| /* |
| * EMIF programming |
| * |
| * (C) Copyright 2010 |
| * Texas Instruments, <www.ti.com> |
| * |
| * Aneesh V <aneesh@ti.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/emif.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/omap_common.h> |
| #include <asm/utils.h> |
| #include <linux/compiler.h> |
| |
| static int emif1_enabled = -1, emif2_enabled = -1; |
| |
| void set_lpmode_selfrefresh(u32 base) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| u32 reg; |
| |
| reg = readl(&emif->emif_pwr_mgmt_ctrl); |
| reg &= ~EMIF_REG_LP_MODE_MASK; |
| reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT; |
| reg &= ~EMIF_REG_SR_TIM_MASK; |
| writel(reg, &emif->emif_pwr_mgmt_ctrl); |
| |
| /* dummy read for the new SR_TIM to be loaded */ |
| readl(&emif->emif_pwr_mgmt_ctrl); |
| } |
| |
| void force_emif_self_refresh() |
| { |
| set_lpmode_selfrefresh(EMIF1_BASE); |
| set_lpmode_selfrefresh(EMIF2_BASE); |
| } |
| |
| inline u32 emif_num(u32 base) |
| { |
| if (base == EMIF1_BASE) |
| return 1; |
| else if (base == EMIF2_BASE) |
| return 2; |
| else |
| return 0; |
| } |
| |
| static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr) |
| { |
| u32 mr; |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| mr_addr |= cs << EMIF_REG_CS_SHIFT; |
| writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); |
| if (omap_revision() == OMAP4430_ES2_0) |
| mr = readl(&emif->emif_lpddr2_mode_reg_data_es2); |
| else |
| mr = readl(&emif->emif_lpddr2_mode_reg_data); |
| debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base), |
| cs, mr_addr, mr); |
| if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) && |
| ((mr & 0x00ff0000) >> 16) == (mr & 0xff) && |
| ((mr & 0xff000000) >> 24) == (mr & 0xff)) |
| return mr & 0xff; |
| else |
| return mr; |
| } |
| |
| static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| mr_addr |= cs << EMIF_REG_CS_SHIFT; |
| writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); |
| writel(mr_val, &emif->emif_lpddr2_mode_reg_data); |
| } |
| |
| void emif_reset_phy(u32 base) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| u32 iodft; |
| |
| iodft = readl(&emif->emif_iodft_tlgc); |
| iodft |= EMIF_REG_RESET_PHY_MASK; |
| writel(iodft, &emif->emif_iodft_tlgc); |
| } |
| |
| static void do_lpddr2_init(u32 base, u32 cs) |
| { |
| u32 mr_addr; |
| const struct lpddr2_mr_regs *mr_regs; |
| |
| get_lpddr2_mr_regs(&mr_regs); |
| /* Wait till device auto initialization is complete */ |
| while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK) |
| ; |
| set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10); |
| /* |
| * tZQINIT = 1 us |
| * Enough loops assuming a maximum of 2GHz |
| */ |
| |
| sdelay(2000); |
| |
| set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1); |
| set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16); |
| |
| /* |
| * Enable refresh along with writing MR2 |
| * Encoding of RL in MR2 is (RL - 2) |
| */ |
| mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK; |
| set_mr(base, cs, mr_addr, mr_regs->mr2); |
| |
| if (mr_regs->mr3 > 0) |
| set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3); |
| } |
| |
| static void lpddr2_init(u32 base, const struct emif_regs *regs) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| /* Not NVM */ |
| clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK); |
| |
| /* |
| * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM |
| * when EMIF_SDRAM_CONFIG register is written |
| */ |
| setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK); |
| |
| /* |
| * Set the SDRAM_CONFIG and PHY_CTRL for the |
| * un-locked frequency & default RL |
| */ |
| writel(regs->sdram_config_init, &emif->emif_sdram_config); |
| writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); |
| |
| do_ext_phy_settings(base, regs); |
| |
| do_lpddr2_init(base, CS0); |
| if (regs->sdram_config & EMIF_REG_EBANK_MASK) |
| do_lpddr2_init(base, CS1); |
| |
| writel(regs->sdram_config, &emif->emif_sdram_config); |
| writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); |
| |
| /* Enable refresh now */ |
| clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK); |
| |
| } |
| |
| __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs) |
| { |
| } |
| |
| void emif_update_timings(u32 base, const struct emif_regs *regs) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw); |
| writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw); |
| writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw); |
| writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw); |
| if (omap_revision() == OMAP4430_ES1_0) { |
| /* ES1 bug EMIF should be in force idle during freq_update */ |
| writel(0, &emif->emif_pwr_mgmt_ctrl); |
| } else { |
| writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl); |
| writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw); |
| } |
| writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw); |
| writel(regs->zq_config, &emif->emif_zq_config); |
| writel(regs->temp_alert_config, &emif->emif_temp_alert_config); |
| writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); |
| |
| if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) { |
| writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, |
| &emif->emif_l3_config); |
| } else if (omap_revision() >= OMAP4460_ES1_0) { |
| writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0, |
| &emif->emif_l3_config); |
| } else { |
| writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0, |
| &emif->emif_l3_config); |
| } |
| } |
| |
| static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| /* keep sdram in self-refresh */ |
| writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT) |
| & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl); |
| __udelay(130); |
| |
| /* |
| * Set invert_clkout (if activated)--DDR_PHYCTRL_1 |
| * Invert clock adds an additional half cycle delay on the |
| * command interface. The additional half cycle, is usually |
| * meant to enable leveling in the situation that DQS is later |
| * than CK on the board.It also helps provide some additional |
| * margin for leveling. |
| */ |
| writel(regs->emif_ddr_phy_ctlr_1, |
| &emif->emif_ddr_phy_ctrl_1); |
| |
| writel(regs->emif_ddr_phy_ctlr_1, |
| &emif->emif_ddr_phy_ctrl_1_shdw); |
| __udelay(130); |
| |
| writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT) |
| & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl); |
| |
| /* Launch Full leveling */ |
| writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl); |
| |
| /* Wait till full leveling is complete */ |
| readl(&emif->emif_rd_wr_lvl_ctl); |
| __udelay(130); |
| |
| /* Read data eye leveling no of samples */ |
| config_data_eye_leveling_samples(base); |
| |
| /* |
| * Launch 8 incremental WR_LVL- to compensate for |
| * PHY limitation. |
| */ |
| writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, |
| &emif->emif_rd_wr_lvl_ctl); |
| |
| __udelay(130); |
| |
| /* Launch Incremental leveling */ |
| writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl); |
| __udelay(130); |
| } |
| |
| static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| u32 fifo_reg; |
| |
| fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1); |
| writel(fifo_reg | 0x00000100, |
| &emif->emif_ddr_fifo_misaligned_clear_1); |
| |
| fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2); |
| writel(fifo_reg | 0x00000100, |
| &emif->emif_ddr_fifo_misaligned_clear_2); |
| |
| /* Launch Full leveling */ |
| writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl); |
| |
| /* Wait till full leveling is complete */ |
| readl(&emif->emif_rd_wr_lvl_ctl); |
| __udelay(130); |
| |
| /* Read data eye leveling no of samples */ |
| config_data_eye_leveling_samples(base); |
| |
| /* |
| * Disable leveling. This is because if leveling is kept |
| * enabled, then PHY triggers a false leveling during |
| * EMIF-idle scenario which results in wrong delay |
| * values getting updated. After this the EMIF becomes |
| * unaccessible. So disable it after the first time |
| */ |
| writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl); |
| } |
| |
| static void ddr3_leveling(u32 base, const struct emif_regs *regs) |
| { |
| if (is_omap54xx()) |
| omap5_ddr3_leveling(base, regs); |
| else |
| dra7_ddr3_leveling(base, regs); |
| } |
| |
| static void ddr3_init(u32 base, const struct emif_regs *regs) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| /* |
| * Set SDRAM_CONFIG and PHY control registers to locked frequency |
| * and RL =7. As the default values of the Mode Registers are not |
| * defined, contents of mode Registers must be fully initialized. |
| * H/W takes care of this initialization |
| */ |
| writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); |
| |
| /* Update timing registers */ |
| writel(regs->sdram_tim1, &emif->emif_sdram_tim_1); |
| writel(regs->sdram_tim2, &emif->emif_sdram_tim_2); |
| writel(regs->sdram_tim3, &emif->emif_sdram_tim_3); |
| |
| writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl); |
| writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl); |
| |
| /* |
| * The same sequence should work on OMAP5432 as well. But strange that |
| * it is not working |
| */ |
| if (is_dra7xx()) { |
| do_ext_phy_settings(base, regs); |
| writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config); |
| writel(regs->sdram_config_init, &emif->emif_sdram_config); |
| } else { |
| writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config); |
| writel(regs->sdram_config_init, &emif->emif_sdram_config); |
| do_ext_phy_settings(base, regs); |
| } |
| |
| /* enable leveling */ |
| writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl); |
| |
| ddr3_leveling(base, regs); |
| } |
| |
| #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
| #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) |
| |
| /* |
| * Organization and refresh requirements for LPDDR2 devices of different |
| * types and densities. Derived from JESD209-2 section 2.4 |
| */ |
| const struct lpddr2_addressing addressing_table[] = { |
| /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */ |
| {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ |
| {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ |
| {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ |
| {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ |
| {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ |
| {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ |
| {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ |
| {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ |
| {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ |
| {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ |
| }; |
| |
| static const u32 lpddr2_density_2_size_in_mbytes[] = { |
| 8, /* 64Mb */ |
| 16, /* 128Mb */ |
| 32, /* 256Mb */ |
| 64, /* 512Mb */ |
| 128, /* 1Gb */ |
| 256, /* 2Gb */ |
| 512, /* 4Gb */ |
| 1024, /* 8Gb */ |
| 2048, /* 16Gb */ |
| 4096 /* 32Gb */ |
| }; |
| |
| /* |
| * Calculate the period of DDR clock from frequency value and set the |
| * denominator and numerator in global variables for easy access later |
| */ |
| static void set_ddr_clk_period(u32 freq) |
| { |
| /* |
| * period = 1/freq |
| * period_in_ns = 10^9/freq |
| */ |
| *T_num = 1000000000; |
| *T_den = freq; |
| cancel_out(T_num, T_den, 200); |
| |
| } |
| |
| /* |
| * Convert time in nano seconds to number of cycles of DDR clock |
| */ |
| static inline u32 ns_2_cycles(u32 ns) |
| { |
| return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); |
| } |
| |
| /* |
| * ns_2_cycles with the difference that the time passed is 2 times the actual |
| * value(to avoid fractions). The cycles returned is for the original value of |
| * the timing parameter |
| */ |
| static inline u32 ns_x2_2_cycles(u32 ns) |
| { |
| return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); |
| } |
| |
| /* |
| * Find addressing table index based on the device's type(S2 or S4) and |
| * density |
| */ |
| s8 addressing_table_index(u8 type, u8 density, u8 width) |
| { |
| u8 index; |
| if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) |
| return -1; |
| |
| /* |
| * Look at the way ADDR_TABLE_INDEX* values have been defined |
| * in emif.h compared to LPDDR2_DENSITY_* values |
| * The table is layed out in the increasing order of density |
| * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed |
| * at the end |
| */ |
| if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) |
| index = ADDR_TABLE_INDEX1GS2; |
| else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) |
| index = ADDR_TABLE_INDEX2GS2; |
| else |
| index = density; |
| |
| debug("emif: addressing table index %d\n", index); |
| |
| return index; |
| } |
| |
| /* |
| * Find the the right timing table from the array of timing |
| * tables of the device using DDR clock frequency |
| */ |
| static const struct lpddr2_ac_timings *get_timings_table(const struct |
| lpddr2_ac_timings const *const *device_timings, |
| u32 freq) |
| { |
| u32 i, temp, freq_nearest; |
| const struct lpddr2_ac_timings *timings = 0; |
| |
| emif_assert(freq <= MAX_LPDDR2_FREQ); |
| emif_assert(device_timings); |
| |
| /* |
| * Start with the maximum allowed frequency - that is always safe |
| */ |
| freq_nearest = MAX_LPDDR2_FREQ; |
| /* |
| * Find the timings table that has the max frequency value: |
| * i. Above or equal to the DDR frequency - safe |
| * ii. The lowest that satisfies condition (i) - optimal |
| */ |
| for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { |
| temp = device_timings[i]->max_freq; |
| if ((temp >= freq) && (temp <= freq_nearest)) { |
| freq_nearest = temp; |
| timings = device_timings[i]; |
| } |
| } |
| debug("emif: timings table: %d\n", freq_nearest); |
| return timings; |
| } |
| |
| /* |
| * Finds the value of emif_sdram_config_reg |
| * All parameters are programmed based on the device on CS0. |
| * If there is a device on CS1, it will be same as that on CS0 or |
| * it will be NVM. We don't support NVM yet. |
| * If cs1_device pointer is NULL it is assumed that there is no device |
| * on CS1 |
| */ |
| static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, |
| const struct lpddr2_device_details *cs1_device, |
| const struct lpddr2_addressing *addressing, |
| u8 RL) |
| { |
| u32 config_reg = 0; |
| |
| config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT; |
| config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << |
| EMIF_REG_IBANK_POS_SHIFT; |
| |
| config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT; |
| |
| config_reg |= RL << EMIF_REG_CL_SHIFT; |
| |
| config_reg |= addressing->row_sz[cs0_device->io_width] << |
| EMIF_REG_ROWSIZE_SHIFT; |
| |
| config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT; |
| |
| config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << |
| EMIF_REG_EBANK_SHIFT; |
| |
| config_reg |= addressing->col_sz[cs0_device->io_width] << |
| EMIF_REG_PAGESIZE_SHIFT; |
| |
| return config_reg; |
| } |
| |
| static u32 get_sdram_ref_ctrl(u32 freq, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 ref_ctrl = 0, val = 0, freq_khz; |
| freq_khz = freq / 1000; |
| /* |
| * refresh rate to be set is 'tREFI * freq in MHz |
| * division by 10000 to account for khz and x10 in t_REFI_us_x10 |
| */ |
| val = addressing->t_REFI_us_x10 * freq_khz / 10000; |
| ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT; |
| |
| return ref_ctrl; |
| } |
| |
| static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 tim1 = 0, val = 0; |
| val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; |
| tim1 |= val << EMIF_REG_T_WTR_SHIFT; |
| |
| if (addressing->num_banks == BANKS8) |
| val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / |
| (4 * (*T_num)) - 1; |
| else |
| val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; |
| |
| tim1 |= val << EMIF_REG_T_RRD_SHIFT; |
| |
| val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; |
| tim1 |= val << EMIF_REG_T_RC_SHIFT; |
| |
| val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; |
| tim1 |= val << EMIF_REG_T_RAS_SHIFT; |
| |
| val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; |
| tim1 |= val << EMIF_REG_T_WR_SHIFT; |
| |
| val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; |
| tim1 |= val << EMIF_REG_T_RCD_SHIFT; |
| |
| val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; |
| tim1 |= val << EMIF_REG_T_RP_SHIFT; |
| |
| return tim1; |
| } |
| |
| static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, |
| const struct lpddr2_min_tck *min_tck) |
| { |
| u32 tim2 = 0, val = 0; |
| val = max(min_tck->tCKE, timings->tCKE) - 1; |
| tim2 |= val << EMIF_REG_T_CKE_SHIFT; |
| |
| val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; |
| tim2 |= val << EMIF_REG_T_RTP_SHIFT; |
| |
| /* |
| * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the |
| * same value |
| */ |
| val = ns_2_cycles(timings->tXSR) - 1; |
| tim2 |= val << EMIF_REG_T_XSRD_SHIFT; |
| tim2 |= val << EMIF_REG_T_XSNR_SHIFT; |
| |
| val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; |
| tim2 |= val << EMIF_REG_T_XP_SHIFT; |
| |
| return tim2; |
| } |
| |
| static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, |
| const struct lpddr2_min_tck *min_tck, |
| const struct lpddr2_addressing *addressing) |
| { |
| u32 tim3 = 0, val = 0; |
| val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); |
| tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT; |
| |
| val = ns_2_cycles(timings->tRFCab) - 1; |
| tim3 |= val << EMIF_REG_T_RFC_SHIFT; |
| |
| val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; |
| tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT; |
| |
| val = ns_2_cycles(timings->tZQCS) - 1; |
| tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT; |
| |
| val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; |
| tim3 |= val << EMIF_REG_T_CKESR_SHIFT; |
| |
| return tim3; |
| } |
| |
| static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, |
| const struct lpddr2_addressing *addressing, |
| u8 volt_ramp) |
| { |
| u32 zq = 0, val = 0; |
| if (volt_ramp) |
| val = |
| EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / |
| addressing->t_REFI_us_x10; |
| else |
| val = |
| EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / |
| addressing->t_REFI_us_x10; |
| zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT; |
| |
| zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT; |
| |
| zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT; |
| |
| zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT; |
| |
| /* |
| * Assuming that two chipselects have a single calibration resistor |
| * If there are indeed two calibration resistors, then this flag should |
| * be enabled to take advantage of dual calibration feature. |
| * This data should ideally come from board files. But considering |
| * that none of the boards today have calibration resistors per CS, |
| * it would be an unnecessary overhead. |
| */ |
| zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT; |
| |
| zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT; |
| |
| zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT; |
| |
| return zq; |
| } |
| |
| static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, |
| const struct lpddr2_addressing *addressing, |
| u8 is_derated) |
| { |
| u32 alert = 0, interval; |
| interval = |
| TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; |
| if (is_derated) |
| interval *= 4; |
| alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT; |
| |
| alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT; |
| |
| alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT; |
| |
| alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT; |
| |
| alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT; |
| |
| alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT; |
| |
| return alert; |
| } |
| |
| static u32 get_read_idle_ctrl_reg(u8 volt_ramp) |
| { |
| u32 idle = 0, val = 0; |
| if (volt_ramp) |
| val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1; |
| else |
| /*Maximum value in normal conditions - suggested by hw team */ |
| val = 0x1FF; |
| idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT; |
| |
| idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT; |
| |
| return idle; |
| } |
| |
| static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) |
| { |
| u32 phy = 0, val = 0; |
| |
| phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT; |
| |
| if (freq <= 100000000) |
| val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; |
| else if (freq <= 200000000) |
| val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; |
| else |
| val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; |
| phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT; |
| |
| /* Other fields are constant magic values. Hardcode them together */ |
| phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << |
| EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; |
| |
| return phy; |
| } |
| |
| static u32 get_emif_mem_size(u32 base) |
| { |
| u32 size_mbytes = 0, temp; |
| struct emif_device_details dev_details; |
| struct lpddr2_device_details cs0_dev_details, cs1_dev_details; |
| u32 emif_nr = emif_num(base); |
| |
| emif_reset_phy(base); |
| dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0, |
| &cs0_dev_details); |
| dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1, |
| &cs1_dev_details); |
| emif_reset_phy(base); |
| |
| if (dev_details.cs0_device_details) { |
| temp = dev_details.cs0_device_details->density; |
| size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; |
| } |
| |
| if (dev_details.cs1_device_details) { |
| temp = dev_details.cs1_device_details->density; |
| size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; |
| } |
| /* convert to bytes */ |
| return size_mbytes << 20; |
| } |
| |
| /* Gets the encoding corresponding to a given DMM section size */ |
| u32 get_dmm_section_size_map(u32 section_size) |
| { |
| /* |
| * Section size mapping: |
| * 0x0: 16-MiB section |
| * 0x1: 32-MiB section |
| * 0x2: 64-MiB section |
| * 0x3: 128-MiB section |
| * 0x4: 256-MiB section |
| * 0x5: 512-MiB section |
| * 0x6: 1-GiB section |
| * 0x7: 2-GiB section |
| */ |
| section_size >>= 24; /* divide by 16 MB */ |
| return log_2_n_round_down(section_size); |
| } |
| |
| static void emif_calculate_regs( |
| const struct emif_device_details *emif_dev_details, |
| u32 freq, struct emif_regs *regs) |
| { |
| u32 temp, sys_freq; |
| const struct lpddr2_addressing *addressing; |
| const struct lpddr2_ac_timings *timings; |
| const struct lpddr2_min_tck *min_tck; |
| const struct lpddr2_device_details *cs0_dev_details = |
| emif_dev_details->cs0_device_details; |
| const struct lpddr2_device_details *cs1_dev_details = |
| emif_dev_details->cs1_device_details; |
| const struct lpddr2_device_timings *cs0_dev_timings = |
| emif_dev_details->cs0_device_timings; |
| |
| emif_assert(emif_dev_details); |
| emif_assert(regs); |
| /* |
| * You can not have a device on CS1 without one on CS0 |
| * So configuring EMIF without a device on CS0 doesn't |
| * make sense |
| */ |
| emif_assert(cs0_dev_details); |
| emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); |
| /* |
| * If there is a device on CS1 it should be same type as CS0 |
| * (or NVM. But NVM is not supported in this driver yet) |
| */ |
| emif_assert((cs1_dev_details == NULL) || |
| (cs1_dev_details->type == LPDDR2_TYPE_NVM) || |
| (cs0_dev_details->type == cs1_dev_details->type)); |
| emif_assert(freq <= MAX_LPDDR2_FREQ); |
| |
| set_ddr_clk_period(freq); |
| |
| /* |
| * The device on CS0 is used for all timing calculations |
| * There is only one set of registers for timings per EMIF. So, if the |
| * second CS(CS1) has a device, it should have the same timings as the |
| * device on CS0 |
| */ |
| timings = get_timings_table(cs0_dev_timings->ac_timings, freq); |
| emif_assert(timings); |
| min_tck = cs0_dev_timings->min_tck; |
| |
| temp = addressing_table_index(cs0_dev_details->type, |
| cs0_dev_details->density, |
| cs0_dev_details->io_width); |
| |
| emif_assert((temp >= 0)); |
| addressing = &(addressing_table[temp]); |
| emif_assert(addressing); |
| |
| sys_freq = get_sys_clk_freq(); |
| |
| regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, |
| cs1_dev_details, |
| addressing, RL_BOOT); |
| |
| regs->sdram_config = get_sdram_config_reg(cs0_dev_details, |
| cs1_dev_details, |
| addressing, RL_FINAL); |
| |
| regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); |
| |
| regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); |
| |
| regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); |
| |
| regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); |
| |
| regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); |
| |
| regs->temp_alert_config = |
| get_temp_alert_config(cs1_dev_details, addressing, 0); |
| |
| regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, |
| LPDDR2_VOLTAGE_STABLE); |
| |
| regs->emif_ddr_phy_ctlr_1_init = |
| get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); |
| |
| regs->emif_ddr_phy_ctlr_1 = |
| get_ddr_phy_ctrl_1(freq, RL_FINAL); |
| |
| regs->freq = freq; |
| |
| print_timing_reg(regs->sdram_config_init); |
| print_timing_reg(regs->sdram_config); |
| print_timing_reg(regs->ref_ctrl); |
| print_timing_reg(regs->sdram_tim1); |
| print_timing_reg(regs->sdram_tim2); |
| print_timing_reg(regs->sdram_tim3); |
| print_timing_reg(regs->read_idle_ctrl); |
| print_timing_reg(regs->temp_alert_config); |
| print_timing_reg(regs->zq_config); |
| print_timing_reg(regs->emif_ddr_phy_ctlr_1); |
| print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); |
| } |
| #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ |
| |
| #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION |
| const char *get_lpddr2_type(u8 type_id) |
| { |
| switch (type_id) { |
| case LPDDR2_TYPE_S4: |
| return "LPDDR2-S4"; |
| case LPDDR2_TYPE_S2: |
| return "LPDDR2-S2"; |
| default: |
| return NULL; |
| } |
| } |
| |
| const char *get_lpddr2_io_width(u8 width_id) |
| { |
| switch (width_id) { |
| case LPDDR2_IO_WIDTH_8: |
| return "x8"; |
| case LPDDR2_IO_WIDTH_16: |
| return "x16"; |
| case LPDDR2_IO_WIDTH_32: |
| return "x32"; |
| default: |
| return NULL; |
| } |
| } |
| |
| const char *get_lpddr2_manufacturer(u32 manufacturer) |
| { |
| switch (manufacturer) { |
| case LPDDR2_MANUFACTURER_SAMSUNG: |
| return "Samsung"; |
| case LPDDR2_MANUFACTURER_QIMONDA: |
| return "Qimonda"; |
| case LPDDR2_MANUFACTURER_ELPIDA: |
| return "Elpida"; |
| case LPDDR2_MANUFACTURER_ETRON: |
| return "Etron"; |
| case LPDDR2_MANUFACTURER_NANYA: |
| return "Nanya"; |
| case LPDDR2_MANUFACTURER_HYNIX: |
| return "Hynix"; |
| case LPDDR2_MANUFACTURER_MOSEL: |
| return "Mosel"; |
| case LPDDR2_MANUFACTURER_WINBOND: |
| return "Winbond"; |
| case LPDDR2_MANUFACTURER_ESMT: |
| return "ESMT"; |
| case LPDDR2_MANUFACTURER_SPANSION: |
| return "Spansion"; |
| case LPDDR2_MANUFACTURER_SST: |
| return "SST"; |
| case LPDDR2_MANUFACTURER_ZMOS: |
| return "ZMOS"; |
| case LPDDR2_MANUFACTURER_INTEL: |
| return "Intel"; |
| case LPDDR2_MANUFACTURER_NUMONYX: |
| return "Numonyx"; |
| case LPDDR2_MANUFACTURER_MICRON: |
| return "Micron"; |
| default: |
| return NULL; |
| } |
| } |
| |
| static void display_sdram_details(u32 emif_nr, u32 cs, |
| struct lpddr2_device_details *device) |
| { |
| const char *mfg_str; |
| const char *type_str; |
| char density_str[10]; |
| u32 density; |
| |
| debug("EMIF%d CS%d\t", emif_nr, cs); |
| |
| if (!device) { |
| debug("None\n"); |
| return; |
| } |
| |
| mfg_str = get_lpddr2_manufacturer(device->manufacturer); |
| type_str = get_lpddr2_type(device->type); |
| |
| density = lpddr2_density_2_size_in_mbytes[device->density]; |
| if ((density / 1024 * 1024) == density) { |
| density /= 1024; |
| sprintf(density_str, "%d GB", density); |
| } else |
| sprintf(density_str, "%d MB", density); |
| if (mfg_str && type_str) |
| debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str); |
| } |
| |
| static u8 is_lpddr2_sdram_present(u32 base, u32 cs, |
| struct lpddr2_device_details *lpddr2_device) |
| { |
| u32 mr = 0, temp; |
| |
| mr = get_mr(base, cs, LPDDR2_MR0); |
| if (mr > 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT; |
| if (temp) { |
| /* Not SDRAM */ |
| return 0; |
| } |
| temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT; |
| |
| if (temp) { |
| /* DNV supported - But DNV is only supported for NVM */ |
| return 0; |
| } |
| |
| mr = get_mr(base, cs, LPDDR2_MR4); |
| if (mr > 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| mr = get_mr(base, cs, LPDDR2_MR5); |
| if (mr > 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| if (!get_lpddr2_manufacturer(mr)) { |
| /* Manufacturer not identified */ |
| return 0; |
| } |
| lpddr2_device->manufacturer = mr; |
| |
| mr = get_mr(base, cs, LPDDR2_MR6); |
| if (mr >= 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| mr = get_mr(base, cs, LPDDR2_MR7); |
| if (mr >= 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| mr = get_mr(base, cs, LPDDR2_MR8); |
| if (mr >= 0xFF) { |
| /* Mode register value bigger than 8 bit */ |
| return 0; |
| } |
| |
| temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT; |
| if (!get_lpddr2_type(temp)) { |
| /* Not SDRAM */ |
| return 0; |
| } |
| lpddr2_device->type = temp; |
| |
| temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT; |
| if (temp > LPDDR2_DENSITY_32Gb) { |
| /* Density not supported */ |
| return 0; |
| } |
| lpddr2_device->density = temp; |
| |
| temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT; |
| if (!get_lpddr2_io_width(temp)) { |
| /* IO width unsupported value */ |
| return 0; |
| } |
| lpddr2_device->io_width = temp; |
| |
| /* |
| * If all the above tests pass we should |
| * have a device on this chip-select |
| */ |
| return 1; |
| } |
| |
| struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs, |
| struct lpddr2_device_details *lpddr2_dev_details) |
| { |
| u32 phy; |
| u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE; |
| |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| |
| if (!lpddr2_dev_details) |
| return NULL; |
| |
| /* Do the minimum init for mode register accesses */ |
| if (!(running_from_sdram() || warm_reset())) { |
| phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT); |
| writel(phy, &emif->emif_ddr_phy_ctrl_1); |
| } |
| |
| if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details))) |
| return NULL; |
| |
| display_sdram_details(emif_num(base), cs, lpddr2_dev_details); |
| |
| return lpddr2_dev_details; |
| } |
| #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */ |
| |
| static void do_sdram_init(u32 base) |
| { |
| const struct emif_regs *regs; |
| u32 in_sdram, emif_nr; |
| |
| debug(">>do_sdram_init() %x\n", base); |
| |
| in_sdram = running_from_sdram(); |
| emif_nr = (base == EMIF1_BASE) ? 1 : 2; |
| |
| #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
| emif_get_reg_dump(emif_nr, ®s); |
| if (!regs) { |
| debug("EMIF: reg dump not provided\n"); |
| return; |
| } |
| #else |
| /* |
| * The user has not provided the register values. We need to |
| * calculate it based on the timings and the DDR frequency |
| */ |
| struct emif_device_details dev_details; |
| struct emif_regs calculated_regs; |
| |
| /* |
| * Get device details: |
| * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set |
| * - Obtained from user otherwise |
| */ |
| struct lpddr2_device_details cs0_dev_details, cs1_dev_details; |
| emif_reset_phy(base); |
| dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0, |
| &cs0_dev_details); |
| dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1, |
| &cs1_dev_details); |
| emif_reset_phy(base); |
| |
| /* Return if no devices on this EMIF */ |
| if (!dev_details.cs0_device_details && |
| !dev_details.cs1_device_details) { |
| return; |
| } |
| |
| /* |
| * Get device timings: |
| * - Default timings specified by JESD209-2 if |
| * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set |
| * - Obtained from user otherwise |
| */ |
| emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, |
| &dev_details.cs1_device_timings); |
| |
| /* Calculate the register values */ |
| emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs); |
| regs = &calculated_regs; |
| #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ |
| |
| /* |
| * Initializing the LPDDR2 device can not happen from SDRAM. |
| * Changing the timing registers in EMIF can happen(going from one |
| * OPP to another) |
| */ |
| if (!(in_sdram || warm_reset())) { |
| if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2) |
| lpddr2_init(base, regs); |
| else |
| ddr3_init(base, regs); |
| } |
| if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) { |
| set_lpmode_selfrefresh(base); |
| emif_reset_phy(base); |
| ddr3_leveling(base, regs); |
| } |
| |
| /* Write to the shadow registers */ |
| emif_update_timings(base, regs); |
| |
| debug("<<do_sdram_init() %x\n", base); |
| } |
| |
| void emif_post_init_config(u32 base) |
| { |
| struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| u32 omap_rev = omap_revision(); |
| |
| /* reset phy on ES2.0 */ |
| if (omap_rev == OMAP4430_ES2_0) |
| emif_reset_phy(base); |
| |
| /* Put EMIF back in smart idle on ES1.0 */ |
| if (omap_rev == OMAP4430_ES1_0) |
| writel(0x80000000, &emif->emif_pwr_mgmt_ctrl); |
| } |
| |
| void dmm_init(u32 base) |
| { |
| const struct dmm_lisa_map_regs *lisa_map_regs; |
| u32 i, section, valid; |
| |
| #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
| emif_get_dmm_regs(&lisa_map_regs); |
| #else |
| u32 emif1_size, emif2_size, mapped_size, section_map = 0; |
| u32 section_cnt, sys_addr; |
| struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; |
| |
| mapped_size = 0; |
| section_cnt = 3; |
| sys_addr = CONFIG_SYS_SDRAM_BASE; |
| emif1_size = get_emif_mem_size(EMIF1_BASE); |
| emif2_size = get_emif_mem_size(EMIF2_BASE); |
| debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); |
| |
| if (!emif1_size && !emif2_size) |
| return; |
| |
| /* symmetric interleaved section */ |
| if (emif1_size && emif2_size) { |
| mapped_size = min(emif1_size, emif2_size); |
| section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; |
| section_map |= 0 << EMIF_SDRC_ADDR_SHIFT; |
| /* only MSB */ |
| section_map |= (sys_addr >> 24) << |
| EMIF_SYS_ADDR_SHIFT; |
| section_map |= get_dmm_section_size_map(mapped_size * 2) |
| << EMIF_SYS_SIZE_SHIFT; |
| lis_map_regs_calculated.dmm_lisa_map_3 = section_map; |
| emif1_size -= mapped_size; |
| emif2_size -= mapped_size; |
| sys_addr += (mapped_size * 2); |
| section_cnt--; |
| } |
| |
| /* |
| * Single EMIF section(we can have a maximum of 1 single EMIF |
| * section- either EMIF1 or EMIF2 or none, but not both) |
| */ |
| if (emif1_size) { |
| section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; |
| section_map |= get_dmm_section_size_map(emif1_size) |
| << EMIF_SYS_SIZE_SHIFT; |
| /* only MSB */ |
| section_map |= (mapped_size >> 24) << |
| EMIF_SDRC_ADDR_SHIFT; |
| /* only MSB */ |
| section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT; |
| section_cnt--; |
| } |
| if (emif2_size) { |
| section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; |
| section_map |= get_dmm_section_size_map(emif2_size) << |
| EMIF_SYS_SIZE_SHIFT; |
| /* only MSB */ |
| section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT; |
| /* only MSB */ |
| section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT; |
| section_cnt--; |
| } |
| |
| if (section_cnt == 2) { |
| /* Only 1 section - either symmetric or single EMIF */ |
| lis_map_regs_calculated.dmm_lisa_map_3 = section_map; |
| lis_map_regs_calculated.dmm_lisa_map_2 = 0; |
| lis_map_regs_calculated.dmm_lisa_map_1 = 0; |
| } else { |
| /* 2 sections - 1 symmetric, 1 single EMIF */ |
| lis_map_regs_calculated.dmm_lisa_map_2 = section_map; |
| lis_map_regs_calculated.dmm_lisa_map_1 = 0; |
| } |
| |
| /* TRAP for invalid TILER mappings in section 0 */ |
| lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; |
| |
| if (omap_revision() >= OMAP4460_ES1_0) |
| lis_map_regs_calculated.is_ma_present = 1; |
| |
| lisa_map_regs = &lis_map_regs_calculated; |
| #endif |
| struct dmm_lisa_map_regs *hw_lisa_map_regs = |
| (struct dmm_lisa_map_regs *)base; |
| |
| writel(0, &hw_lisa_map_regs->dmm_lisa_map_3); |
| writel(0, &hw_lisa_map_regs->dmm_lisa_map_2); |
| writel(0, &hw_lisa_map_regs->dmm_lisa_map_1); |
| writel(0, &hw_lisa_map_regs->dmm_lisa_map_0); |
| |
| writel(lisa_map_regs->dmm_lisa_map_3, |
| &hw_lisa_map_regs->dmm_lisa_map_3); |
| writel(lisa_map_regs->dmm_lisa_map_2, |
| &hw_lisa_map_regs->dmm_lisa_map_2); |
| writel(lisa_map_regs->dmm_lisa_map_1, |
| &hw_lisa_map_regs->dmm_lisa_map_1); |
| writel(lisa_map_regs->dmm_lisa_map_0, |
| &hw_lisa_map_regs->dmm_lisa_map_0); |
| |
| if (lisa_map_regs->is_ma_present) { |
| hw_lisa_map_regs = |
| (struct dmm_lisa_map_regs *)MA_BASE; |
| |
| writel(lisa_map_regs->dmm_lisa_map_3, |
| &hw_lisa_map_regs->dmm_lisa_map_3); |
| writel(lisa_map_regs->dmm_lisa_map_2, |
| &hw_lisa_map_regs->dmm_lisa_map_2); |
| writel(lisa_map_regs->dmm_lisa_map_1, |
| &hw_lisa_map_regs->dmm_lisa_map_1); |
| writel(lisa_map_regs->dmm_lisa_map_0, |
| &hw_lisa_map_regs->dmm_lisa_map_0); |
| } |
| |
| /* |
| * EMIF should be configured only when |
| * memory is mapped on it. Using emif1_enabled |
| * and emif2_enabled variables for this. |
| */ |
| emif1_enabled = 0; |
| emif2_enabled = 0; |
| for (i = 0; i < 4; i++) { |
| section = __raw_readl(DMM_BASE + i*4); |
| valid = (section & EMIF_SDRC_MAP_MASK) >> |
| (EMIF_SDRC_MAP_SHIFT); |
| if (valid == 3) { |
| emif1_enabled = 1; |
| emif2_enabled = 1; |
| break; |
| } else if (valid == 1) { |
| emif1_enabled = 1; |
| } else if (valid == 2) { |
| emif2_enabled = 1; |
| } |
| } |
| |
| } |
| |
| static void do_bug0039_workaround(u32 base) |
| { |
| u32 val, i, clkctrl; |
| struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base; |
| const struct read_write_regs *bug_00339_regs; |
| u32 iterations; |
| u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0]; |
| u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1; |
| |
| if (is_dra7xx()) |
| phy_status_base++; |
| |
| bug_00339_regs = get_bug_regs(&iterations); |
| |
| /* Put EMIF in to idle */ |
| clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl); |
| __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl); |
| |
| /* Copy the phy status registers in to phy ctrl shadow registers */ |
| for (i = 0; i < iterations; i++) { |
| val = __raw_readl(phy_status_base + |
| bug_00339_regs[i].read_reg - 1); |
| |
| __raw_writel(val, phy_ctrl_base + |
| ((bug_00339_regs[i].write_reg - 1) << 1)); |
| |
| __raw_writel(val, phy_ctrl_base + |
| (bug_00339_regs[i].write_reg << 1) - 1); |
| } |
| |
| /* Disable leveling */ |
| writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl); |
| |
| __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl); |
| } |
| |
| /* |
| * SDRAM initialization: |
| * SDRAM initialization has two parts: |
| * 1. Configuring the SDRAM device |
| * 2. Update the AC timings related parameters in the EMIF module |
| * (1) should be done only once and should not be done while we are |
| * running from SDRAM. |
| * (2) can and should be done more than once if OPP changes. |
| * Particularly, this may be needed when we boot without SPL and |
| * and using Configuration Header(CH). ROM code supports only at 50% OPP |
| * at boot (low power boot). So u-boot has to switch to OPP100 and update |
| * the frequency. So, |
| * Doing (1) and (2) makes sense - first time initialization |
| * Doing (2) and not (1) makes sense - OPP change (when using CH) |
| * Doing (1) and not (2) doen't make sense |
| * See do_sdram_init() for the details |
| */ |
| void sdram_init(void) |
| { |
| u32 in_sdram, size_prog, size_detect; |
| u32 sdram_type = emif_sdram_type(); |
| |
| debug(">>sdram_init()\n"); |
| |
| if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL) |
| return; |
| |
| in_sdram = running_from_sdram(); |
| debug("in_sdram = %d\n", in_sdram); |
| |
| if (!in_sdram) { |
| if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset()) |
| bypass_dpll((*prcm)->cm_clkmode_dpll_core); |
| else if (sdram_type == EMIF_SDRAM_TYPE_DDR3) |
| writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl); |
| } |
| |
| if (!in_sdram) |
| dmm_init(DMM_BASE); |
| |
| if (emif1_enabled) |
| do_sdram_init(EMIF1_BASE); |
| |
| if (emif2_enabled) |
| do_sdram_init(EMIF2_BASE); |
| |
| if (!(in_sdram || warm_reset())) { |
| if (emif1_enabled) |
| emif_post_init_config(EMIF1_BASE); |
| if (emif2_enabled) |
| emif_post_init_config(EMIF2_BASE); |
| } |
| |
| /* for the shadow registers to take effect */ |
| if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2) |
| freq_update_core(); |
| |
| /* Do some testing after the init */ |
| if (!in_sdram) { |
| size_prog = omap_sdram_size(); |
| size_prog = log_2_n_round_down(size_prog); |
| size_prog = (1 << size_prog); |
| |
| size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, |
| size_prog); |
| /* Compare with the size programmed */ |
| if (size_detect != size_prog) { |
| printf("SDRAM: identified size not same as expected" |
| " size identified: %x expected: %x\n", |
| size_detect, |
| size_prog); |
| } else |
| debug("get_ram_size() successful"); |
| } |
| |
| if (sdram_type == EMIF_SDRAM_TYPE_DDR3 && |
| (!in_sdram && !warm_reset())) { |
| do_bug0039_workaround(EMIF1_BASE); |
| do_bug0039_workaround(EMIF2_BASE); |
| } |
| |
| debug("<<sdram_init()\n"); |
| } |