blob: fd3a353d5484e038f0abcac6d7b72d7eae0907da [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Álvaro Fernández Rojas <noltari@gmail.com>
*
* Derived from linux/drivers/dma/bcm63xx-iudma.c:
* Copyright (C) 2015 Simon Arlott <simon@fire.lp0.eu>
*
* Derived from linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c:
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*
* Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/include/bcm963xx/63268_map_part.h:
* Copyright (C) 2000-2010 Broadcom Corporation
*
* Derived from bcm963xx_4.12L.06B_consumer/bcmdrivers/opensource/net/enet/impl4/bcmenet.c:
* Copyright (C) 2010 Broadcom Corporation
*/
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <dma-uclass.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <reset.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/printk.h>
#define DMA_RX_DESC 6
#define DMA_TX_DESC 1
/* DMA Channels */
#define DMA_CHAN_FLOWC(x) ((x) >> 1)
#define DMA_CHAN_MAX 16
#define DMA_CHAN_SIZE 0x10
#define DMA_CHAN_TOUT 500
/* DMA Global Configuration register */
#define DMA_CFG_REG 0x00
#define DMA_CFG_ENABLE_SHIFT 0
#define DMA_CFG_ENABLE_MASK (1 << DMA_CFG_ENABLE_SHIFT)
#define DMA_CFG_FLOWC_ENABLE(x) BIT(DMA_CHAN_FLOWC(x) + 1)
#define DMA_CFG_NCHANS_SHIFT 24
#define DMA_CFG_NCHANS_MASK (0xf << DMA_CFG_NCHANS_SHIFT)
/* DMA Global Flow Control registers */
#define DMA_FLOWC_THR_LO_REG(x) (0x04 + DMA_CHAN_FLOWC(x) * 0x0c)
#define DMA_FLOWC_THR_HI_REG(x) (0x08 + DMA_CHAN_FLOWC(x) * 0x0c)
#define DMA_FLOWC_ALLOC_REG(x) (0x0c + DMA_CHAN_FLOWC(x) * 0x0c)
#define DMA_FLOWC_ALLOC_FORCE_SHIFT 31
#define DMA_FLOWC_ALLOC_FORCE_MASK (1 << DMA_FLOWC_ALLOC_FORCE_SHIFT)
/* DMA Global Reset register */
#define DMA_RST_REG 0x34
#define DMA_RST_CHAN_SHIFT 0
#define DMA_RST_CHAN_MASK(x) (1 << x)
/* DMA Channel Configuration register */
#define DMAC_CFG_REG(x) (DMA_CHAN_SIZE * (x) + 0x00)
#define DMAC_CFG_ENABLE_SHIFT 0
#define DMAC_CFG_ENABLE_MASK (1 << DMAC_CFG_ENABLE_SHIFT)
#define DMAC_CFG_PKT_HALT_SHIFT 1
#define DMAC_CFG_PKT_HALT_MASK (1 << DMAC_CFG_PKT_HALT_SHIFT)
#define DMAC_CFG_BRST_HALT_SHIFT 2
#define DMAC_CFG_BRST_HALT_MASK (1 << DMAC_CFG_BRST_HALT_SHIFT)
/* DMA Channel Max Burst Length register */
#define DMAC_BURST_REG(x) (DMA_CHAN_SIZE * (x) + 0x0c)
/* DMA SRAM Descriptor Ring Start register */
#define DMAS_RSTART_REG(x) (DMA_CHAN_SIZE * (x) + 0x00)
/* DMA SRAM State/Bytes done/ring offset register */
#define DMAS_STATE_DATA_REG(x) (DMA_CHAN_SIZE * (x) + 0x04)
/* DMA SRAM Buffer Descriptor status and length register */
#define DMAS_DESC_LEN_STATUS_REG(x) (DMA_CHAN_SIZE * (x) + 0x08)
/* DMA SRAM Buffer Descriptor status and length register */
#define DMAS_DESC_BASE_BUFPTR_REG(x) (DMA_CHAN_SIZE * (x) + 0x0c)
/* DMA Descriptor Status */
#define DMAD_ST_CRC_SHIFT 8
#define DMAD_ST_CRC_MASK (1 << DMAD_ST_CRC_SHIFT)
#define DMAD_ST_WRAP_SHIFT 12
#define DMAD_ST_WRAP_MASK (1 << DMAD_ST_WRAP_SHIFT)
#define DMAD_ST_SOP_SHIFT 13
#define DMAD_ST_SOP_MASK (1 << DMAD_ST_SOP_SHIFT)
#define DMAD_ST_EOP_SHIFT 14
#define DMAD_ST_EOP_MASK (1 << DMAD_ST_EOP_SHIFT)
#define DMAD_ST_OWN_SHIFT 15
#define DMAD_ST_OWN_MASK (1 << DMAD_ST_OWN_SHIFT)
#define DMAD6348_ST_OV_ERR_SHIFT 0
#define DMAD6348_ST_OV_ERR_MASK (1 << DMAD6348_ST_OV_ERR_SHIFT)
#define DMAD6348_ST_CRC_ERR_SHIFT 1
#define DMAD6348_ST_CRC_ERR_MASK (1 << DMAD6348_ST_CRC_ERR_SHIFT)
#define DMAD6348_ST_RX_ERR_SHIFT 2
#define DMAD6348_ST_RX_ERR_MASK (1 << DMAD6348_ST_RX_ERR_SHIFT)
#define DMAD6348_ST_OS_ERR_SHIFT 4
#define DMAD6348_ST_OS_ERR_MASK (1 << DMAD6348_ST_OS_ERR_SHIFT)
#define DMAD6348_ST_UN_ERR_SHIFT 9
#define DMAD6348_ST_UN_ERR_MASK (1 << DMAD6348_ST_UN_ERR_SHIFT)
struct bcm6348_dma_desc {
uint16_t length;
uint16_t status;
uint32_t address;
};
struct bcm6348_chan_priv {
void __iomem *dma_ring;
uint8_t dma_ring_size;
uint8_t desc_id;
uint8_t desc_cnt;
bool *busy_desc;
bool running;
};
struct bcm6348_iudma_hw {
uint16_t err_mask;
};
struct bcm6348_iudma_priv {
const struct bcm6348_iudma_hw *hw;
void __iomem *base;
void __iomem *chan;
void __iomem *sram;
struct bcm6348_chan_priv **ch_priv;
uint8_t n_channels;
};
static inline bool bcm6348_iudma_chan_is_rx(uint8_t ch)
{
return !(ch & 1);
}
static inline void bcm6348_iudma_fdc(void *ptr, ulong size)
{
ulong start = (ulong) ptr;
flush_dcache_range(start, start + size);
}
static inline void bcm6348_iudma_idc(void *ptr, ulong size)
{
ulong start = (ulong) ptr;
invalidate_dcache_range(start, start + size);
}
static void bcm6348_iudma_chan_stop(struct bcm6348_iudma_priv *priv,
uint8_t ch)
{
unsigned int timeout = DMA_CHAN_TOUT;
do {
uint32_t cfg, halt;
if (timeout > DMA_CHAN_TOUT / 2)
halt = DMAC_CFG_PKT_HALT_MASK;
else
halt = DMAC_CFG_BRST_HALT_MASK;
/* try to stop dma channel */
writel_be(halt, priv->chan + DMAC_CFG_REG(ch));
mb();
/* check if channel was stopped */
cfg = readl_be(priv->chan + DMAC_CFG_REG(ch));
if (!(cfg & DMAC_CFG_ENABLE_MASK))
break;
udelay(1);
} while (--timeout);
if (!timeout)
pr_err("unable to stop channel %u\n", ch);
/* reset dma channel */
setbits_be32(priv->base + DMA_RST_REG, DMA_RST_CHAN_MASK(ch));
mb();
clrbits_be32(priv->base + DMA_RST_REG, DMA_RST_CHAN_MASK(ch));
}
static int bcm6348_iudma_disable(struct dma *dma)
{
struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
/* stop dma channel */
bcm6348_iudma_chan_stop(priv, dma->id);
/* dma flow control */
if (bcm6348_iudma_chan_is_rx(dma->id))
writel_be(DMA_FLOWC_ALLOC_FORCE_MASK,
DMA_FLOWC_ALLOC_REG(dma->id));
/* init channel config */
ch_priv->running = false;
ch_priv->desc_id = 0;
if (bcm6348_iudma_chan_is_rx(dma->id))
ch_priv->desc_cnt = 0;
else
ch_priv->desc_cnt = ch_priv->dma_ring_size;
return 0;
}
static int bcm6348_iudma_enable(struct dma *dma)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
struct bcm6348_dma_desc *dma_desc = ch_priv->dma_ring;
uint8_t i;
/* dma ring init */
for (i = 0; i < ch_priv->desc_cnt; i++) {
if (bcm6348_iudma_chan_is_rx(dma->id)) {
ch_priv->busy_desc[i] = false;
dma_desc->status |= DMAD_ST_OWN_MASK;
} else {
dma_desc->status = 0;
dma_desc->length = 0;
dma_desc->address = 0;
}
if (i == ch_priv->desc_cnt - 1)
dma_desc->status |= DMAD_ST_WRAP_MASK;
dma_desc++;
}
/* init to first descriptor */
ch_priv->desc_id = 0;
/* force cache writeback */
bcm6348_iudma_fdc(ch_priv->dma_ring,
sizeof(*dma_desc) * ch_priv->desc_cnt);
/* clear sram */
writel_be(0, priv->sram + DMAS_STATE_DATA_REG(dma->id));
writel_be(0, priv->sram + DMAS_DESC_LEN_STATUS_REG(dma->id));
writel_be(0, priv->sram + DMAS_DESC_BASE_BUFPTR_REG(dma->id));
/* set dma ring start */
writel_be(virt_to_phys(ch_priv->dma_ring),
priv->sram + DMAS_RSTART_REG(dma->id));
/* set flow control */
if (bcm6348_iudma_chan_is_rx(dma->id)) {
u32 val;
setbits_be32(priv->base + DMA_CFG_REG,
DMA_CFG_FLOWC_ENABLE(dma->id));
val = ch_priv->desc_cnt / 3;
writel_be(val, priv->base + DMA_FLOWC_THR_LO_REG(dma->id));
val = (ch_priv->desc_cnt * 2) / 3;
writel_be(val, priv->base + DMA_FLOWC_THR_HI_REG(dma->id));
writel_be(0, priv->base + DMA_FLOWC_ALLOC_REG(dma->id));
}
/* set dma max burst */
writel_be(ch_priv->desc_cnt,
priv->chan + DMAC_BURST_REG(dma->id));
/* kick rx dma channel */
if (bcm6348_iudma_chan_is_rx(dma->id))
setbits_be32(priv->chan + DMAC_CFG_REG(dma->id),
DMAC_CFG_ENABLE_MASK);
/* channel is now enabled */
ch_priv->running = true;
return 0;
}
static int bcm6348_iudma_request(struct dma *dma)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv;
/* check if channel is valid */
if (dma->id >= priv->n_channels)
return -ENODEV;
/* alloc channel private data */
priv->ch_priv[dma->id] = calloc(1, sizeof(struct bcm6348_chan_priv));
if (!priv->ch_priv[dma->id])
return -ENOMEM;
ch_priv = priv->ch_priv[dma->id];
/* alloc dma ring */
if (bcm6348_iudma_chan_is_rx(dma->id))
ch_priv->dma_ring_size = DMA_RX_DESC;
else
ch_priv->dma_ring_size = DMA_TX_DESC;
ch_priv->dma_ring =
malloc_cache_aligned(sizeof(struct bcm6348_dma_desc) *
ch_priv->dma_ring_size);
if (!ch_priv->dma_ring)
return -ENOMEM;
/* init channel config */
ch_priv->running = false;
ch_priv->desc_id = 0;
if (bcm6348_iudma_chan_is_rx(dma->id)) {
ch_priv->desc_cnt = 0;
ch_priv->busy_desc = NULL;
} else {
ch_priv->desc_cnt = ch_priv->dma_ring_size;
ch_priv->busy_desc = calloc(ch_priv->desc_cnt, sizeof(bool));
}
return 0;
}
static int bcm6348_iudma_receive(struct dma *dma, void **dst, void *metadata)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
const struct bcm6348_iudma_hw *hw = priv->hw;
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
struct bcm6348_dma_desc *dma_desc = dma_desc = ch_priv->dma_ring;
int ret;
if (!ch_priv->running)
return -EINVAL;
/* get dma ring descriptor address */
dma_desc += ch_priv->desc_id;
/* invalidate cache data */
bcm6348_iudma_idc(dma_desc, sizeof(*dma_desc));
/* check dma own */
if (dma_desc->status & DMAD_ST_OWN_MASK)
return -EAGAIN;
/* check pkt */
if (!(dma_desc->status & DMAD_ST_EOP_MASK) ||
!(dma_desc->status & DMAD_ST_SOP_MASK) ||
(dma_desc->status & hw->err_mask)) {
pr_err("invalid pkt received (ch=%ld desc=%u) (st=%04x)\n",
dma->id, ch_priv->desc_id, dma_desc->status);
ret = -EAGAIN;
} else {
/* set dma buffer address */
*dst = phys_to_virt(dma_desc->address);
/* invalidate cache data */
bcm6348_iudma_idc(*dst, dma_desc->length);
/* return packet length */
ret = dma_desc->length;
}
/* busy dma descriptor */
ch_priv->busy_desc[ch_priv->desc_id] = true;
/* increment dma descriptor */
ch_priv->desc_id = (ch_priv->desc_id + 1) % ch_priv->desc_cnt;
return ret;
}
static int bcm6348_iudma_send(struct dma *dma, void *src, size_t len,
void *metadata)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
struct bcm6348_dma_desc *dma_desc;
uint16_t status;
if (!ch_priv->running)
return -EINVAL;
/* flush cache */
bcm6348_iudma_fdc(src, len);
/* get dma ring descriptor address */
dma_desc = ch_priv->dma_ring;
dma_desc += ch_priv->desc_id;
/* config dma descriptor */
status = (DMAD_ST_OWN_MASK |
DMAD_ST_EOP_MASK |
DMAD_ST_CRC_MASK |
DMAD_ST_SOP_MASK);
if (ch_priv->desc_id == ch_priv->desc_cnt - 1)
status |= DMAD_ST_WRAP_MASK;
/* set dma descriptor */
dma_desc->address = virt_to_phys(src);
dma_desc->length = len;
dma_desc->status = status;
/* flush cache */
bcm6348_iudma_fdc(dma_desc, sizeof(*dma_desc));
/* kick tx dma channel */
setbits_be32(priv->chan + DMAC_CFG_REG(dma->id), DMAC_CFG_ENABLE_MASK);
/* poll dma status */
do {
/* invalidate cache */
bcm6348_iudma_idc(dma_desc, sizeof(*dma_desc));
if (!(dma_desc->status & DMAD_ST_OWN_MASK))
break;
} while(1);
/* increment dma descriptor */
ch_priv->desc_id = (ch_priv->desc_id + 1) % ch_priv->desc_cnt;
return 0;
}
static int bcm6348_iudma_free_rcv_buf(struct dma *dma, void *dst, size_t size)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
struct bcm6348_dma_desc *dma_desc = ch_priv->dma_ring;
uint16_t status;
uint8_t i;
u32 cfg;
/* get dirty dma descriptor */
for (i = 0; i < ch_priv->desc_cnt; i++) {
if (phys_to_virt(dma_desc->address) == dst)
break;
dma_desc++;
}
/* dma descriptor not found */
if (i == ch_priv->desc_cnt) {
pr_err("dirty dma descriptor not found\n");
return -ENOENT;
}
/* invalidate cache */
bcm6348_iudma_idc(ch_priv->dma_ring,
sizeof(*dma_desc) * ch_priv->desc_cnt);
/* free dma descriptor */
ch_priv->busy_desc[i] = false;
status = DMAD_ST_OWN_MASK;
if (i == ch_priv->desc_cnt - 1)
status |= DMAD_ST_WRAP_MASK;
dma_desc->status |= status;
dma_desc->length = PKTSIZE_ALIGN;
/* tell dma we allocated one buffer */
writel_be(1, DMA_FLOWC_ALLOC_REG(dma->id));
/* flush cache */
bcm6348_iudma_fdc(ch_priv->dma_ring,
sizeof(*dma_desc) * ch_priv->desc_cnt);
/* kick rx dma channel if disabled */
cfg = readl_be(priv->chan + DMAC_CFG_REG(dma->id));
if (!(cfg & DMAC_CFG_ENABLE_MASK))
setbits_be32(priv->chan + DMAC_CFG_REG(dma->id),
DMAC_CFG_ENABLE_MASK);
return 0;
}
static int bcm6348_iudma_add_rcv_buf(struct dma *dma, void *dst, size_t size)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
struct bcm6348_dma_desc *dma_desc = ch_priv->dma_ring;
/* no more dma descriptors available */
if (ch_priv->desc_cnt == ch_priv->dma_ring_size) {
pr_err("max number of buffers reached\n");
return -EINVAL;
}
/* get next dma descriptor */
dma_desc += ch_priv->desc_cnt;
/* init dma descriptor */
dma_desc->address = virt_to_phys(dst);
dma_desc->length = size;
dma_desc->status = 0;
/* flush cache */
bcm6348_iudma_fdc(dma_desc, sizeof(*dma_desc));
/* increment dma descriptors */
ch_priv->desc_cnt++;
return 0;
}
static int bcm6348_iudma_prepare_rcv_buf(struct dma *dma, void *dst,
size_t size)
{
const struct bcm6348_iudma_priv *priv = dev_get_priv(dma->dev);
struct bcm6348_chan_priv *ch_priv = priv->ch_priv[dma->id];
/* only add new rx buffers if channel isn't running */
if (ch_priv->running)
return bcm6348_iudma_free_rcv_buf(dma, dst, size);
else
return bcm6348_iudma_add_rcv_buf(dma, dst, size);
}
static const struct dma_ops bcm6348_iudma_ops = {
.disable = bcm6348_iudma_disable,
.enable = bcm6348_iudma_enable,
.prepare_rcv_buf = bcm6348_iudma_prepare_rcv_buf,
.request = bcm6348_iudma_request,
.receive = bcm6348_iudma_receive,
.send = bcm6348_iudma_send,
};
static const struct bcm6348_iudma_hw bcm6348_hw = {
.err_mask = (DMAD6348_ST_OV_ERR_MASK |
DMAD6348_ST_CRC_ERR_MASK |
DMAD6348_ST_RX_ERR_MASK |
DMAD6348_ST_OS_ERR_MASK |
DMAD6348_ST_UN_ERR_MASK),
};
static const struct bcm6348_iudma_hw bcm6368_hw = {
.err_mask = 0,
};
static const struct udevice_id bcm6348_iudma_ids[] = {
{
.compatible = "brcm,bcm6348-iudma",
.data = (ulong)&bcm6348_hw,
}, {
.compatible = "brcm,bcm6368-iudma",
.data = (ulong)&bcm6368_hw,
}, { /* sentinel */ }
};
static int bcm6348_iudma_probe(struct udevice *dev)
{
struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev);
struct bcm6348_iudma_priv *priv = dev_get_priv(dev);
const struct bcm6348_iudma_hw *hw =
(const struct bcm6348_iudma_hw *)dev_get_driver_data(dev);
uint8_t ch;
int i;
uc_priv->supported = (DMA_SUPPORTS_DEV_TO_MEM |
DMA_SUPPORTS_MEM_TO_DEV);
priv->hw = hw;
/* dma global base address */
priv->base = dev_remap_addr_name(dev, "dma");
if (!priv->base)
return -EINVAL;
/* dma channels base address */
priv->chan = dev_remap_addr_name(dev, "dma-channels");
if (!priv->chan)
return -EINVAL;
/* dma sram base address */
priv->sram = dev_remap_addr_name(dev, "dma-sram");
if (!priv->sram)
return -EINVAL;
/* get number of channels */
priv->n_channels = dev_read_u32_default(dev, "dma-channels", 8);
if (priv->n_channels > DMA_CHAN_MAX)
return -EINVAL;
/* try to enable clocks */
for (i = 0; ; i++) {
struct clk clk;
int ret;
ret = clk_get_by_index(dev, i, &clk);
if (ret < 0)
break;
ret = clk_enable(&clk);
if (ret < 0) {
pr_err("error enabling clock %d\n", i);
return ret;
}
}
/* try to perform resets */
for (i = 0; ; i++) {
struct reset_ctl reset;
int ret;
ret = reset_get_by_index(dev, i, &reset);
if (ret < 0)
break;
ret = reset_deassert(&reset);
if (ret < 0) {
pr_err("error deasserting reset %d\n", i);
return ret;
}
ret = reset_free(&reset);
if (ret < 0) {
pr_err("error freeing reset %d\n", i);
return ret;
}
}
/* disable dma controller */
clrbits_be32(priv->base + DMA_CFG_REG, DMA_CFG_ENABLE_MASK);
/* alloc channel private data pointers */
priv->ch_priv = calloc(priv->n_channels,
sizeof(struct bcm6348_chan_priv*));
if (!priv->ch_priv)
return -ENOMEM;
/* stop dma channels */
for (ch = 0; ch < priv->n_channels; ch++)
bcm6348_iudma_chan_stop(priv, ch);
/* enable dma controller */
setbits_be32(priv->base + DMA_CFG_REG, DMA_CFG_ENABLE_MASK);
return 0;
}
U_BOOT_DRIVER(bcm6348_iudma) = {
.name = "bcm6348_iudma",
.id = UCLASS_DMA,
.of_match = bcm6348_iudma_ids,
.ops = &bcm6348_iudma_ops,
.priv_auto = sizeof(struct bcm6348_iudma_priv),
.probe = bcm6348_iudma_probe,
};