blob: 93ab2b5635f3b14a9091e456f639923148091d62 [file] [log] [blame]
/*
* Copyright (C) 2012 Altera Corporation <www.altera.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the Altera Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <log.h>
#include <asm/io.h>
#include <dma.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <wait_bit.h>
#include <spi.h>
#include <spi-mem.h>
#include <malloc.h>
#include "cadence_qspi.h"
__weak void cadence_qspi_apb_enable_linear_mode(bool enable)
{
return;
}
void cadence_qspi_apb_controller_enable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
void cadence_qspi_apb_controller_disable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_ENABLE;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
void cadence_qspi_apb_dac_mode_enable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_DIRECT;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static unsigned int cadence_qspi_calc_dummy(const struct spi_mem_op *op,
bool dtr)
{
unsigned int dummy_clk;
if (!op->dummy.nbytes || !op->dummy.buswidth)
return 0;
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
if (dtr)
dummy_clk /= 2;
return dummy_clk;
}
static u32 cadence_qspi_calc_rdreg(struct cadence_spi_priv *priv)
{
u32 rdreg = 0;
rdreg |= priv->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
rdreg |= priv->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
rdreg |= priv->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
return rdreg;
}
static int cadence_qspi_buswidth_to_inst_type(u8 buswidth)
{
switch (buswidth) {
case 0:
case 1:
return CQSPI_INST_TYPE_SINGLE;
case 2:
return CQSPI_INST_TYPE_DUAL;
case 4:
return CQSPI_INST_TYPE_QUAD;
case 8:
return CQSPI_INST_TYPE_OCTAL;
default:
return -ENOTSUPP;
}
}
static int cadence_qspi_set_protocol(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
int ret;
/*
* For an op to be DTR, cmd phase along with every other non-empty
* phase should have dtr field set to 1. If an op phase has zero
* nbytes, ignore its dtr field; otherwise, check its dtr field.
* Also, dummy checks not performed here Since supports_op()
* already checks that all or none of the fields are DTR.
*/
priv->dtr = op->cmd.dtr &&
(!op->addr.nbytes || op->addr.dtr) &&
(!op->data.nbytes || op->data.dtr);
ret = cadence_qspi_buswidth_to_inst_type(op->cmd.buswidth);
if (ret < 0)
return ret;
priv->inst_width = ret;
ret = cadence_qspi_buswidth_to_inst_type(op->addr.buswidth);
if (ret < 0)
return ret;
priv->addr_width = ret;
ret = cadence_qspi_buswidth_to_inst_type(op->data.buswidth);
if (ret < 0)
return ret;
priv->data_width = ret;
return 0;
}
/* Return 1 if idle, otherwise return 0 (busy). */
static unsigned int cadence_qspi_wait_idle(void *reg_base)
{
unsigned int start, count = 0;
/* timeout in unit of ms */
unsigned int timeout = 5000;
start = get_timer(0);
for ( ; get_timer(start) < timeout ; ) {
if (CQSPI_REG_IS_IDLE(reg_base))
count++;
else
count = 0;
/*
* Ensure the QSPI controller is in true idle state after
* reading back the same idle status consecutively
*/
if (count >= CQSPI_POLL_IDLE_RETRY)
return 1;
}
/* Timeout, still in busy mode. */
printf("QSPI: QSPI is still busy after poll for %d ms.\n", timeout);
return 0;
}
void cadence_qspi_apb_readdata_capture(void *reg_base,
unsigned int bypass, unsigned int delay)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_RD_DATA_CAPTURE);
if (bypass)
reg |= CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
else
reg &= ~CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
reg &= ~(CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK)
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_RD_DATA_CAPTURE);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_config_baudrate_div(void *reg_base,
unsigned int ref_clk_hz, unsigned int sclk_hz)
{
unsigned int reg;
unsigned int div;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
/*
* The baud_div field in the config reg is 4 bits, and the ref clock is
* divided by 2 * (baud_div + 1). Round up the divider to ensure the
* SPI clock rate is less than or equal to the requested clock rate.
*/
div = DIV_ROUND_UP(ref_clk_hz, sclk_hz * 2) - 1;
/* ensure the baud rate doesn't exceed the max value */
if (div > CQSPI_REG_CONFIG_BAUD_MASK)
div = CQSPI_REG_CONFIG_BAUD_MASK;
debug("%s: ref_clk %dHz sclk %dHz Div 0x%x, actual %dHz\n", __func__,
ref_clk_hz, sclk_hz, div, ref_clk_hz / (2 * (div + 1)));
reg |= (div << CQSPI_REG_CONFIG_BAUD_LSB);
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_set_clk_mode(void *reg_base, uint mode)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_CLK_POL | CQSPI_REG_CONFIG_CLK_PHA);
if (mode & SPI_CPOL)
reg |= CQSPI_REG_CONFIG_CLK_POL;
if (mode & SPI_CPHA)
reg |= CQSPI_REG_CONFIG_CLK_PHA;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_chipselect(void *reg_base,
unsigned int chip_select, unsigned int decoder_enable)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
debug("%s : chipselect %d decode %d\n", __func__, chip_select,
decoder_enable);
reg = readl(reg_base + CQSPI_REG_CONFIG);
/* docoder */
if (decoder_enable) {
reg |= CQSPI_REG_CONFIG_DECODE;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_delay(void *reg_base,
unsigned int ref_clk, unsigned int sclk_hz,
unsigned int tshsl_ns, unsigned int tsd2d_ns,
unsigned int tchsh_ns, unsigned int tslch_ns)
{
unsigned int ref_clk_ns;
unsigned int sclk_ns;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
/* Convert to ns. */
ref_clk_ns = DIV_ROUND_UP(1000000000, ref_clk);
/* Convert to ns. */
sclk_ns = DIV_ROUND_UP(1000000000, sclk_hz);
/* The controller adds additional delay to that programmed in the reg */
if (tshsl_ns >= sclk_ns + ref_clk_ns)
tshsl_ns -= sclk_ns + ref_clk_ns;
if (tchsh_ns >= sclk_ns + 3 * ref_clk_ns)
tchsh_ns -= sclk_ns + 3 * ref_clk_ns;
tshsl = DIV_ROUND_UP(tshsl_ns, ref_clk_ns);
tchsh = DIV_ROUND_UP(tchsh_ns, ref_clk_ns);
tslch = DIV_ROUND_UP(tslch_ns, ref_clk_ns);
tsd2d = DIV_ROUND_UP(tsd2d_ns, ref_clk_ns);
reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB);
reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB);
reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB);
reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB);
writel(reg, reg_base + CQSPI_REG_DELAY);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_controller_init(struct cadence_spi_priv *priv)
{
unsigned reg;
cadence_qspi_apb_controller_disable(priv->regbase);
/* Configure the device size and address bytes */
reg = readl(priv->regbase + CQSPI_REG_SIZE);
/* Clear the previous value */
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
reg |= (priv->page_size << CQSPI_REG_SIZE_PAGE_LSB);
reg |= (priv->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
writel(reg, priv->regbase + CQSPI_REG_SIZE);
/* Configure the remap address register, no remap */
writel(0, priv->regbase + CQSPI_REG_REMAP);
/* Indirect mode configurations */
writel(priv->fifo_depth / 2, priv->regbase + CQSPI_REG_SRAMPARTITION);
/* Disable all interrupts */
writel(0, priv->regbase + CQSPI_REG_IRQMASK);
cadence_qspi_apb_controller_enable(priv->regbase);
}
int cadence_qspi_apb_exec_flash_cmd(void *reg_base, unsigned int reg)
{
unsigned int retry = CQSPI_REG_RETRY;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
while (retry--) {
reg = readl(reg_base + CQSPI_REG_CMDCTRL);
if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS) == 0)
break;
udelay(1);
}
if (!retry) {
printf("QSPI: flash command execution timeout\n");
return -EIO;
}
/* Polling QSPI idle status. */
if (!cadence_qspi_wait_idle(reg_base))
return -EIO;
/* Flush the CMDCTRL reg after the execution */
writel(0, reg_base + CQSPI_REG_CMDCTRL);
return 0;
}
static int cadence_qspi_setup_opcode_ext(struct cadence_spi_priv *priv,
const struct spi_mem_op *op,
unsigned int shift)
{
unsigned int reg;
u8 ext;
if (op->cmd.nbytes != 2)
return -EINVAL;
/* Opcode extension is the LSB. */
ext = op->cmd.opcode & 0xff;
reg = readl(priv->regbase + CQSPI_REG_OP_EXT_LOWER);
reg &= ~(0xff << shift);
reg |= ext << shift;
writel(reg, priv->regbase + CQSPI_REG_OP_EXT_LOWER);
return 0;
}
static int cadence_qspi_enable_dtr(struct cadence_spi_priv *priv,
const struct spi_mem_op *op,
unsigned int shift,
bool enable)
{
unsigned int reg;
int ret;
reg = readl(priv->regbase + CQSPI_REG_CONFIG);
if (enable) {
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
/* Set up command opcode extension. */
ret = cadence_qspi_setup_opcode_ext(priv, op, shift);
if (ret)
return ret;
} else {
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
}
writel(reg, priv->regbase + CQSPI_REG_CONFIG);
return 0;
}
int cadence_qspi_apb_command_read_setup(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
int ret;
unsigned int reg;
ret = cadence_qspi_set_protocol(priv, op);
if (ret)
return ret;
ret = cadence_qspi_enable_dtr(priv, op, CQSPI_REG_OP_EXT_STIG_LSB,
priv->dtr);
if (ret)
return ret;
reg = cadence_qspi_calc_rdreg(priv);
writel(reg, priv->regbase + CQSPI_REG_RD_INSTR);
return 0;
}
/* For command RDID, RDSR. */
int cadence_qspi_apb_command_read(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
void *reg_base = priv->regbase;
unsigned int reg;
unsigned int read_len;
int status;
unsigned int rxlen = op->data.nbytes;
void *rxbuf = op->data.buf.in;
unsigned int dummy_clk;
u8 opcode;
if (priv->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
if (opcode == CMD_4BYTE_OCTAL_READ && !priv->dtr)
opcode = CMD_4BYTE_FAST_READ;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
/* Set up dummy cycles. */
dummy_clk = cadence_qspi_calc_dummy(op, priv->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -ENOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
/* setup ADDR BIT field */
if (op->addr.nbytes) {
writel(op->addr.val, priv->regbase + CQSPI_REG_CMDADDRESS);
/*
* address bytes are zero indexed
*/
reg |= (((op->addr.nbytes - 1) &
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) <<
CQSPI_REG_CMDCTRL_ADD_BYTES_LSB);
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
}
status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
if (status != 0)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (rxlen > 4) ? 4 : rxlen;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (rxlen > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = rxlen - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
int cadence_qspi_apb_command_write_setup(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
int ret;
unsigned int reg;
ret = cadence_qspi_set_protocol(priv, op);
if (ret)
return ret;
ret = cadence_qspi_enable_dtr(priv, op, CQSPI_REG_OP_EXT_STIG_LSB,
priv->dtr);
if (ret)
return ret;
reg = cadence_qspi_calc_rdreg(priv);
writel(reg, priv->regbase + CQSPI_REG_RD_INSTR);
return 0;
}
/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
int cadence_qspi_apb_command_write(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
unsigned int reg = 0;
unsigned int wr_data;
unsigned int wr_len;
unsigned int dummy_clk;
unsigned int txlen = op->data.nbytes;
const void *txbuf = op->data.buf.out;
void *reg_base = priv->regbase;
u8 opcode;
if (priv->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg |= opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
/* setup ADDR BIT field */
if (op->addr.nbytes) {
writel(op->addr.val, priv->regbase + CQSPI_REG_CMDADDRESS);
/*
* address bytes are zero indexed
*/
reg |= (((op->addr.nbytes - 1) &
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) <<
CQSPI_REG_CMDCTRL_ADD_BYTES_LSB);
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
}
/* Set up dummy cycles. */
dummy_clk = cadence_qspi_calc_dummy(op, priv->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
if (txlen) {
/* writing data = yes */
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
wr_len = txlen > 4 ? 4 : txlen;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATALOWER);
if (txlen > 4) {
txbuf += wr_len;
wr_len = txlen - wr_len;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATAUPPER);
}
}
/* Execute the command */
return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
}
/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
int cadence_qspi_apb_read_setup(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
unsigned int reg;
unsigned int rd_reg;
unsigned int dummy_clk;
unsigned int dummy_bytes = op->dummy.nbytes;
int ret;
u8 opcode;
ret = cadence_qspi_set_protocol(priv, op);
if (ret)
return ret;
ret = cadence_qspi_enable_dtr(priv, op, CQSPI_REG_OP_EXT_READ_LSB,
priv->dtr);
if (ret)
return ret;
/* Setup the indirect trigger address */
writel(priv->trigger_address,
priv->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
if (priv->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
rd_reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
rd_reg |= cadence_qspi_calc_rdreg(priv);
writel(op->addr.val, priv->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
if (dummy_bytes) {
/* Convert to clock cycles. */
dummy_clk = cadence_qspi_calc_dummy(op, priv->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -ENOTSUPP;
if (dummy_clk)
rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
}
writel(rd_reg, priv->regbase + CQSPI_REG_RD_INSTR);
/* set device size */
reg = readl(priv->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, priv->regbase + CQSPI_REG_SIZE);
return 0;
}
static u32 cadence_qspi_get_rd_sram_level(struct cadence_spi_priv *priv)
{
u32 reg = readl(priv->regbase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static int cadence_qspi_wait_for_data(struct cadence_spi_priv *priv)
{
unsigned int timeout = 10000;
u32 reg;
while (timeout--) {
reg = cadence_qspi_get_rd_sram_level(priv);
if (reg)
return reg;
udelay(1);
}
return -ETIMEDOUT;
}
static int
cadence_qspi_apb_indirect_read_execute(struct cadence_spi_priv *priv,
unsigned int n_rx, u8 *rxbuf)
{
unsigned int remaining = n_rx;
unsigned int bytes_to_read = 0;
int ret;
writel(n_rx, priv->regbase + CQSPI_REG_INDIRECTRDBYTES);
/* Start the indirect read transfer */
writel(CQSPI_REG_INDIRECTRD_START,
priv->regbase + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
ret = cadence_qspi_wait_for_data(priv);
if (ret < 0) {
printf("Indirect write timed out (%i)\n", ret);
goto failrd;
}
bytes_to_read = ret;
while (bytes_to_read != 0) {
bytes_to_read *= priv->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
/*
* Handle non-4-byte aligned access to avoid
* data abort.
*/
if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4))
readsb(priv->ahbbase, rxbuf, bytes_to_read);
else
readsl(priv->ahbbase, rxbuf,
bytes_to_read >> 2);
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cadence_qspi_get_rd_sram_level(priv);
}
}
/* Check indirect done status */
ret = wait_for_bit_le32(priv->regbase + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
if (ret) {
printf("Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE,
priv->regbase + CQSPI_REG_INDIRECTRD);
/* Check indirect done status */
ret = wait_for_bit_le32(priv->regbase + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE, 0, 10, 0);
if (ret) {
printf("Indirect read clear completion error (%i)\n", ret);
goto failrd;
}
return 0;
failrd:
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTRD_CANCEL,
priv->regbase + CQSPI_REG_INDIRECTRD);
return ret;
}
int cadence_qspi_apb_read_execute(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
u64 from = op->addr.val;
void *buf = op->data.buf.in;
size_t len = op->data.nbytes;
cadence_qspi_apb_enable_linear_mode(true);
if (priv->use_dac_mode && (from + len < priv->ahbsize)) {
if (len < 256 ||
dma_memcpy(buf, priv->ahbbase + from, len) < 0) {
memcpy_fromio(buf, priv->ahbbase + from, len);
}
if (!cadence_qspi_wait_idle(priv->regbase))
return -EIO;
return 0;
}
return cadence_qspi_apb_indirect_read_execute(priv, len, buf);
}
/* Opcode + Address (3/4 bytes) */
int cadence_qspi_apb_write_setup(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
unsigned int reg;
int ret;
u8 opcode;
ret = cadence_qspi_set_protocol(priv, op);
if (ret)
return ret;
ret = cadence_qspi_enable_dtr(priv, op, CQSPI_REG_OP_EXT_WRITE_LSB,
priv->dtr);
if (ret)
return ret;
/* Setup the indirect trigger address */
writel(priv->trigger_address,
priv->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
if (priv->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
reg |= priv->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
reg |= priv->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
writel(reg, priv->regbase + CQSPI_REG_WR_INSTR);
reg = cadence_qspi_calc_rdreg(priv);
writel(reg, priv->regbase + CQSPI_REG_RD_INSTR);
writel(op->addr.val, priv->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
if (priv->dtr) {
/*
* Some flashes like the cypress Semper flash expect a 4-byte
* dummy address with the Read SR command in DTR mode, but this
* controller does not support sending address with the Read SR
* command. So, disable write completion polling on the
* controller's side. spi-nor will take care of polling the
* status register.
*/
reg = readl(priv->regbase + CQSPI_REG_WR_COMPLETION_CTRL);
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
writel(reg, priv->regbase + CQSPI_REG_WR_COMPLETION_CTRL);
}
reg = readl(priv->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, priv->regbase + CQSPI_REG_SIZE);
return 0;
}
static int
cadence_qspi_apb_indirect_write_execute(struct cadence_spi_priv *priv,
unsigned int n_tx, const u8 *txbuf)
{
unsigned int page_size = priv->page_size;
unsigned int remaining = n_tx;
const u8 *bb_txbuf = txbuf;
void *bounce_buf = NULL;
unsigned int write_bytes;
int ret;
/*
* Use bounce buffer for non 32 bit aligned txbuf to avoid data
* aborts
*/
if ((uintptr_t)txbuf % 4) {
bounce_buf = malloc(n_tx);
if (!bounce_buf)
return -ENOMEM;
memcpy(bounce_buf, txbuf, n_tx);
bb_txbuf = bounce_buf;
}
/* Configure the indirect read transfer bytes */
writel(n_tx, priv->regbase + CQSPI_REG_INDIRECTWRBYTES);
/* Start the indirect write transfer */
writel(CQSPI_REG_INDIRECTWR_START,
priv->regbase + CQSPI_REG_INDIRECTWR);
/*
* Some delay is required for the above bit to be internally
* synchronized by the QSPI module.
*/
ndelay(priv->wr_delay);
while (remaining > 0) {
write_bytes = remaining > page_size ? page_size : remaining;
writesl(priv->ahbbase, bb_txbuf, write_bytes >> 2);
if (write_bytes % 4)
writesb(priv->ahbbase,
bb_txbuf + rounddown(write_bytes, 4),
write_bytes % 4);
ret = wait_for_bit_le32(priv->regbase + CQSPI_REG_SDRAMLEVEL,
CQSPI_REG_SDRAMLEVEL_WR_MASK <<
CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
if (ret) {
printf("Indirect write timed out (%i)\n", ret);
goto failwr;
}
bb_txbuf += write_bytes;
remaining -= write_bytes;
}
/* Check indirect done status */
ret = wait_for_bit_le32(priv->regbase + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
if (ret) {
printf("Indirect write completion error (%i)\n", ret);
goto failwr;
}
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE,
priv->regbase + CQSPI_REG_INDIRECTWR);
/* Check indirect done status */
ret = wait_for_bit_le32(priv->regbase + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE, 0, 10, 0);
if (ret) {
printf("Indirect write clear completion error (%i)\n", ret);
goto failwr;
}
if (bounce_buf)
free(bounce_buf);
return 0;
failwr:
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL,
priv->regbase + CQSPI_REG_INDIRECTWR);
if (bounce_buf)
free(bounce_buf);
return ret;
}
int cadence_qspi_apb_write_execute(struct cadence_spi_priv *priv,
const struct spi_mem_op *op)
{
u32 to = op->addr.val;
const void *buf = op->data.buf.out;
size_t len = op->data.nbytes;
/*
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
* address (all 0s) with the read status register command in DTR mode.
* But this controller does not support sending dummy address bytes to
* the flash when it is polling the write completion register in DTR
* mode. So, we can not use direct mode when in DTR mode for writing
* data.
*/
cadence_qspi_apb_enable_linear_mode(true);
if (!priv->dtr && priv->use_dac_mode && (to + len < priv->ahbsize)) {
memcpy_toio(priv->ahbbase + to, buf, len);
if (!cadence_qspi_wait_idle(priv->regbase))
return -EIO;
return 0;
}
return cadence_qspi_apb_indirect_write_execute(priv, len, buf);
}
void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
{
unsigned int reg;
/* enter XiP mode immediately and enable direct mode */
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE;
reg |= CQSPI_REG_CONFIG_DIRECT;
reg |= CQSPI_REG_CONFIG_XIP_IMM;
writel(reg, reg_base + CQSPI_REG_CONFIG);
/* keep the XiP mode */
writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);
/* Enable mode bit at devrd */
reg = readl(reg_base + CQSPI_REG_RD_INSTR);
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
}