blob: f859596d8953227165f840e4dfd6b26c1c845ab1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include "ddr3_init.h"
#include "xor_regs.h"
/* defines */
#ifdef MV_DEBUG
#define DB(x) x
#else
#define DB(x)
#endif
static u32 ui_xor_regs_ctrl_backup;
static u32 ui_xor_regs_base_backup[MAX_CS_NUM + 1];
static u32 ui_xor_regs_mask_backup[MAX_CS_NUM + 1];
void mv_sys_xor_init(u32 num_of_cs, u32 cs_ena, uint64_t cs_size, u32 base_delta)
{
u32 reg, ui, cs_count;
uint64_t base, size_mask;
ui_xor_regs_ctrl_backup = reg_read(XOR_WINDOW_CTRL_REG(0, 0));
for (ui = 0; ui < MAX_CS_NUM + 1; ui++)
ui_xor_regs_base_backup[ui] =
reg_read(XOR_BASE_ADDR_REG(0, ui));
for (ui = 0; ui < MAX_CS_NUM + 1; ui++)
ui_xor_regs_mask_backup[ui] =
reg_read(XOR_SIZE_MASK_REG(0, ui));
reg = 0;
for (ui = 0, cs_count = 0;
(cs_count < num_of_cs) && (ui < 8);
ui++, cs_count++) {
if (cs_ena & (1 << ui)) {
/* Enable Window x for each CS */
reg |= (0x1 << (ui));
/* Enable Window x for each CS */
reg |= (0x3 << ((ui * 2) + 16));
}
}
reg_write(XOR_WINDOW_CTRL_REG(0, 0), reg);
cs_count = 0;
for (ui = 0, cs_count = 0;
(cs_count < num_of_cs) && (ui < 8);
ui++, cs_count++) {
if (cs_ena & (1 << ui)) {
/*
* window x - Base - 0x00000000,
* Attribute 0x0e - DRAM
*/
base = cs_size * ui + base_delta;
/* fixed size 2GB for each CS */
size_mask = 0x7FFF0000;
switch (ui) {
case 0:
base |= 0xe00;
break;
case 1:
base |= 0xd00;
break;
case 2:
base |= 0xb00;
break;
case 3:
base |= 0x700;
break;
case 4: /* SRAM */
base = 0x40000000;
/* configure as shared transaction */
base |= 0x1F00;
size_mask = 0xF0000;
break;
}
reg_write(XOR_BASE_ADDR_REG(0, ui), (u32)base);
size_mask = (cs_size / _64K) - 1;
size_mask = (size_mask << XESMRX_SIZE_MASK_OFFS) & XESMRX_SIZE_MASK_MASK;
/* window x - Size */
reg_write(XOR_SIZE_MASK_REG(0, ui), (u32)size_mask);
}
}
mv_xor_hal_init(1);
return;
}
void mv_sys_xor_finish(void)
{
u32 ui;
reg_write(XOR_WINDOW_CTRL_REG(0, 0), ui_xor_regs_ctrl_backup);
for (ui = 0; ui < MAX_CS_NUM + 1; ui++)
reg_write(XOR_BASE_ADDR_REG(0, ui),
ui_xor_regs_base_backup[ui]);
for (ui = 0; ui < MAX_CS_NUM + 1; ui++)
reg_write(XOR_SIZE_MASK_REG(0, ui),
ui_xor_regs_mask_backup[ui]);
reg_write(XOR_ADDR_OVRD_REG(0, 0), 0);
}
/*
* mv_xor_hal_init - Initialize XOR engine
*
* DESCRIPTION:
* This function initialize XOR unit.
* INPUT:
* None.
*
* OUTPUT:
* None.
*
* RETURN:
* MV_BAD_PARAM if parameters to function invalid, MV_OK otherwise.
*/
void mv_xor_hal_init(u32 xor_chan_num)
{
u32 i;
/* Abort any XOR activity & set default configuration */
for (i = 0; i < xor_chan_num; i++) {
mv_xor_command_set(i, MV_STOP);
mv_xor_ctrl_set(i, (1 << XEXCR_REG_ACC_PROTECT_OFFS) |
(4 << XEXCR_DST_BURST_LIMIT_OFFS) |
(4 << XEXCR_SRC_BURST_LIMIT_OFFS));
}
}
/*
* mv_xor_ctrl_set - Set XOR channel control registers
*
* DESCRIPTION:
*
* INPUT:
*
* OUTPUT:
* None.
*
* RETURN:
* MV_BAD_PARAM if parameters to function invalid, MV_OK otherwise.
* NOTE:
* This function does not modify the Operation_mode field of control register.
*/
int mv_xor_ctrl_set(u32 chan, u32 xor_ctrl)
{
u32 old_value;
/* update the XOR Engine [0..1] Configuration Registers (XEx_c_r) */
old_value = reg_read(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan))) &
XEXCR_OPERATION_MODE_MASK;
xor_ctrl &= ~XEXCR_OPERATION_MODE_MASK;
xor_ctrl |= old_value;
reg_write(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan)), xor_ctrl);
return MV_OK;
}
int mv_xor_mem_init(u32 chan, u32 start_ptr, unsigned long long block_size,
u32 init_val_high, u32 init_val_low)
{
u32 temp;
if (block_size == _4G)
block_size -= 1;
/* Parameter checking */
if (chan >= MV_XOR_MAX_CHAN)
return MV_BAD_PARAM;
if (MV_ACTIVE == mv_xor_state_get(chan))
return MV_BUSY;
if ((block_size < XEXBSR_BLOCK_SIZE_MIN_VALUE) ||
(block_size > XEXBSR_BLOCK_SIZE_MAX_VALUE))
return MV_BAD_PARAM;
/* set the operation mode to Memory Init */
temp = reg_read(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan)));
temp &= ~XEXCR_OPERATION_MODE_MASK;
temp |= XEXCR_OPERATION_MODE_MEM_INIT;
reg_write(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan)), temp);
/*
* update the start_ptr field in XOR Engine [0..1] Destination Pointer
* Register
*/
reg_write(XOR_DST_PTR_REG(XOR_UNIT(chan), XOR_CHAN(chan)), start_ptr);
/*
* update the Block_size field in the XOR Engine[0..1] Block Size
* Registers
*/
reg_write(XOR_BLOCK_SIZE_REG(XOR_UNIT(chan), XOR_CHAN(chan)),
block_size);
/*
* update the field Init_val_l in the XOR Engine Initial Value Register
* Low (XEIVRL)
*/
reg_write(XOR_INIT_VAL_LOW_REG(XOR_UNIT(chan)), init_val_low);
/*
* update the field Init_val_h in the XOR Engine Initial Value Register
* High (XEIVRH)
*/
reg_write(XOR_INIT_VAL_HIGH_REG(XOR_UNIT(chan)), init_val_high);
/* start transfer */
reg_bit_set(XOR_ACTIVATION_REG(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XESTART_MASK);
return MV_OK;
}
/*
* mv_xor_state_get - Get XOR channel state.
*
* DESCRIPTION:
* XOR channel activity state can be active, idle, paused.
* This function retrunes the channel activity state.
*
* INPUT:
* chan - the channel number
*
* OUTPUT:
* None.
*
* RETURN:
* XOR_CHANNEL_IDLE - If the engine is idle.
* XOR_CHANNEL_ACTIVE - If the engine is busy.
* XOR_CHANNEL_PAUSED - If the engine is paused.
* MV_UNDEFINED_STATE - If the engine state is undefind or there is no
* such engine
*/
enum mv_state mv_xor_state_get(u32 chan)
{
u32 state;
/* Parameter checking */
if (chan >= MV_XOR_MAX_CHAN) {
DB(printf("%s: ERR. Invalid chan num %d\n", __func__, chan));
return MV_UNDEFINED_STATE;
}
/* read the current state */
state = reg_read(XOR_ACTIVATION_REG(XOR_UNIT(chan), XOR_CHAN(chan)));
state &= XEXACTR_XESTATUS_MASK;
/* return the state */
switch (state) {
case XEXACTR_XESTATUS_IDLE:
return MV_IDLE;
case XEXACTR_XESTATUS_ACTIVE:
return MV_ACTIVE;
case XEXACTR_XESTATUS_PAUSED:
return MV_PAUSED;
}
return MV_UNDEFINED_STATE;
}
/*
* mv_xor_command_set - Set command of XOR channel
*
* DESCRIPTION:
* XOR channel can be started, idle, paused and restarted.
* Paused can be set only if channel is active.
* Start can be set only if channel is idle or paused.
* Restart can be set only if channel is paused.
* Stop can be set only if channel is active.
*
* INPUT:
* chan - The channel number
* command - The command type (start, stop, restart, pause)
*
* OUTPUT:
* None.
*
* RETURN:
* MV_OK on success , MV_BAD_PARAM on erroneous parameter, MV_ERROR on
* undefind XOR engine mode
*/
int mv_xor_command_set(u32 chan, enum mv_command command)
{
enum mv_state state;
/* Parameter checking */
if (chan >= MV_XOR_MAX_CHAN) {
DB(printf("%s: ERR. Invalid chan num %d\n", __func__, chan));
return MV_BAD_PARAM;
}
/* get the current state */
state = mv_xor_state_get(chan);
if ((command == MV_START) && (state == MV_IDLE)) {
/* command is start and current state is idle */
reg_bit_set(XOR_ACTIVATION_REG
(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XESTART_MASK);
return MV_OK;
} else if ((command == MV_STOP) && (state == MV_ACTIVE)) {
/* command is stop and current state is active */
reg_bit_set(XOR_ACTIVATION_REG
(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XESTOP_MASK);
return MV_OK;
} else if (((enum mv_state)command == MV_PAUSED) &&
(state == MV_ACTIVE)) {
/* command is paused and current state is active */
reg_bit_set(XOR_ACTIVATION_REG
(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XEPAUSE_MASK);
return MV_OK;
} else if ((command == MV_RESTART) && (state == MV_PAUSED)) {
/* command is restart and current state is paused */
reg_bit_set(XOR_ACTIVATION_REG
(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XERESTART_MASK);
return MV_OK;
} else if ((command == MV_STOP) && (state == MV_IDLE)) {
/* command is stop and current state is active */
return MV_OK;
}
/* illegal command */
DB(printf("%s: ERR. Illegal command\n", __func__));
return MV_BAD_PARAM;
}
void ddr3_new_tip_ecc_scrub(void)
{
u32 cs_c, max_cs;
u32 cs_ena = 0;
u32 dev_num = 0;
uint64_t total_mem_size, cs_mem_size = 0;
printf("DDR Training Sequence - Start scrubbing\n");
max_cs = ddr3_tip_max_cs_get(dev_num);
for (cs_c = 0; cs_c < max_cs; cs_c++)
cs_ena |= 1 << cs_c;
/* assume that all CS have same size */
ddr3_calc_mem_cs_size(0, &cs_mem_size);
mv_sys_xor_init(max_cs, cs_ena, cs_mem_size, 0);
total_mem_size = max_cs * cs_mem_size;
mv_xor_mem_init(0, 0, total_mem_size, 0xdeadbeef, 0xdeadbeef);
/* wait for previous transfer completion */
while (mv_xor_state_get(0) != MV_IDLE)
;
/* Return XOR State */
mv_sys_xor_finish();
printf("DDR3 Training Sequence - End scrubbing\n");
}
/*
* mv_xor_transfer - Transfer data from source to destination in one of
* three modes: XOR, CRC32 or DMA
*
* DESCRIPTION:
* This function initiates XOR channel, according to function parameters,
* in order to perform XOR, CRC32 or DMA transaction.
* To gain maximum performance the user is asked to keep the following
* restrictions:
* 1) Selected engine is available (not busy).
* 2) This module does not take into consideration CPU MMU issues.
* In order for the XOR engine to access the appropriate source
* and destination, address parameters must be given in system
* physical mode.
* 3) This API does not take care of cache coherency issues. The source,
* destination and, in case of chain, the descriptor list are assumed
* to be cache coherent.
* 4) Parameters validity.
*
* INPUT:
* chan - XOR channel number.
* type - One of three: XOR, CRC32 and DMA operations.
* xor_chain_ptr - address of chain pointer
*
* OUTPUT:
* None.
*
* RETURN:
* MV_BAD_PARAM if parameters to function invalid, MV_OK otherwise.
*
*******************************************************************************/
int mv_xor_transfer(u32 chan, enum xor_type type, u32 xor_chain_ptr)
{
u32 temp;
/* Parameter checking */
if (chan >= MV_XOR_MAX_CHAN) {
DB(printf("%s: ERR. Invalid chan num %d\n", __func__, chan));
return MV_BAD_PARAM;
}
if (mv_xor_state_get(chan) == MV_ACTIVE) {
DB(printf("%s: ERR. Channel is already active\n", __func__));
return MV_BUSY;
}
if (xor_chain_ptr == 0x0) {
DB(printf("%s: ERR. xor_chain_ptr is NULL pointer\n", __func__));
return MV_BAD_PARAM;
}
/* read configuration register and mask the operation mode field */
temp = reg_read(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan)));
temp &= ~XEXCR_OPERATION_MODE_MASK;
switch (type) {
case MV_XOR:
if ((xor_chain_ptr & XEXDPR_DST_PTR_XOR_MASK) != 0) {
DB(printf("%s: ERR. Invalid chain pointer (bits [5:0] must be cleared)\n",
__func__));
return MV_BAD_PARAM;
}
/* set the operation mode to XOR */
temp |= XEXCR_OPERATION_MODE_XOR;
break;
case MV_DMA:
if ((xor_chain_ptr & XEXDPR_DST_PTR_DMA_MASK) != 0) {
DB(printf("%s: ERR. Invalid chain pointer (bits [4:0] must be cleared)\n",
__func__));
return MV_BAD_PARAM;
}
/* set the operation mode to DMA */
temp |= XEXCR_OPERATION_MODE_DMA;
break;
case MV_CRC32:
if ((xor_chain_ptr & XEXDPR_DST_PTR_CRC_MASK) != 0) {
DB(printf("%s: ERR. Invalid chain pointer (bits [4:0] must be cleared)\n",
__func__));
return MV_BAD_PARAM;
}
/* set the operation mode to CRC32 */
temp |= XEXCR_OPERATION_MODE_CRC;
break;
default:
return MV_BAD_PARAM;
}
/* write the operation mode to the register */
reg_write(XOR_CONFIG_REG(XOR_UNIT(chan), XOR_CHAN(chan)), temp);
/*
* update the NextDescPtr field in the XOR Engine [0..1] Next Descriptor
* Pointer Register (XExNDPR)
*/
reg_write(XOR_NEXT_DESC_PTR_REG(XOR_UNIT(chan), XOR_CHAN(chan)),
xor_chain_ptr);
/* start transfer */
reg_bit_set(XOR_ACTIVATION_REG(XOR_UNIT(chan), XOR_CHAN(chan)),
XEXACTR_XESTART_MASK);
return MV_OK;
}