FSL DDR: Add DDR1 DIMM paramter support

Compute DIMM parameters based upon the SPD information in spd.

Signed-off-by: James Yang <James.Yang@freescale.com>
Signed-off-by: Jon Loeliger <jdl@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
diff --git a/cpu/mpc8xxx/ddr/ddr1_dimm_params.c b/cpu/mpc8xxx/ddr/ddr1_dimm_params.c
new file mode 100644
index 0000000..2e0a209
--- /dev/null
+++ b/cpu/mpc8xxx/ddr/ddr1_dimm_params.c
@@ -0,0 +1,343 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/fsl_ddr_sdram.h>
+
+#include "ddr.h"
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ *		DDR I	DDR II
+ *	Bit	Size	Size
+ *	---	-----	------
+ *	7 high	512MB	512MB
+ *	6	256MB	256MB
+ *	5	128MB	128MB
+ *	4	 64MB	 16GB
+ *	3	 32MB	  8GB
+ *	2	 16MB	  4GB
+ *	1	  2GB	  2GB
+ *	0 low	  1GB	  1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ */
+
+static phys_size_t
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+	phys_size_t bsize;
+
+	/* Bottom 2 bits up to the top. */
+	bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
+	bsize <<= 24ULL;
+	debug("DDR: DDR I rank density = 0x%08x\n", bsize);
+
+	return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II.  No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+	/* Table look up the lower nibble, allow DDR I & II. */
+	unsigned int tenths_ps[16] = {
+		0,
+		100,
+		200,
+		300,
+		400,
+		500,
+		600,
+		700,
+		800,
+		900,
+		250,	/* This and the next 3 entries valid ... */
+		330,	/* ...  only for tCK calculations. */
+		660,
+		750,
+		0,	/* undefined */
+		0	/* undefined */
+	};
+
+	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+	unsigned int tenth_ns = spd_val & 0x0F;
+	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+	return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+	unsigned int hundredth_ns = spd_val & 0x0F;
+	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+	return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+	0,
+	250,
+	330,
+	500,
+	660,
+	750,
+	0,	/* supposed to be RFC, but not sure what that means */
+	0	/* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+	unsigned int trfc_ps;
+
+	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+	return trfc_ps;
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+	unsigned int trc_ps;
+
+	trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+	return trc_ps;
+}
+
+/*
+ * tCKmax from DDR I SPD Byte 43
+ *
+ * Bits 7:2 == whole ns
+ * Bits 1:0 == quarter ns
+ *    00    == 0.00 ns
+ *    01    == 0.25 ns
+ *    10    == 0.50 ns
+ *    11    == 0.75 ns
+ *
+ * Returns picoseconds.
+ */
+static unsigned int
+compute_tckmax_from_spd_ps(unsigned int byte43)
+{
+	return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
+}
+
+/*
+ * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+	unsigned int refresh_time_ps[8] = {
+		15625000,	/* 0 Normal    1.00x */
+		3900000,	/* 1 Reduced    .25x */
+		7800000,	/* 2 Extended   .50x */
+		31300000,	/* 3 Extended  2.00x */
+		62500000,	/* 4 Extended  4.00x */
+		125000000,	/* 5 Extended  8.00x */
+		15625000,	/* 6 Normal    1.00x  filler */
+		15625000,	/* 7 Normal    1.00x  filler */
+	};
+
+	return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period.  The SPD only
+ * defines at most 3 CAS latencies.  Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can be.
+ * If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD.  This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-E
+ * Table 11.
+ *
+ * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
+ */
+				  /*   CL2.0 CL2.5 CL3.0  */
+unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
+
+unsigned int
+compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
+{
+	const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
+	unsigned int lowest_tCKmin_found = 0;
+	unsigned int lowest_tCKmin_CL = 0;
+	unsigned int i;
+
+	debug("mclk_ps = %u\n", mclk_ps);
+
+	for (i = 0; i < num_speed_bins; i++) {
+		unsigned int x = ddr1_speed_bins[i];
+		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+		      i, x, lowest_tCKmin_found);
+		if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
+			lowest_tCKmin_found = x;
+			lowest_tCKmin_CL = i + 1;
+		}
+	}
+
+	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+	return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR1 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr1_spd_eeprom_t *spd,
+			     dimm_params_t *pdimm,
+			     unsigned int dimm_number)
+{
+	unsigned int retval;
+
+	if (spd->mem_type) {
+		if (spd->mem_type != SPD_MEMTYPE_DDR) {
+			printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
+			return 1;
+		}
+	} else {
+		memset(pdimm, 0, sizeof(dimm_params_t));
+		return 1;
+	}
+
+	retval = ddr1_spd_check(spd);
+	if (retval) {
+		printf("DIMM %u: failed checksum\n", dimm_number);
+		return 2;
+	}
+
+	/*
+	 * The part name in ASCII in the SPD EEPROM is not null terminated.
+	 * Guarantee null termination here by presetting all bytes to 0
+	 * and copying the part name in ASCII from the SPD onto it
+	 */
+	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+	/* DIMM organization parameters */
+	pdimm->n_ranks = spd->nrows;
+	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
+	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+	pdimm->data_width = spd->dataw_lsb;
+	pdimm->primary_sdram_width = spd->primw;
+	pdimm->ec_sdram_width = spd->ecw;
+
+	/*
+	 * FIXME: Need to determine registered_dimm status.
+	 *     1 == register buffered
+	 *     0 == unbuffered
+	 */
+	pdimm->registered_dimm = 0;	/* unbuffered */
+
+	/* SDRAM device parameters */
+	pdimm->n_row_addr = spd->nrow_addr;
+	pdimm->n_col_addr = spd->ncol_addr;
+	pdimm->n_banks_per_sdram_device = spd->nbanks;
+	pdimm->edc_config = spd->config;
+	pdimm->burst_lengths_bitmask = spd->burstl;
+	pdimm->row_density = spd->bank_dens;
+
+	/*
+	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
+	 * nanoseconds and represented as BCD.
+	 */
+	pdimm->tCKmin_X_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+	pdimm->tCKmin_X_minus_1_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+	pdimm->tCKmin_X_minus_2_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+	pdimm->tCKmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
+
+	/*
+	 * Compute CAS latencies defined by SPD
+	 * The SPD caslat_X should have at least 1 and at most 3 bits set.
+	 *
+	 * If cas_lat after masking is 0, the __ilog2 function returns
+	 * 255 into the variable.   This behavior is abused once.
+	 */
+	pdimm->caslat_X  = __ilog2(spd->cas_lat);
+	pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_X));
+	pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_X)
+					  & ~(1 << pdimm->caslat_X_minus_1));
+
+	/* Compute CAS latencies below that defined by SPD */
+	pdimm->caslat_lowest_derated
+		= compute_derated_DDR1_CAS_latency(get_memory_clk_period_ps());
+
+	/* Compute timing parameters */
+	pdimm->tRCD_ps = spd->trcd * 250;
+	pdimm->tRP_ps = spd->trp * 250;
+	pdimm->tRAS_ps = spd->tras * 1000;
+
+	pdimm->tWR_ps = mclk_to_picos(3);
+	pdimm->tWTR_ps = mclk_to_picos(1);
+	pdimm->tRFC_ps = compute_trfc_ps_from_spd(0, spd->trfc);
+
+	pdimm->tRRD_ps = spd->trrd * 250;
+	pdimm->tRC_ps = compute_trc_ps_from_spd(0, spd->trc);
+
+	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+	pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+	pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+	pdimm->tDS_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+	pdimm->tDH_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+	pdimm->tRTP_ps = mclk_to_picos(2);	/* By the book. */
+	pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
+	pdimm->tQHS_ps = spd->tqhs * 10;
+
+	return 0;
+}