blob: 6327266dd22b8bd4c962e45b0673c68261bd0b7b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2013 NVIDIA Corporation
* Copyright (c) 2022 Svyatoslav Ryhel <clamor95@gmail.com>
*/
#include <dm.h>
#include <log.h>
#include <misc.h>
#include <mipi_display.h>
#include <mipi_dsi.h>
#include <backlight.h>
#include <panel.h>
#include <reset.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/time.h>
#include <power/regulator.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch-tegra/clk_rst.h>
#include "tegra-dc.h"
#include "tegra-dsi.h"
#include "mipi-phy.h"
/* List of supported DSI bridges */
enum {
DSI_V0,
DSI_V1,
};
struct tegra_dsi_priv {
struct mipi_dsi_host host;
struct mipi_dsi_device device;
struct mipi_dphy_timing dphy_timing;
struct udevice *panel;
struct udevice *mipi;
struct display_timing timing;
struct dsi_ctlr *dsi;
struct udevice *avdd;
enum tegra_dsi_format format;
int dsi_clk;
int video_fifo_depth;
int host_fifo_depth;
u32 version;
/* for ganged-mode support */
struct udevice *master;
struct udevice *slave;
};
static void tegra_dc_enable_controller(struct udevice *dev)
{
struct tegra_dc_plat *dc_plat = dev_get_plat(dev);
struct dc_ctlr *dc = dc_plat->dc;
u32 value;
value = readl(&dc->disp.disp_win_opt);
value |= DSI_ENABLE;
writel(value, &dc->disp.disp_win_opt);
writel(GENERAL_UPDATE, &dc->cmd.state_ctrl);
writel(GENERAL_ACT_REQ, &dc->cmd.state_ctrl);
}
static const char * const error_report[16] = {
"SoT Error",
"SoT Sync Error",
"EoT Sync Error",
"Escape Mode Entry Command Error",
"Low-Power Transmit Sync Error",
"Peripheral Timeout Error",
"False Control Error",
"Contention Detected",
"ECC Error, single-bit",
"ECC Error, multi-bit",
"Checksum Error",
"DSI Data Type Not Recognized",
"DSI VC ID Invalid",
"Invalid Transmission Length",
"Reserved",
"DSI Protocol Violation",
};
static ssize_t tegra_dsi_read_response(struct dsi_misc_reg *misc,
const struct mipi_dsi_msg *msg,
size_t count)
{
u8 *rx = msg->rx_buf;
unsigned int i, j, k;
size_t size = 0;
u16 errors;
u32 value;
/* read and parse packet header */
value = readl(&misc->dsi_rd_data);
switch (value & 0x3f) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
errors = (value >> 8) & 0xffff;
printf("%s: Acknowledge and error report: %04x\n",
__func__, errors);
for (i = 0; i < ARRAY_SIZE(error_report); i++)
if (errors & BIT(i))
printf("%s: %2u: %s\n", __func__, i,
error_report[i]);
break;
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
rx[0] = (value >> 8) & 0xff;
size = 1;
break;
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
rx[0] = (value >> 8) & 0xff;
rx[1] = (value >> 16) & 0xff;
size = 2;
break;
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff);
break;
default:
printf("%s: unhandled response type: %02x\n",
__func__, value & 0x3f);
return -EPROTO;
}
size = min(size, msg->rx_len);
if (msg->rx_buf && size > 0) {
for (i = 0, j = 0; i < count - 1; i++, j += 4) {
u8 *rx = msg->rx_buf + j;
value = readl(&misc->dsi_rd_data);
for (k = 0; k < 4 && (j + k) < msg->rx_len; k++)
rx[j + k] = (value >> (k << 3)) & 0xff;
}
}
return size;
}
static int tegra_dsi_transmit(struct dsi_misc_reg *misc,
unsigned long timeout)
{
writel(DSI_TRIGGER_HOST, &misc->dsi_trigger);
while (timeout--) {
u32 value = readl(&misc->dsi_trigger);
if ((value & DSI_TRIGGER_HOST) == 0)
return 0;
udelay(1000);
}
debug("timeout waiting for transmission to complete\n");
return -ETIMEDOUT;
}
static int tegra_dsi_wait_for_response(struct dsi_misc_reg *misc,
unsigned long timeout)
{
while (timeout--) {
u32 value = readl(&misc->dsi_status);
u8 count = value & 0x1f;
if (count > 0)
return count;
udelay(1000);
}
debug("peripheral returned no data\n");
return -ETIMEDOUT;
}
static void tegra_dsi_writesl(struct dsi_misc_reg *misc,
const void *buffer, size_t size)
{
const u8 *buf = buffer;
size_t i, j;
u32 value;
for (j = 0; j < size; j += 4) {
value = 0;
for (i = 0; i < 4 && j + i < size; i++)
value |= buf[j + i] << (i << 3);
writel(value, &misc->dsi_wr_data);
}
}
static ssize_t tegra_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct udevice *dev = (struct udevice *)host->dev;
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct dsi_misc_reg *misc = &priv->dsi->misc;
struct mipi_dsi_packet packet;
const u8 *header;
size_t count;
ssize_t err;
u32 value;
err = mipi_dsi_create_packet(&packet, msg);
if (err < 0)
return err;
header = packet.header;
/* maximum FIFO depth is 1920 words */
if (packet.size > priv->video_fifo_depth * 4)
return -ENOSPC;
/* reset underflow/overflow flags */
value = readl(&misc->dsi_status);
if (value & (DSI_STATUS_UNDERFLOW | DSI_STATUS_OVERFLOW)) {
value = DSI_HOST_CONTROL_FIFO_RESET;
writel(value, &misc->host_dsi_ctrl);
udelay(10);
}
value = readl(&misc->dsi_pwr_ctrl);
value |= DSI_POWER_CONTROL_ENABLE;
writel(value, &misc->dsi_pwr_ctrl);
mdelay(5);
value = DSI_HOST_CONTROL_CRC_RESET | DSI_HOST_CONTROL_TX_TRIG_HOST |
DSI_HOST_CONTROL_CS | DSI_HOST_CONTROL_ECC;
/*
* The host FIFO has a maximum of 64 words, so larger transmissions
* need to use the video FIFO.
*/
if (packet.size > priv->host_fifo_depth * 4)
value |= DSI_HOST_CONTROL_FIFO_SEL;
writel(value, &misc->host_dsi_ctrl);
/*
* For reads and messages with explicitly requested ACK, generate a
* BTA sequence after the transmission of the packet.
*/
if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) ||
(msg->rx_buf && msg->rx_len > 0)) {
value = readl(&misc->host_dsi_ctrl);
value |= DSI_HOST_CONTROL_PKT_BTA;
writel(value, &misc->host_dsi_ctrl);
}
value = DSI_CONTROL_LANES(0) | DSI_CONTROL_HOST_ENABLE;
writel(value, &misc->dsi_ctrl);
/* write packet header, ECC is generated by hardware */
value = header[2] << 16 | header[1] << 8 | header[0];
writel(value, &misc->dsi_wr_data);
/* write payload (if any) */
if (packet.payload_length > 0)
tegra_dsi_writesl(misc, packet.payload,
packet.payload_length);
err = tegra_dsi_transmit(misc, 250);
if (err < 0)
return err;
if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) ||
(msg->rx_buf && msg->rx_len > 0)) {
err = tegra_dsi_wait_for_response(misc, 250);
if (err < 0)
return err;
count = err;
value = readl(&misc->dsi_rd_data);
switch (value) {
case 0x84:
debug("%s: ACK\n", __func__);
break;
case 0x87:
debug("%s: ESCAPE\n", __func__);
break;
default:
printf("%s: unknown status: %08x\n", __func__, value);
break;
}
if (count > 1) {
err = tegra_dsi_read_response(misc, msg, count);
if (err < 0) {
printf("%s: failed to parse response: %zd\n",
__func__, err);
} else {
/*
* For read commands, return the number of
* bytes returned by the peripheral.
*/
count = err;
}
}
} else {
/*
* For write commands, we have transmitted the 4-byte header
* plus the variable-length payload.
*/
count = 4 + packet.payload_length;
}
return count;
}
struct mipi_dsi_host_ops tegra_dsi_bridge_host_ops = {
.transfer = tegra_dsi_host_transfer,
};
#define PKT_ID0(id) ((((id) & 0x3f) << 3) | (1 << 9))
#define PKT_LEN0(len) (((len) & 0x07) << 0)
#define PKT_ID1(id) ((((id) & 0x3f) << 13) | (1 << 19))
#define PKT_LEN1(len) (((len) & 0x07) << 10)
#define PKT_ID2(id) ((((id) & 0x3f) << 23) | (1 << 29))
#define PKT_LEN2(len) (((len) & 0x07) << 20)
#define PKT_LP BIT(30)
#define NUM_PKT_SEQ 12
/*
* non-burst mode with sync pulses
*/
static const u32 pkt_seq_video_non_burst_sync_pulses[NUM_PKT_SEQ] = {
[ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 1] = 0,
[ 2] = PKT_ID0(MIPI_DSI_V_SYNC_END) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 3] = 0,
[ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0),
[ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) |
PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) |
PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4),
[ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0),
[11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) |
PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) |
PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4),
};
/*
* non-burst mode with sync events
*/
static const u32 pkt_seq_video_non_burst_sync_events[NUM_PKT_SEQ] = {
[ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 1] = 0,
[ 2] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 3] = 0,
[ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) |
PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3),
[ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4),
[ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) |
PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3),
[11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4),
};
static const u32 pkt_seq_command_mode[NUM_PKT_SEQ] = {
[ 0] = 0,
[ 1] = 0,
[ 2] = 0,
[ 3] = 0,
[ 4] = 0,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(3) | PKT_LP,
[ 7] = 0,
[ 8] = 0,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(5) | PKT_LP,
[11] = 0,
};
static void tegra_dsi_get_muldiv(enum mipi_dsi_pixel_format format,
unsigned int *mulp, unsigned int *divp)
{
switch (format) {
case MIPI_DSI_FMT_RGB666_PACKED:
case MIPI_DSI_FMT_RGB888:
*mulp = 3;
*divp = 1;
break;
case MIPI_DSI_FMT_RGB565:
*mulp = 2;
*divp = 1;
break;
case MIPI_DSI_FMT_RGB666:
*mulp = 9;
*divp = 4;
break;
default:
break;
}
}
static int tegra_dsi_get_format(enum mipi_dsi_pixel_format format,
enum tegra_dsi_format *fmt)
{
switch (format) {
case MIPI_DSI_FMT_RGB888:
*fmt = TEGRA_DSI_FORMAT_24P;
break;
case MIPI_DSI_FMT_RGB666:
*fmt = TEGRA_DSI_FORMAT_18NP;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
*fmt = TEGRA_DSI_FORMAT_18P;
break;
case MIPI_DSI_FMT_RGB565:
*fmt = TEGRA_DSI_FORMAT_16P;
break;
default:
return -EINVAL;
}
return 0;
}
static void tegra_dsi_pad_calibrate(struct dsi_pad_ctrl_reg *pad)
{
u32 value;
/* start calibration */
value = DSI_PAD_CONTROL_PAD_LPUPADJ(0x1) |
DSI_PAD_CONTROL_PAD_LPDNADJ(0x1) |
DSI_PAD_CONTROL_PAD_PREEMP_EN(0x1) |
DSI_PAD_CONTROL_PAD_SLEWDNADJ(0x6) |
DSI_PAD_CONTROL_PAD_SLEWUPADJ(0x6) |
DSI_PAD_CONTROL_PAD_PDIO(0) |
DSI_PAD_CONTROL_PAD_PDIO_CLK(0) |
DSI_PAD_CONTROL_PAD_PULLDN_ENAB(0);
writel(value, &pad->pad_ctrl);
clock_enable(PERIPH_ID_VI);
clock_enable(PERIPH_ID_CSI);
udelay(2);
reset_set_enable(PERIPH_ID_VI, 0);
reset_set_enable(PERIPH_ID_CSI, 0);
value = MIPI_CAL_TERMOSA(0x4);
writel(value, TEGRA_VI_BASE + (CSI_CILA_MIPI_CAL_CONFIG_0 << 2));
value = MIPI_CAL_TERMOSB(0x4);
writel(value, TEGRA_VI_BASE + (CSI_CILB_MIPI_CAL_CONFIG_0 << 2));
value = MIPI_CAL_HSPUOSD(0x3) | MIPI_CAL_HSPDOSD(0x4);
writel(value, TEGRA_VI_BASE + (CSI_DSI_MIPI_CAL_CONFIG << 2));
value = PAD_DRIV_DN_REF(0x5) | PAD_DRIV_UP_REF(0x7);
writel(value, TEGRA_VI_BASE + (CSI_MIPIBIAS_PAD_CONFIG << 2));
value = PAD_CIL_PDVREG(0x0);
writel(value, TEGRA_VI_BASE + (CSI_CIL_PAD_CONFIG << 2));
}
static void tegra_dsi_mipi_calibrate(struct tegra_dsi_priv *priv)
{
struct dsi_pad_ctrl_reg *pad = &priv->dsi->pad;
u32 value;
int ret;
ret = misc_set_enabled(priv->mipi, true);
if (ret)
log_debug("%s: failed to enable MIPI calibration: %d\n",
__func__, ret);
writel(0, &pad->pad_ctrl);
writel(0, &pad->pad_ctrl_1);
writel(0, &pad->pad_ctrl_2);
writel(0, &pad->pad_ctrl_3);
writel(0, &pad->pad_ctrl_4);
/* DSI pad enable */
value = DSI_PAD_CONTROL_VS1_PULLDN(0) | DSI_PAD_CONTROL_VS1_PDIO(0);
writel(value, &pad->pad_ctrl);
value = DSI_PAD_SLEW_UP(0x7) | DSI_PAD_SLEW_DN(0x7) |
DSI_PAD_LP_UP(0x1) | DSI_PAD_LP_DN(0x1) |
DSI_PAD_OUT_CLK(0x0);
writel(value, &pad->pad_ctrl_2);
value = DSI_PAD_PREEMP_PD_CLK(0x3) | DSI_PAD_PREEMP_PU_CLK(0x3) |
DSI_PAD_PREEMP_PD(0x03) | DSI_PAD_PREEMP_PU(0x3);
writel(value, &pad->pad_ctrl_3);
ret = misc_write(priv->mipi, 0, NULL, 0);
if (ret)
log_debug("%s: MIPI calibration failed %d\n", __func__, ret);
}
static void tegra_dsi_set_timeout(struct dsi_timeout_reg *rtimeout,
unsigned long bclk,
unsigned int vrefresh)
{
unsigned int timeout;
u32 value;
/* one frame high-speed transmission timeout */
timeout = (bclk / vrefresh) / 512;
value = DSI_TIMEOUT_LRX(0x2000) | DSI_TIMEOUT_HTX(timeout);
writel(value, &rtimeout->dsi_timeout_0);
/* 2 ms peripheral timeout for panel */
timeout = 2 * bclk / 512 * 1000;
value = DSI_TIMEOUT_PR(timeout) | DSI_TIMEOUT_TA(0x2000);
writel(value, &rtimeout->dsi_timeout_1);
value = DSI_TALLY_TA(0) | DSI_TALLY_LRX(0) | DSI_TALLY_HTX(0);
writel(value, &rtimeout->dsi_to_tally);
}
static void tegra_dsi_set_phy_timing(struct dsi_timing_reg *ptiming,
unsigned long period,
const struct mipi_dphy_timing *dphy_timing)
{
u32 value;
value = DSI_TIMING_FIELD(dphy_timing->hsexit, period, 1) << 24 |
DSI_TIMING_FIELD(dphy_timing->hstrail, period, 0) << 16 |
DSI_TIMING_FIELD(dphy_timing->hszero, period, 3) << 8 |
DSI_TIMING_FIELD(dphy_timing->hsprepare, period, 1);
writel(value, &ptiming->dsi_phy_timing_0);
value = DSI_TIMING_FIELD(dphy_timing->clktrail, period, 1) << 24 |
DSI_TIMING_FIELD(dphy_timing->clkpost, period, 1) << 16 |
DSI_TIMING_FIELD(dphy_timing->clkzero, period, 1) << 8 |
DSI_TIMING_FIELD(dphy_timing->lpx, period, 1);
writel(value, &ptiming->dsi_phy_timing_1);
value = DSI_TIMING_FIELD(dphy_timing->clkprepare, period, 1) << 16 |
DSI_TIMING_FIELD(dphy_timing->clkpre, period, 1) << 8 |
DSI_TIMING_FIELD(0xff * period, period, 0) << 0;
writel(value, &ptiming->dsi_phy_timing_2);
value = DSI_TIMING_FIELD(dphy_timing->taget, period, 1) << 16 |
DSI_TIMING_FIELD(dphy_timing->tasure, period, 1) << 8 |
DSI_TIMING_FIELD(dphy_timing->tago, period, 1);
writel(value, &ptiming->dsi_bta_timing);
}
static void tegra_dsi_ganged_enable(struct udevice *dev, unsigned int start,
unsigned int size)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct dsi_ganged_mode_reg *ganged = &priv->dsi->ganged;
writel(start, &ganged->ganged_mode_start);
writel(size << 16 | size, &ganged->ganged_mode_size);
writel(DSI_GANGED_MODE_CONTROL_ENABLE, &ganged->ganged_mode_ctrl);
}
static void tegra_dsi_configure(struct udevice *dev,
unsigned long mode_flags)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct mipi_dsi_device *device = &priv->device;
struct display_timing *timing = &priv->timing;
struct dsi_misc_reg *misc = &priv->dsi->misc;
struct dsi_pkt_seq_reg *pkt = &priv->dsi->pkt;
struct dsi_pkt_len_reg *len = &priv->dsi->len;
unsigned int hact, hsw, hbp, hfp, i, mul, div;
const u32 *pkt_seq;
u32 value;
tegra_dsi_get_muldiv(device->format, &mul, &div);
if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
printf("[DSI] Non-burst video mode with sync pulses\n");
pkt_seq = pkt_seq_video_non_burst_sync_pulses;
} else if (mode_flags & MIPI_DSI_MODE_VIDEO) {
printf("[DSI] Non-burst video mode with sync events\n");
pkt_seq = pkt_seq_video_non_burst_sync_events;
} else {
printf("[DSI] Command mode\n");
pkt_seq = pkt_seq_command_mode;
}
value = DSI_CONTROL_CHANNEL(0) |
DSI_CONTROL_FORMAT(priv->format) |
DSI_CONTROL_LANES(device->lanes - 1) |
DSI_CONTROL_SOURCE(0);
writel(value, &misc->dsi_ctrl);
writel(priv->video_fifo_depth, &misc->dsi_max_threshold);
value = DSI_HOST_CONTROL_HS;
writel(value, &misc->host_dsi_ctrl);
value = readl(&misc->dsi_ctrl);
if (mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
value |= DSI_CONTROL_HS_CLK_CTRL;
value &= ~DSI_CONTROL_TX_TRIG(3);
/* enable DCS commands for command mode */
if (mode_flags & MIPI_DSI_MODE_VIDEO)
value &= ~DSI_CONTROL_DCS_ENABLE;
else
value |= DSI_CONTROL_DCS_ENABLE;
value |= DSI_CONTROL_VIDEO_ENABLE;
value &= ~DSI_CONTROL_HOST_ENABLE;
writel(value, &misc->dsi_ctrl);
for (i = 0; i < NUM_PKT_SEQ; i++)
writel(pkt_seq[i], &pkt->dsi_pkt_seq_0_lo + i);
if (mode_flags & MIPI_DSI_MODE_VIDEO) {
/* horizontal active pixels */
hact = timing->hactive.typ * mul / div;
/* horizontal sync width */
hsw = timing->hsync_len.typ * mul / div;
/* horizontal back porch */
hbp = timing->hback_porch.typ * mul / div;
if ((mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) == 0)
hbp += hsw;
/* horizontal front porch */
hfp = timing->hfront_porch.typ * mul / div;
/* subtract packet overhead */
hsw -= 10;
hbp -= 14;
hfp -= 8;
writel(hsw << 16 | 0, &len->dsi_pkt_len_0_1);
writel(hact << 16 | hbp, &len->dsi_pkt_len_2_3);
writel(hfp, &len->dsi_pkt_len_4_5);
writel(0x0f0f << 16, &len->dsi_pkt_len_6_7);
/* set SOL delay (for non-burst mode only) */
writel(8 * mul / div, &misc->dsi_sol_delay);
} else {
if (priv->master || priv->slave) {
/*
* For ganged mode, assume symmetric left-right mode.
*/
value = 1 + (timing->hactive.typ / 2) * mul / div;
} else {
/* 1 byte (DCS command) + pixel data */
value = 1 + timing->hactive.typ * mul / div;
}
writel(0, &len->dsi_pkt_len_0_1);
writel(value << 16, &len->dsi_pkt_len_2_3);
writel(value << 16, &len->dsi_pkt_len_4_5);
writel(0, &len->dsi_pkt_len_6_7);
value = MIPI_DCS_WRITE_MEMORY_START << 8 |
MIPI_DCS_WRITE_MEMORY_CONTINUE;
writel(value, &len->dsi_dcs_cmds);
/* set SOL delay */
if (priv->master || priv->slave) {
unsigned long delay, bclk, bclk_ganged;
unsigned int lanes = device->lanes;
unsigned long htotal = timing->hactive.typ + timing->hfront_porch.typ +
timing->hback_porch.typ + timing->hsync_len.typ;
/* SOL to valid, valid to FIFO and FIFO write delay */
delay = 4 + 4 + 2;
delay = DIV_ROUND_UP(delay * mul, div * lanes);
/* FIFO read delay */
delay = delay + 6;
bclk = DIV_ROUND_UP(htotal * mul, div * lanes);
bclk_ganged = DIV_ROUND_UP(bclk * lanes / 2, lanes);
value = bclk - bclk_ganged + delay + 20;
} else {
/* TODO: revisit for non-ganged mode */
value = 8 * mul / div;
}
writel(value, &misc->dsi_sol_delay);
}
if (priv->slave) {
/*
* TODO: Support modes other than symmetrical left-right
* split.
*/
tegra_dsi_ganged_enable(dev, 0, timing->hactive.typ / 2);
tegra_dsi_ganged_enable(priv->slave, timing->hactive.typ / 2,
timing->hactive.typ / 2);
}
}
static int tegra_dsi_encoder_enable(struct udevice *dev)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct mipi_dsi_device *device = &priv->device;
struct display_timing *timing = &priv->timing;
struct dsi_misc_reg *misc = &priv->dsi->misc;
unsigned int mul, div;
unsigned long bclk, plld, period;
u32 value;
int ret;
/* If for some reasone DSI is enabled then it needs to
* be disabled in order for the panel initialization
* commands to be properly sent.
*/
value = readl(&misc->dsi_pwr_ctrl);
if (value & DSI_POWER_CONTROL_ENABLE) {
value = readl(&misc->dsi_pwr_ctrl);
value &= ~DSI_POWER_CONTROL_ENABLE;
writel(value, &misc->dsi_pwr_ctrl);
}
/* Disable interrupt */
writel(0, &misc->int_enable);
if (priv->version)
tegra_dsi_mipi_calibrate(priv);
else
tegra_dsi_pad_calibrate(&priv->dsi->pad);
tegra_dsi_get_muldiv(device->format, &mul, &div);
/* compute byte clock */
bclk = (timing->pixelclock.typ * mul) / (div * device->lanes);
tegra_dsi_set_timeout(&priv->dsi->timeout, bclk, 60);
/*
* Compute bit clock and round up to the next MHz.
*/
plld = DIV_ROUND_UP(bclk * 8, USEC_PER_SEC) * USEC_PER_SEC;
period = DIV_ROUND_CLOSEST(NSEC_PER_SEC, plld);
ret = mipi_dphy_timing_get_default(&priv->dphy_timing, period);
if (ret < 0) {
printf("%s: failed to get D-PHY timing: %d\n", __func__, ret);
return ret;
}
ret = mipi_dphy_timing_validate(&priv->dphy_timing, period);
if (ret < 0) {
printf("%s: failed to validate D-PHY timing: %d\n", __func__, ret);
return ret;
}
/*
* The D-PHY timing fields are expressed in byte-clock cycles, so
* multiply the period by 8.
*/
tegra_dsi_set_phy_timing(&priv->dsi->ptiming,
period * 8, &priv->dphy_timing);
/* Perform panel HW setup */
ret = panel_enable_backlight(priv->panel);
if (ret)
return ret;
tegra_dsi_configure(dev, device->mode_flags);
tegra_dc_enable_controller(dev);
/* enable DSI controller */
value = readl(&misc->dsi_pwr_ctrl);
value |= DSI_POWER_CONTROL_ENABLE;
writel(value, &misc->dsi_pwr_ctrl);
if (priv->slave)
tegra_dsi_encoder_enable(priv->slave);
return 0;
}
static int tegra_dsi_bridge_set_panel(struct udevice *dev, int percent)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
/* Turn on/off backlight */
return panel_set_backlight(priv->panel, percent);
}
static int tegra_dsi_panel_timings(struct udevice *dev,
struct display_timing *timing)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
memcpy(timing, &priv->timing, sizeof(*timing));
return 0;
}
static void tegra_dsi_init_clocks(struct udevice *dev)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct tegra_dc_plat *dc_plat = dev_get_plat(dev);
struct mipi_dsi_device *device = &priv->device;
unsigned int mul, div;
unsigned long bclk, plld;
if (!priv->slave) {
/* Change DSIB clock parent to match DSIA */
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
clrbits_le32(&clkrst->plld2.pll_base, BIT(25)); /* DSIB_CLK_SRC */
}
tegra_dsi_get_muldiv(device->format, &mul, &div);
bclk = (priv->timing.pixelclock.typ * mul) /
(div * device->lanes);
plld = DIV_ROUND_UP(bclk * 8, USEC_PER_SEC);
dc_plat->scdiv = ((plld * USEC_PER_SEC +
priv->timing.pixelclock.typ / 2) /
priv->timing.pixelclock.typ) - 2;
/*
* BUG: If DISP1 is a PLLD/D2 child, it cannot go over 370MHz. The
* cause of this is not quite clear. This can be overcomed by
* halving the PLLD/D2 if the target rate is > 800MHz. This way
* DISP1 and DSI clocks will be equal.
*/
if (plld > 800)
plld /= 2;
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
clock_set_rate(CLOCK_ID_DISPLAY, plld, 12, 0, 8);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_DISPLAY, plld, 26, 0, 8);
break;
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
clock_set_rate(CLOCK_ID_DISPLAY, plld, 13, 0, 8);
break;
case CLOCK_OSC_FREQ_19_2:
case CLOCK_OSC_FREQ_38_4:
default:
/*
* These are not supported.
*/
break;
}
priv->dsi_clk = clock_decode_periph_id(dev);
clock_enable(priv->dsi_clk);
udelay(2);
reset_set_enable(priv->dsi_clk, 0);
}
static int tegra_dsi_ganged_probe(struct udevice *dev)
{
struct tegra_dsi_priv *mpriv = dev_get_priv(dev);
struct udevice *gangster;
uclass_get_device_by_phandle(UCLASS_PANEL, dev,
"nvidia,ganged-mode", &gangster);
if (gangster) {
/* Ganged mode is set */
struct tegra_dsi_priv *spriv = dev_get_priv(gangster);
mpriv->slave = gangster;
spriv->master = dev;
}
return 0;
}
static int tegra_dsi_bridge_probe(struct udevice *dev)
{
struct tegra_dsi_priv *priv = dev_get_priv(dev);
struct mipi_dsi_device *device = &priv->device;
struct mipi_dsi_panel_plat *mipi_plat;
struct reset_ctl reset_ctl;
int ret;
priv->version = dev_get_driver_data(dev);
priv->dsi = (struct dsi_ctlr *)dev_read_addr_ptr(dev);
if (!priv->dsi) {
printf("%s: No display controller address\n", __func__);
return -EINVAL;
}
priv->video_fifo_depth = 1920;
priv->host_fifo_depth = 64;
tegra_dsi_ganged_probe(dev);
ret = reset_get_by_name(dev, "dsi", &reset_ctl);
if (ret) {
log_debug("%s: reset_get_by_name() failed: %d\n",
__func__, ret);
return ret;
}
ret = uclass_get_device_by_phandle(UCLASS_REGULATOR, dev,
"avdd-dsi-csi-supply", &priv->avdd);
if (ret)
debug("%s: Cannot get avdd-dsi-csi-supply: error %d\n",
__func__, ret);
ret = uclass_get_device_by_phandle(UCLASS_PANEL, dev,
"panel", &priv->panel);
if (ret) {
printf("%s: Cannot get panel: error %d\n", __func__, ret);
return log_ret(ret);
}
if (priv->version) {
ret = uclass_get_device_by_phandle(UCLASS_MISC, dev,
"nvidia,mipi-calibrate",
&priv->mipi);
if (ret) {
log_debug("%s: cannot get MIPI: error %d\n", __func__, ret);
return ret;
}
}
panel_get_display_timing(priv->panel, &priv->timing);
mipi_plat = dev_get_plat(priv->panel);
mipi_plat->device = device;
priv->host.dev = (struct device *)dev;
priv->host.ops = &tegra_dsi_bridge_host_ops;
device->host = &priv->host;
device->lanes = mipi_plat->lanes;
device->format = mipi_plat->format;
device->mode_flags = mipi_plat->mode_flags;
tegra_dsi_get_format(device->format, &priv->format);
reset_assert(&reset_ctl);
ret = regulator_set_enable_if_allowed(priv->avdd, true);
if (ret && ret != -ENOSYS)
return ret;
tegra_dsi_init_clocks(dev);
mdelay(2);
reset_deassert(&reset_ctl);
return 0;
}
static const struct panel_ops tegra_dsi_bridge_ops = {
.enable_backlight = tegra_dsi_encoder_enable,
.set_backlight = tegra_dsi_bridge_set_panel,
.get_display_timing = tegra_dsi_panel_timings,
};
static const struct udevice_id tegra_dsi_bridge_ids[] = {
{ .compatible = "nvidia,tegra30-dsi", .data = DSI_V0 },
{ .compatible = "nvidia,tegra114-dsi", .data = DSI_V1 },
{ }
};
U_BOOT_DRIVER(tegra_dsi) = {
.name = "tegra_dsi",
.id = UCLASS_PANEL,
.of_match = tegra_dsi_bridge_ids,
.ops = &tegra_dsi_bridge_ops,
.probe = tegra_dsi_bridge_probe,
.plat_auto = sizeof(struct tegra_dc_plat),
.priv_auto = sizeof(struct tegra_dsi_priv),
};