 0xac
#define MTK_NOR_IRQ_DMA BIT(7)
#define MTK_NOR_IRQ_WRSR BIT(5)
#define MTK_NOR_IRQ_MASK GENMASK(7, 0)
#define MTK_NOR_REG_CFG3 0xb4
#define MTK_NOR_DISABLE_WREN BIT(7)
#define MTK_NOR_DISABLE_SR_POLL BIT(5)
#define MTK_NOR_REG_WP 0xc4
#define MTK_NOR_ENABLE_SF_CMD 0x30
#define MTK_NOR_REG_BUSCFG 0xcc
#define MTK_NOR_4B_ADDR BIT(4)
#define MTK_NOR_QUAD_ADDR BIT(3)
#define MTK_NOR_QUAD_READ BIT(2)
#define MTK_NOR_DUAL_ADDR BIT(1)
#define MTK_NOR_DUAL_READ BIT(0)
#define MTK_NOR_BUS_MODE_MASK GENMASK(4, 0)
#define MTK_NOR_REG_DMA_CTL 0x718
#define MTK_NOR_DMA_START BIT(0)
#define MTK_NOR_REG_DMA_FADR 0x71c
#define MTK_NOR_REG_DMA_DADR 0x720
#define MTK_NOR_REG_DMA_END_DADR 0x724
#define MTK_NOR_PRG_MAX_SIZE 6
// Reading DMA src/dst addresses have to be 16-byte aligned
#define MTK_NOR_DMA_ALIGN 16
#define MTK_NOR_DMA_ALIGN_MASK (MTK_NOR_DMA_ALIGN - 1)
// and we allocate a bounce buffer if destination address isn't aligned.
#define MTK_NOR_BOUNCE_BUF_SIZE PAGE_SIZE
// Buffered page program can do one 128-byte transfer
#define MTK_NOR_PP_SIZE 128
#define CLK_TO_US(priv, clkcnt) DIV_ROUND_UP(clkcnt, (priv)->spi_freq / 1000000)
#define MTK_NOR_UNLOCK_ALL 0x0
struct mtk_snor_priv {
struct device *dev;
void __iomem *base;
u8 *buffer;
struct clk spi_clk;
struct clk ctlr_clk;
unsigned int spi_freq;
bool wbuf_en;
};
static inline void mtk_snor_rmw(struct mtk_snor_priv *priv, u32 reg, u32 set,
u32 clr)
{
u32 val = readl(priv->base + reg);
val &= ~clr;
val |= set;
writel(val, priv->base + reg);
}
static inline int mtk_snor_cmd_exec(struct mtk_snor_priv *priv, u32 cmd,
ulong clk)
{
unsigned long long delay = CLK_TO_US(priv, clk);
u32 reg;
int ret;
writel(cmd, priv->base + MTK_NOR_REG_CMD);
delay = (delay + 1) * 200;
ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CMD, reg,
!(reg & cmd), delay);
if (ret < 0)
dev_err(priv->dev, "command %u timeout.\n", cmd);
return ret;
}
static void mtk_snor_set_addr(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
u32 addr = op->addr.val;
int i;
for (i = 0; i < 3; i++) {
writeb(addr & 0xff, priv->base + MTK_NOR_REG_RADR(i));
addr >>= 8;
}
if (op->addr.nbytes == 4) {
writeb(addr & 0xff, priv->base + MTK_NOR_REG_RADR3);
mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, MTK_NOR_4B_ADDR, 0);
} else {
mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, 0, MTK_NOR_4B_ADDR);
}
}
static bool need_bounce(const struct spi_mem_op *op)
{
return ((uintptr_t)op->data.buf.in & MTK_NOR_DMA_ALIGN_MASK);
}
static int mtk_snor_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
if (!op->data.nbytes)
return 0;
if (op->addr.nbytes == 3 || op->addr.nbytes == 4) {
if (op->data.dir == SPI_MEM_DATA_IN) { //&&
// limit size to prevent timeout calculation overflow
if (op->data.nbytes > 0x400000)
op->data.nbytes = 0x400000;
if (op->addr.val & MTK_NOR_DMA_ALIGN_MASK ||
op->data.nbytes < MTK_NOR_DMA_ALIGN)
op->data.nbytes = 1;
else if (!need_bounce(op))
op->data.nbytes &= ~MTK_NOR_DMA_ALIGN_MASK;
else if (op->data.nbytes > MTK_NOR_BOUNCE_BUF_SIZE)
op->data.nbytes = MTK_NOR_BOUNCE_BUF_SIZE;
return 0;
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes >= MTK_NOR_PP_SIZE)
op->data.nbytes = MTK_NOR_PP_SIZE;
else
op->data.nbytes = 1;
return 0;
}
}
return 0;
}
static bool mtk_snor_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
/* This controller only supports 1-1-1 write mode */
if (op->data.dir == SPI_MEM_DATA_OUT &&
(op->cmd.buswidth != 1 || op->data.buswidth != 1))
return false;
return true;
}
static void mtk_snor_setup_bus(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
u32 reg = 0;
if (op->addr.nbytes == 4)
reg |= MTK_NOR_4B_ADDR;
if (op->data.buswidth == 4) {
reg |= MTK_NOR_QUAD_READ;
writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA(4));
if (op->addr.buswidth == 4)
reg |= MTK_NOR_QUAD_ADDR;
} else if (op->data.buswidth == 2) {
reg |= MTK_NOR_DUAL_READ;
writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA(3));
if (op->addr.buswidth == 2)
reg |= MTK_NOR_DUAL_ADDR;
} else {
if (op->cmd.opcode == 0x0b)
mtk_snor_rmw(priv, MTK_NOR_REG_CFG1, MTK_NOR_FAST_READ,
0);
else
mtk_snor_rmw(priv, MTK_NOR_REG_CFG1, 0,
MTK_NOR_FAST_READ);
}
mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, reg, MTK_NOR_BUS_MODE_MASK);
}
static int mtk_snor_dma_exec(struct mtk_snor_priv *priv, u32 from,
unsigned int length, dma_addr_t dma_addr)
{
int ret = 0;
ulong delay;
u32 reg;
writel(from, priv->base + MTK_NOR_REG_DMA_FADR);
writel(dma_addr, priv->base + MTK_NOR_REG_DMA_DADR);
writel(dma_addr + length, priv->base + MTK_NOR_REG_DMA_END_DADR);
mtk_snor_rmw(priv, MTK_NOR_REG_DMA_CTL, MTK_NOR_DMA_START, 0);
delay = CLK_TO_US(priv, (length + 5) * BITS_PER_BYTE);
delay = (delay + 1) * 100;
ret = readl_poll_timeout(priv->base + MTK_NOR_REG_DMA_CTL, reg,
!(reg & MTK_NOR_DMA_START), delay);
if (ret < 0)
dev_err(priv->dev, "dma read timeout.\n");
return ret;
}
static int mtk_snor_read_bounce(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
unsigned int rdlen;
int ret;
if (op->data.nbytes & MTK_NOR_DMA_ALIGN_MASK)
rdlen = (op->data.nbytes + MTK_NOR_DMA_ALIGN) &
~MTK_NOR_DMA_ALIGN_MASK;
else
rdlen = op->data.nbytes;
ret = mtk_snor_dma_exec(priv, op->addr.val, rdlen,
(dma_addr_t)priv->buffer);
if (!ret)
memcpy(op->data.buf.in, priv->buffer, op->data.nbytes);
return ret;
}
static int mtk_snor_read_dma(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
int ret;
dma_addr_t dma_addr;
if (need_bounce(op))
return mtk_snor_read_bounce(priv, op);
dma_addr = dma_map_single(op->data.buf.in, op->data.nbytes,
DMA_FROM_DEVICE);
if (dma_mapping_error(priv->dev, dma_addr))
return -EINVAL;
ret = mtk_snor_dma_exec(priv, op->addr.val, op->data.nbytes, dma_addr);
dma_unmap_single(dma_addr, op->data.nbytes, DMA_FROM_DEVICE);
return ret;
}
static int mtk_snor_read_pio(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
u8 *buf = op->data.buf.in;
int ret;
ret = mtk_snor_cmd_exec(priv, MTK_NOR_CMD_READ, 6 * BITS_PER_BYTE);
if (!ret)
buf[0] = readb(priv->base + MTK_NOR_REG_RDATA);
return ret;
}
static int mtk_snor_write_buffer_enable(struct mtk_snor_priv *priv)
{
int ret;
u32 val;
if (priv->wbuf_en)
return 0;
val = readl(priv->base + MTK_NOR_REG_CFG2);
writel(val | MTK_NOR_WR_BUF_EN, priv->base + MTK_NOR_REG_CFG2);
ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CFG2, val,
val & MTK_NOR_WR_BUF_EN, 10000);
if (!ret)
priv->wbuf_en = true;
return ret;
}
static int mtk_snor_write_buffer_disable(struct mtk_snor_priv *priv)
{
int ret;
u32 val;
if (!priv->wbuf_en)
return 0;
val = readl(priv->base + MTK_NOR_REG_CFG2);
writel(val & ~MTK_NOR_WR_BUF_EN, priv->base + MTK_NOR_REG_CFG2);
ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CFG2, val,
!(val & MTK_NOR_WR_BUF_EN), 10000);
if (!ret)
priv->wbuf_en = false;
return ret;
}
static int mtk_snor_pp_buffered(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
const u8 *buf = op->data.buf.out;
u32 val;
int ret, i;
ret = mtk_snor_write_buffer_enable(priv);
if (ret < 0)
return ret;
for (i = 0; i < op->data.nbytes; i += 4) {
val = buf[i + 3] << 24 | buf[i + 2] << 16 | buf[i + 1] << 8 |
buf[i];
writel(val, priv->base + MTK_NOR_REG_PP_DATA);
}
mtk_snor_cmd_exec(priv, MTK_NOR_CMD_WRITE,
(op->data.nbytes + 5) * BITS_PER_BYTE);
return mtk_snor_write_buffer_disable(priv);
}
static int mtk_snor_pp_unbuffered(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
const u8 *buf = op->data.buf.out;
int ret;
ret = mtk_snor_write_buffer_disable(priv);
if (ret < 0)
return ret;
writeb(buf[0], priv->base + MTK_NOR_REG_WDATA);
return mtk_snor_cmd_exec(priv, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE);
}
static int mtk_snor_cmd_program(struct mtk_snor_priv *priv,
const struct spi_mem_op *op)
{
u32 tx_len = 0;
u32 trx_len = 0;
int reg_offset = MTK_NOR_REG_PRGDATA_MAX;
void __iomem *reg;
u8 *txbuf;
int tx_cnt = 0;
u8 *rxbuf = op->data.buf.in;
int i = 0;
tx_len = 1 + op->addr.nbytes + op->dummy.nbytes;
trx_len = tx_len + op->data.nbytes;
if (op->data.dir == SPI_MEM_DATA_OUT)
tx_len += op->data.nbytes;
txbuf = kmalloc_array(tx_len, sizeof(u8), GFP_KERNEL);
memset(txbuf, 0x0, tx_len * sizeof(u8));
/* Join all bytes to be transferred */
txbuf[tx_cnt] = op->cmd.opcode;
tx_cnt++;
for (i = op->addr.nbytes; i > 0; i--, tx_cnt++)
txbuf[tx_cnt] = ((u8 *)&op->addr.val)[i - 1];
for (i = op->dummy.nbytes; i > 0; i--, tx_cnt++)
txbuf[tx_cnt] = 0x0;
if (op->data.dir == SPI_MEM_DATA_OUT)
for (i = op->data.nbytes; i > 0; i--, tx_cnt++)
txbuf[tx_cnt] = ((u8 *)op->data.buf.out)[i - 1];
for (i = MTK_NOR_REG_PRGDATA_MAX; i >= 0; i--)
writeb(0, priv->base + MTK_NOR_REG_PRGDATA(i));
for (i = 0; i < tx_len; i++, reg_offset--)
writeb(txbuf[i], priv->base + MTK_NOR_REG_PRGDATA(reg_offset));
kfree(txbuf);
writel(trx_len * BITS_PER_BYTE, priv->base + MTK_NOR_REG_PRG_CNT);
mtk_snor_cmd_exec(priv, MTK_NOR_CMD_PROGRAM, trx_len * BITS_PER_BYTE);
reg_offset = op->data.nbytes - 1;
for (i = 0; i < op->data.nbytes; i++, reg_offset--) {
reg = priv->base + MTK_NOR_REG_SHIFT(reg_offset);
rxbuf[i] = readb(reg);
}
return 0;
}
static int mtk_snor_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *bus = dev_get_parent(slave->dev);
struct mtk_snor_priv *priv = dev_get_priv(bus);
int ret;
if (op->data.dir == SPI_MEM_NO_DATA || op->addr.nbytes == 0) {
return mtk_snor_cmd_program(priv, op);
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
mtk_snor_set_addr(priv, op);
writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA0);
if (op->data.nbytes == MTK_NOR_PP_SIZE)
return mtk_snor_pp_buffered(priv, op);
return mtk_snor_pp_unbuffered(priv, op);
} else if (op->data.dir == SPI_MEM_DATA_IN) {
ret = mtk_snor_write_buffer_disable(priv);
if (ret < 0)
return ret;
mtk_snor_setup_bus(priv, op);
if (op->data.nbytes == 1) {
mtk_snor_set_addr(priv, op);
return mtk_snor_read_pio(priv, op);
} else {
return mtk_snor_read_dma(priv, op);
}
}
return -ENOTSUPP;
}
static int mtk_snor_probe(struct udevice *bus)
{
struct mtk_snor_priv *priv = dev_get_priv(bus);
u8 *buffer;
int ret;
u32 reg;
priv->base = devfdt_get_addr_ptr(bus);
if (!priv->base)
return -EINVAL;
ret = clk_get_by_name(bus, "spi", &priv->spi_clk);
if (ret < 0)
return ret;
ret = clk_get_by_name(bus, "sf", &priv->ctlr_clk);
if (ret < 0)
return ret;
buffer = devm_kmalloc(bus, MTK_NOR_BOUNCE_BUF_SIZE + MTK_NOR_DMA_ALIGN,
GFP_KERNEL);
if (!buffer)
return -ENOMEM;
if ((ulong)buffer & MTK_NOR_DMA_ALIGN_MASK)
buffer = (u8 *)(((ulong)buffer + MTK_NOR_DMA_ALIGN) &
~MTK_NOR_DMA_ALIGN_MASK);
priv->buffer = buffer;
clk_enable(&priv->spi_clk);
clk_enable(&priv->ctlr_clk);
priv->spi_freq = clk_get_rate(&priv->spi_clk);
printf("spi frequency: %d Hz\n", priv->spi_freq);
/* With this setting, we issue one command at a time to
* accommodate to SPI-mem framework.
*/
writel(MTK_NOR_ENABLE_SF_CMD, priv->base + MTK_NOR_REG_WP);
mtk_snor_rmw(priv, MTK_NOR_REG_CFG2, MTK_NOR_WR_CUSTOM_OP_EN, 0);
mtk_snor_rmw(priv, MTK_NOR_REG_CFG3,
MTK_NOR_DISABLE_WREN | MTK_NOR_DISABLE_SR_POLL, 0);
/* Unlock all blocks using write status command.
* SPI-MEM hasn't implemented unlock procedure on MXIC devices.
* We may remove this later.
*/
writel(2 * BITS_PER_BYTE, priv->base + MTK_NOR_REG_PRG_CNT);
writel(MTK_NOR_UNLOCK_ALL, priv->base + MTK_NOR_REG_PRGDATA(5));
writel(MTK_NOR_IRQ_WRSR, priv->base + MTK_NOR_REG_IRQ_EN);
writel(MTK_NOR_CMD_WRSR, priv->base + MTK_NOR_REG_CMD);
ret = readl_poll_timeout(priv->base + MTK_NOR_REG_IRQ_STAT, reg,
!(reg & MTK_NOR_IRQ_WRSR),
((3 * BITS_PER_BYTE) + 1) * 200);
return 0;
}
static int mtk_snor_set_speed(struct udevice *bus, uint speed)
{
/* MTK's SNOR controller does not have a bus clock divider.
* We setup maximum bus clock in dts.
*/
return 0;
}
static int mtk_snor_set_mode(struct udevice *bus, uint mode)
{
/* We set up mode later for each transmission.
*/
return 0;
}
static const struct spi_controller_mem_ops mtk_snor_mem_ops = {
.adjust_op_size = mtk_snor_adjust_op_size,
.supports_op = mtk_snor_supports_op,
.exec_op = mtk_snor_exec_op
};
static const struct dm_spi_ops mtk_snor_ops = {
.mem_ops = &mtk_snor_mem_ops,
.set_speed = mtk_snor_set_speed,
.set_mode = mtk_snor_set_mode,
};
static const struct udevice_id mtk_snor_ids[] = {
{ .compatible = "mediatek,mtk-snor" },
{}
};
U_BOOT_DRIVER(mtk_snor) = {
.name = "mtk_snor",
.id = UCLASS_SPI,
.of_match = mtk_snor_ids,
.ops = &mtk_snor_ops,
.priv_auto = sizeof(struct mtk_snor_priv),
.probe = mtk_snor_probe,
};