| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2022 Microchip Technology Inc. |
| * Padmarao Begari <padmarao.begari@microchip.com> |
| * Naga Sureshkumar Relli <nagasuresh.relli@microchip.com> |
| */ |
| |
| #include <clk.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <spi-mem.h> |
| #include <asm/io.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/sizes.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* |
| * QSPI Control register mask defines |
| */ |
| #define CONTROL_ENABLE BIT(0) |
| #define CONTROL_MASTER BIT(1) |
| #define CONTROL_XIP BIT(2) |
| #define CONTROL_XIPADDR BIT(3) |
| #define CONTROL_CLKIDLE BIT(10) |
| #define CONTROL_SAMPLE_MASK GENMASK(12, 11) |
| #define CONTROL_MODE0 BIT(13) |
| #define CONTROL_MODE12_MASK GENMASK(15, 14) |
| #define CONTROL_MODE12_EX_RO BIT(14) |
| #define CONTROL_MODE12_EX_RW BIT(15) |
| #define CONTROL_MODE12_FULL GENMASK(15, 14) |
| #define CONTROL_FLAGSX4 BIT(16) |
| #define CONTROL_CLKRATE_MASK GENMASK(27, 24) |
| #define CONTROL_CLKRATE_SHIFT 24 |
| |
| /* |
| * QSPI Frames register mask defines |
| */ |
| #define FRAMES_TOTALBYTES_MASK GENMASK(15, 0) |
| #define FRAMES_CMDBYTES_MASK GENMASK(24, 16) |
| #define FRAMES_CMDBYTES_SHIFT 16 |
| #define FRAMES_SHIFT 25 |
| #define FRAMES_IDLE_MASK GENMASK(29, 26) |
| #define FRAMES_IDLE_SHIFT 26 |
| #define FRAMES_FLAGBYTE BIT(30) |
| #define FRAMES_FLAGWORD BIT(31) |
| |
| /* |
| * QSPI Interrupt Enable register mask defines |
| */ |
| #define IEN_TXDONE BIT(0) |
| #define IEN_RXDONE BIT(1) |
| #define IEN_RXAVAILABLE BIT(2) |
| #define IEN_TXAVAILABLE BIT(3) |
| #define IEN_RXFIFOEMPTY BIT(4) |
| #define IEN_TXFIFOFULL BIT(5) |
| |
| /* |
| * QSPI Status register mask defines |
| */ |
| #define STATUS_TXDONE BIT(0) |
| #define STATUS_RXDONE BIT(1) |
| #define STATUS_RXAVAILABLE BIT(2) |
| #define STATUS_TXAVAILABLE BIT(3) |
| #define STATUS_RXFIFOEMPTY BIT(4) |
| #define STATUS_TXFIFOFULL BIT(5) |
| #define STATUS_READY BIT(7) |
| #define STATUS_FLAGSX4 BIT(8) |
| #define STATUS_MASK GENMASK(8, 0) |
| |
| #define BYTESUPPER_MASK GENMASK(31, 16) |
| #define BYTESLOWER_MASK GENMASK(15, 0) |
| |
| #define MAX_DIVIDER 16 |
| #define MIN_DIVIDER 0 |
| #define MAX_DATA_CMD_LEN 256 |
| |
| /* QSPI ready time out value */ |
| #define TIMEOUT_MS (1000 * 500) |
| |
| /* |
| * QSPI Register offsets. |
| */ |
| #define REG_CONTROL (0x00) |
| #define REG_FRAMES (0x04) |
| #define REG_IEN (0x0c) |
| #define REG_STATUS (0x10) |
| #define REG_DIRECT_ACCESS (0x14) |
| #define REG_UPPER_ACCESS (0x18) |
| #define REG_RX_DATA (0x40) |
| #define REG_TX_DATA (0x44) |
| #define REG_X4_RX_DATA (0x48) |
| #define REG_X4_TX_DATA (0x4c) |
| #define REG_FRAMESUP (0x50) |
| |
| /** |
| * struct mchp_coreqspi - Defines qspi driver instance |
| * @regs: Address of the QSPI controller registers |
| * @freq: QSPI Input frequency |
| * @txbuf: TX buffer |
| * @rxbuf: RX buffer |
| * @tx_len: Number of bytes left to transfer |
| * @rx_len: Number of bytes left to receive |
| */ |
| struct mchp_coreqspi { |
| void __iomem *regs; |
| u32 freq; |
| u8 *txbuf; |
| u8 *rxbuf; |
| int tx_len; |
| int rx_len; |
| }; |
| |
| static void mchp_coreqspi_init_hw(struct mchp_coreqspi *qspi) |
| { |
| u32 control; |
| |
| control = CONTROL_CLKIDLE | CONTROL_ENABLE; |
| |
| writel(control, qspi->regs + REG_CONTROL); |
| writel(0, qspi->regs + REG_IEN); |
| } |
| |
| static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi) |
| { |
| u32 control, data; |
| |
| if (!qspi->rx_len) |
| return; |
| |
| control = readl(qspi->regs + REG_CONTROL); |
| |
| /* |
| * Read 4-bytes from the SPI FIFO in single transaction and then read |
| * the reamaining data byte wise. |
| */ |
| control |= CONTROL_FLAGSX4; |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| while (qspi->rx_len >= 4) { |
| while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY) |
| ; |
| data = readl(qspi->regs + REG_X4_RX_DATA); |
| *(u32 *)qspi->rxbuf = data; |
| qspi->rxbuf += 4; |
| qspi->rx_len -= 4; |
| } |
| |
| control &= ~CONTROL_FLAGSX4; |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| while (qspi->rx_len--) { |
| while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY) |
| ; |
| data = readl(qspi->regs + REG_RX_DATA); |
| *qspi->rxbuf++ = (data & 0xFF); |
| } |
| } |
| |
| static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word) |
| { |
| u32 control, data; |
| |
| control = readl(qspi->regs + REG_CONTROL); |
| control |= CONTROL_FLAGSX4; |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| while (qspi->tx_len >= 4) { |
| while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL) |
| ; |
| data = *(u32 *)qspi->txbuf; |
| qspi->txbuf += 4; |
| qspi->tx_len -= 4; |
| writel(data, qspi->regs + REG_X4_TX_DATA); |
| } |
| |
| control &= ~CONTROL_FLAGSX4; |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| while (qspi->tx_len--) { |
| while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL) |
| ; |
| data = *qspi->txbuf++; |
| writel(data, qspi->regs + REG_TX_DATA); |
| } |
| } |
| |
| static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, |
| const struct spi_mem_op *op) |
| { |
| u32 idle_cycles = 0; |
| int total_bytes, cmd_bytes, frames, ctrl; |
| |
| cmd_bytes = op->cmd.nbytes + op->addr.nbytes; |
| total_bytes = cmd_bytes + op->data.nbytes; |
| |
| /* |
| * As per the coreQSPI IP spec,the number of command and data bytes are |
| * controlled by the frames register for each SPI sequence. This supports |
| * the SPI flash memory read and writes sequences as below. so configure |
| * the cmd and total bytes accordingly. |
| * --------------------------------------------------------------------- |
| * TOTAL BYTES | CMD BYTES | What happens | |
| * ______________________________________________________________________ |
| * | | | |
| * 1 | 1 | The SPI core will transmit a single byte | |
| * | | and receive data is discarded | |
| * | | | |
| * 1 | 0 | The SPI core will transmit a single byte | |
| * | | and return a single byte | |
| * | | | |
| * 10 | 4 | The SPI core will transmit 4 command | |
| * | | bytes discarding the receive data and | |
| * | | transmits 6 dummy bytes returning the 6 | |
| * | | received bytes and return a single byte | |
| * | | | |
| * 10 | 10 | The SPI core will transmit 10 command | |
| * | | | |
| * 10 | 0 | The SPI core will transmit 10 command | |
| * | | bytes and returning 10 received bytes | |
| * ______________________________________________________________________ |
| */ |
| |
| if (!(op->data.dir == SPI_MEM_DATA_IN)) |
| cmd_bytes = total_bytes; |
| |
| frames = total_bytes & BYTESUPPER_MASK; |
| writel(frames, qspi->regs + REG_FRAMESUP); |
| frames = total_bytes & BYTESLOWER_MASK; |
| frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT; |
| |
| if (op->dummy.buswidth) |
| idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth; |
| |
| frames |= idle_cycles << FRAMES_IDLE_SHIFT; |
| ctrl = readl(qspi->regs + REG_CONTROL); |
| |
| if (ctrl & CONTROL_MODE12_MASK) |
| frames |= (1 << FRAMES_SHIFT); |
| |
| frames |= FRAMES_FLAGWORD; |
| writel(frames, qspi->regs + REG_FRAMES); |
| } |
| |
| static int mchp_coreqspi_wait_for_ready(struct spi_slave *slave) |
| { |
| struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent); |
| unsigned long count = 0; |
| |
| while (1) { |
| if (readl(qspi->regs + REG_STATUS) & STATUS_READY) |
| return 0; |
| |
| udelay(1); |
| count += 1; |
| if (count == TIMEOUT_MS) |
| return -ETIMEDOUT; |
| } |
| } |
| |
| static int mchp_coreqspi_set_operate_mode(struct mchp_coreqspi *qspi, |
| const struct spi_mem_op *op) |
| { |
| u32 control = readl(qspi->regs + REG_CONTROL); |
| |
| /* |
| * The operating mode can be configured based on the command that needs |
| * to be send. |
| * bits[15:14]: Sets whether multiple bit SPI operates in normal, |
| * extended or full modes. |
| * 00: Normal (single DQ0 TX and single DQ1 RX lines) |
| * 01: Extended RO (command and address bytes on DQ0 only) |
| * 10: Extended RW (command byte on DQ0 only) |
| * 11: Full. (command and address are on all DQ lines) |
| * bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data |
| * 0: 2-bits (BSPI) |
| * 1: 4-bits (QSPI) |
| */ |
| if (op->data.buswidth == 4 || op->data.buswidth == 2) { |
| control &= ~CONTROL_MODE12_MASK; |
| if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || |
| op->addr.buswidth == 0)) |
| control |= CONTROL_MODE12_EX_RO; |
| else if (op->cmd.buswidth == 1) |
| control |= CONTROL_MODE12_EX_RW; |
| else |
| control |= CONTROL_MODE12_FULL; |
| |
| control |= CONTROL_MODE0; |
| } else { |
| control &= ~(CONTROL_MODE12_MASK | CONTROL_MODE0); |
| } |
| |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| return 0; |
| } |
| |
| static int mchp_coreqspi_exec_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent); |
| |
| u32 address = op->addr.val; |
| u8 opcode = op->cmd.opcode; |
| u8 opaddr[5]; |
| int err = 0, i; |
| |
| err = mchp_coreqspi_wait_for_ready(slave); |
| if (err) |
| return err; |
| |
| err = mchp_coreqspi_set_operate_mode(qspi, op); |
| if (err) |
| return err; |
| |
| mchp_coreqspi_config_op(qspi, op); |
| if (op->cmd.opcode) { |
| qspi->txbuf = &opcode; |
| qspi->rxbuf = NULL; |
| qspi->tx_len = op->cmd.nbytes; |
| qspi->rx_len = 0; |
| mchp_coreqspi_write_op(qspi, false); |
| } |
| |
| qspi->txbuf = &opaddr[0]; |
| if (op->addr.nbytes) { |
| for (i = 0; i < op->addr.nbytes; i++) |
| qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1)); |
| |
| qspi->rxbuf = NULL; |
| qspi->tx_len = op->addr.nbytes; |
| qspi->rx_len = 0; |
| mchp_coreqspi_write_op(qspi, false); |
| } |
| |
| if (op->data.nbytes) { |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| qspi->txbuf = (u8 *)op->data.buf.out; |
| qspi->rxbuf = NULL; |
| qspi->rx_len = 0; |
| qspi->tx_len = op->data.nbytes; |
| mchp_coreqspi_write_op(qspi, true); |
| } else { |
| qspi->txbuf = NULL; |
| qspi->rxbuf = (u8 *)op->data.buf.in; |
| qspi->rx_len = op->data.nbytes; |
| qspi->tx_len = 0; |
| mchp_coreqspi_read_op(qspi); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool mchp_coreqspi_supports_op(struct spi_slave *slave, |
| const struct spi_mem_op *op) |
| { |
| if (!spi_mem_default_supports_op(slave, op)) |
| return false; |
| |
| if ((op->data.buswidth == 4 || op->data.buswidth == 2) && |
| (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || |
| op->addr.buswidth == 0))) { |
| /* |
| * If the command and address are on DQ0 only, then this |
| * controller doesn't support sending data on dual and |
| * quad lines. but it supports reading data on dual and |
| * quad lines with same configuration as command and |
| * address on DQ0. |
| * i.e. The control register[15:13] :EX_RO(read only) is |
| * meant only for the command and address are on DQ0 but |
| * not to write data, it is just to read. |
| * Ex: 0x34h is Quad Load Program Data which is not |
| * supported. Then the spi-mem layer will iterate over |
| * each command and it will chose the supported one. |
| */ |
| if (op->data.dir == SPI_MEM_DATA_OUT) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int mchp_coreqspi_adjust_op_size(struct spi_slave *slave, |
| struct spi_mem_op *op) |
| { |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| if (op->data.nbytes > MAX_DATA_CMD_LEN) |
| op->data.nbytes = MAX_DATA_CMD_LEN; |
| } |
| |
| return 0; |
| } |
| |
| static int mchp_coreqspi_set_speed(struct udevice *dev, uint speed) |
| { |
| struct mchp_coreqspi *qspi = dev_get_priv(dev); |
| u32 control, baud_rate_val = 0; |
| |
| if (speed > (qspi->freq / 2)) |
| speed = qspi->freq / 2; |
| |
| baud_rate_val = DIV_ROUND_UP(qspi->freq, 2 * speed); |
| if (baud_rate_val >= MAX_DIVIDER || baud_rate_val <= MIN_DIVIDER) |
| return -EINVAL; |
| |
| control = readl(qspi->regs + REG_CONTROL); |
| control &= ~CONTROL_CLKRATE_MASK; |
| control |= baud_rate_val << CONTROL_CLKRATE_SHIFT; |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| return 0; |
| } |
| |
| static int mchp_coreqspi_set_mode(struct udevice *dev, uint mode) |
| { |
| struct mchp_coreqspi *qspi = dev_get_priv(dev); |
| u32 control; |
| |
| control = readl(qspi->regs + REG_CONTROL); |
| |
| if ((mode & SPI_CPOL) && (mode & SPI_CPHA)) |
| control |= CONTROL_CLKIDLE; |
| else |
| control &= ~CONTROL_CLKIDLE; |
| |
| writel(control, qspi->regs + REG_CONTROL); |
| |
| return 0; |
| } |
| |
| static int mchp_coreqspi_claim_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| static int mchp_coreqspi_release_bus(struct udevice *dev) |
| { |
| return 0; |
| } |
| |
| static int mchp_coreqspi_probe(struct udevice *dev) |
| { |
| struct mchp_coreqspi *qspi = dev_get_priv(dev); |
| struct clk clk; |
| ulong clk_rate; |
| int ret; |
| |
| ret = clk_get_by_index(dev, 0, &clk); |
| if (ret) |
| return -EINVAL; |
| |
| ret = clk_enable(&clk); |
| if (ret) |
| return ret; |
| |
| clk_rate = clk_get_rate(&clk); |
| if (!clk_rate) |
| return -EINVAL; |
| qspi->freq = clk_rate; |
| |
| qspi->regs = dev_read_addr_ptr(dev); |
| if (!qspi->regs) |
| return -EINVAL; |
| |
| /* Init the mpfs qspi hw */ |
| mchp_coreqspi_init_hw(qspi); |
| |
| return 0; |
| } |
| |
| static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = { |
| .adjust_op_size = mchp_coreqspi_adjust_op_size, |
| .supports_op = mchp_coreqspi_supports_op, |
| .exec_op = mchp_coreqspi_exec_op, |
| }; |
| |
| static const struct dm_spi_ops mchp_coreqspi_ops = { |
| .claim_bus = mchp_coreqspi_claim_bus, |
| .release_bus = mchp_coreqspi_release_bus, |
| .set_speed = mchp_coreqspi_set_speed, |
| .set_mode = mchp_coreqspi_set_mode, |
| .mem_ops = &mchp_coreqspi_mem_ops, |
| }; |
| |
| static const struct udevice_id mchp_coreqspi_ids[] = { |
| { .compatible = "microchip,mpfs-coreqspi-rtl-v2" }, |
| { .compatible = "microchip,mpfs-qspi" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(mchp_coreqspi) = { |
| .name = "mchp_coreqspi", |
| .id = UCLASS_SPI, |
| .of_match = mchp_coreqspi_ids, |
| .ops = &mchp_coreqspi_ops, |
| .priv_auto = sizeof(struct mchp_coreqspi), |
| .probe = mchp_coreqspi_probe, |
| }; |