blob: f1401d2f6ed2ea809479eca92836435f9ae88b9f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/ravb.c
* This file is driver for Renesas Ethernet AVB.
*
* Copyright (C) 2015-2017 Renesas Electronics Corporation
*
* Based on the SuperH Ethernet driver.
*/
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/cache.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <wait_bit.h>
#include <asm/io.h>
#include <asm/global_data.h>
#include <asm/gpio.h>
/* Registers */
#define RAVB_REG_CCC 0x000
#define RAVB_REG_DBAT 0x004
#define RAVB_REG_CSR 0x00C
#define RAVB_REG_APSR 0x08C
#define RAVB_REG_RCR 0x090
#define RAVB_REG_TGC 0x300
#define RAVB_REG_TCCR 0x304
#define RAVB_REG_RIC0 0x360
#define RAVB_REG_RIC1 0x368
#define RAVB_REG_RIC2 0x370
#define RAVB_REG_TIC 0x378
#define RAVB_REG_ECMR 0x500
#define RAVB_REG_RFLR 0x508
#define RAVB_REG_ECSIPR 0x518
#define RAVB_REG_PIR 0x520
#define RAVB_REG_GECMR 0x5b0
#define RAVB_REG_MAHR 0x5c0
#define RAVB_REG_MALR 0x5c8
#define CCC_OPC_CONFIG BIT(0)
#define CCC_OPC_OPERATION BIT(1)
#define CCC_BOC BIT(20)
#define CSR_OPS 0x0000000F
#define CSR_OPS_CONFIG BIT(1)
#define APSR_RDM BIT(13)
#define APSR_TDM BIT(14)
#define TCCR_TSRQ0 BIT(0)
#define RFLR_RFL_MIN 0x05EE
#define PIR_MDI BIT(3)
#define PIR_MDO BIT(2)
#define PIR_MMD BIT(1)
#define PIR_MDC BIT(0)
#define ECMR_TRCCM BIT(26)
#define ECMR_RZPF BIT(20)
#define ECMR_PFR BIT(18)
#define ECMR_RXF BIT(17)
#define ECMR_RE BIT(6)
#define ECMR_TE BIT(5)
#define ECMR_DM BIT(1)
#define ECMR_CHG_DM (ECMR_TRCCM | ECMR_RZPF | ECMR_PFR | ECMR_RXF)
/* DMA Descriptors */
#define RAVB_NUM_BASE_DESC 16
#define RAVB_NUM_TX_DESC 8
#define RAVB_NUM_RX_DESC 8
#define RAVB_TX_QUEUE_OFFSET 0
#define RAVB_RX_QUEUE_OFFSET 4
#define RAVB_DESC_DT(n) ((n) << 28)
#define RAVB_DESC_DT_FSINGLE RAVB_DESC_DT(0x7)
#define RAVB_DESC_DT_LINKFIX RAVB_DESC_DT(0x9)
#define RAVB_DESC_DT_EOS RAVB_DESC_DT(0xa)
#define RAVB_DESC_DT_FEMPTY RAVB_DESC_DT(0xc)
#define RAVB_DESC_DT_EEMPTY RAVB_DESC_DT(0x3)
#define RAVB_DESC_DT_MASK RAVB_DESC_DT(0xf)
#define RAVB_DESC_DS(n) (((n) & 0xfff) << 0)
#define RAVB_DESC_DS_MASK 0xfff
#define RAVB_RX_DESC_MSC_MC BIT(23)
#define RAVB_RX_DESC_MSC_CEEF BIT(22)
#define RAVB_RX_DESC_MSC_CRL BIT(21)
#define RAVB_RX_DESC_MSC_FRE BIT(20)
#define RAVB_RX_DESC_MSC_RTLF BIT(19)
#define RAVB_RX_DESC_MSC_RTSF BIT(18)
#define RAVB_RX_DESC_MSC_RFE BIT(17)
#define RAVB_RX_DESC_MSC_CRC BIT(16)
#define RAVB_RX_DESC_MSC_MASK (0xff << 16)
#define RAVB_RX_DESC_MSC_RX_ERR_MASK \
(RAVB_RX_DESC_MSC_CRC | RAVB_RX_DESC_MSC_RFE | RAVB_RX_DESC_MSC_RTLF | \
RAVB_RX_DESC_MSC_RTSF | RAVB_RX_DESC_MSC_CEEF)
#define RAVB_TX_TIMEOUT_MS 1000
struct ravb_desc {
u32 ctrl;
u32 dptr;
};
struct ravb_rxdesc {
struct ravb_desc data;
struct ravb_desc link;
u8 __pad[48];
u8 packet[PKTSIZE_ALIGN];
};
struct ravb_priv {
struct ravb_desc base_desc[RAVB_NUM_BASE_DESC];
struct ravb_desc tx_desc[RAVB_NUM_TX_DESC];
struct ravb_rxdesc rx_desc[RAVB_NUM_RX_DESC];
u32 rx_desc_idx;
u32 tx_desc_idx;
struct phy_device *phydev;
struct mii_dev *bus;
void __iomem *iobase;
struct clk_bulk clks;
};
static inline void ravb_flush_dcache(u32 addr, u32 len)
{
flush_dcache_range(addr, addr + len);
}
static inline void ravb_invalidate_dcache(u32 addr, u32 len)
{
u32 start = addr & ~((uintptr_t)ARCH_DMA_MINALIGN - 1);
u32 end = roundup(addr + len, ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
}
static int ravb_send(struct udevice *dev, void *packet, int len)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct ravb_desc *desc = &eth->tx_desc[eth->tx_desc_idx];
unsigned int start;
/* Update TX descriptor */
ravb_flush_dcache((uintptr_t)packet, len);
memset(desc, 0x0, sizeof(*desc));
desc->ctrl = RAVB_DESC_DT_FSINGLE | RAVB_DESC_DS(len);
desc->dptr = (uintptr_t)packet;
ravb_flush_dcache((uintptr_t)desc, sizeof(*desc));
/* Restart the transmitter if disabled */
if (!(readl(eth->iobase + RAVB_REG_TCCR) & TCCR_TSRQ0))
setbits_le32(eth->iobase + RAVB_REG_TCCR, TCCR_TSRQ0);
/* Wait until packet is transmitted */
start = get_timer(0);
while (get_timer(start) < RAVB_TX_TIMEOUT_MS) {
ravb_invalidate_dcache((uintptr_t)desc, sizeof(*desc));
if ((desc->ctrl & RAVB_DESC_DT_MASK) != RAVB_DESC_DT_FSINGLE)
break;
udelay(10);
};
if (get_timer(start) >= RAVB_TX_TIMEOUT_MS)
return -ETIMEDOUT;
eth->tx_desc_idx = (eth->tx_desc_idx + 1) % (RAVB_NUM_TX_DESC - 1);
return 0;
}
static int ravb_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct ravb_rxdesc *desc = &eth->rx_desc[eth->rx_desc_idx];
int len;
u8 *packet;
/* Check if the rx descriptor is ready */
ravb_invalidate_dcache((uintptr_t)desc, sizeof(*desc));
if ((desc->data.ctrl & RAVB_DESC_DT_MASK) == RAVB_DESC_DT_FEMPTY)
return -EAGAIN;
/* Check for errors */
if (desc->data.ctrl & RAVB_RX_DESC_MSC_RX_ERR_MASK) {
desc->data.ctrl &= ~RAVB_RX_DESC_MSC_MASK;
return -EAGAIN;
}
len = desc->data.ctrl & RAVB_DESC_DS_MASK;
packet = (u8 *)(uintptr_t)desc->data.dptr;
ravb_invalidate_dcache((uintptr_t)packet, len);
*packetp = packet;
return len;
}
static int ravb_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct ravb_rxdesc *desc = &eth->rx_desc[eth->rx_desc_idx];
/* Make current descriptor available again */
desc->data.ctrl = RAVB_DESC_DT_FEMPTY | RAVB_DESC_DS(PKTSIZE_ALIGN);
ravb_flush_dcache((uintptr_t)desc, sizeof(*desc));
/* Point to the next descriptor */
eth->rx_desc_idx = (eth->rx_desc_idx + 1) % RAVB_NUM_RX_DESC;
desc = &eth->rx_desc[eth->rx_desc_idx];
ravb_invalidate_dcache((uintptr_t)desc, sizeof(*desc));
return 0;
}
static int ravb_reset(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
/* Set config mode */
writel(CCC_OPC_CONFIG, eth->iobase + RAVB_REG_CCC);
/* Check the operating mode is changed to the config mode. */
return wait_for_bit_le32(eth->iobase + RAVB_REG_CSR,
CSR_OPS_CONFIG, true, 100, true);
}
static void ravb_base_desc_init(struct ravb_priv *eth)
{
const u32 desc_size = RAVB_NUM_BASE_DESC * sizeof(struct ravb_desc);
int i;
/* Initialize all descriptors */
memset(eth->base_desc, 0x0, desc_size);
for (i = 0; i < RAVB_NUM_BASE_DESC; i++)
eth->base_desc[i].ctrl = RAVB_DESC_DT_EOS;
ravb_flush_dcache((uintptr_t)eth->base_desc, desc_size);
/* Register the descriptor base address table */
writel((uintptr_t)eth->base_desc, eth->iobase + RAVB_REG_DBAT);
}
static void ravb_tx_desc_init(struct ravb_priv *eth)
{
const u32 desc_size = RAVB_NUM_TX_DESC * sizeof(struct ravb_desc);
int i;
/* Initialize all descriptors */
memset(eth->tx_desc, 0x0, desc_size);
eth->tx_desc_idx = 0;
for (i = 0; i < RAVB_NUM_TX_DESC; i++)
eth->tx_desc[i].ctrl = RAVB_DESC_DT_EEMPTY;
/* Mark the end of the descriptors */
eth->tx_desc[RAVB_NUM_TX_DESC - 1].ctrl = RAVB_DESC_DT_LINKFIX;
eth->tx_desc[RAVB_NUM_TX_DESC - 1].dptr = (uintptr_t)eth->tx_desc;
ravb_flush_dcache((uintptr_t)eth->tx_desc, desc_size);
/* Point the controller to the TX descriptor list. */
eth->base_desc[RAVB_TX_QUEUE_OFFSET].ctrl = RAVB_DESC_DT_LINKFIX;
eth->base_desc[RAVB_TX_QUEUE_OFFSET].dptr = (uintptr_t)eth->tx_desc;
ravb_flush_dcache((uintptr_t)&eth->base_desc[RAVB_TX_QUEUE_OFFSET],
sizeof(struct ravb_desc));
}
static void ravb_rx_desc_init(struct ravb_priv *eth)
{
const u32 desc_size = RAVB_NUM_RX_DESC * sizeof(struct ravb_rxdesc);
int i;
/* Initialize all descriptors */
memset(eth->rx_desc, 0x0, desc_size);
eth->rx_desc_idx = 0;
for (i = 0; i < RAVB_NUM_RX_DESC; i++) {
eth->rx_desc[i].data.ctrl = RAVB_DESC_DT_EEMPTY |
RAVB_DESC_DS(PKTSIZE_ALIGN);
eth->rx_desc[i].data.dptr = (uintptr_t)eth->rx_desc[i].packet;
eth->rx_desc[i].link.ctrl = RAVB_DESC_DT_LINKFIX;
eth->rx_desc[i].link.dptr = (uintptr_t)&eth->rx_desc[i + 1];
}
/* Mark the end of the descriptors */
eth->rx_desc[RAVB_NUM_RX_DESC - 1].link.ctrl = RAVB_DESC_DT_LINKFIX;
eth->rx_desc[RAVB_NUM_RX_DESC - 1].link.dptr = (uintptr_t)eth->rx_desc;
ravb_flush_dcache((uintptr_t)eth->rx_desc, desc_size);
/* Point the controller to the rx descriptor list */
eth->base_desc[RAVB_RX_QUEUE_OFFSET].ctrl = RAVB_DESC_DT_LINKFIX;
eth->base_desc[RAVB_RX_QUEUE_OFFSET].dptr = (uintptr_t)eth->rx_desc;
ravb_flush_dcache((uintptr_t)&eth->base_desc[RAVB_RX_QUEUE_OFFSET],
sizeof(struct ravb_desc));
}
static int ravb_phy_config(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
struct phy_device *phydev;
int reg;
phydev = phy_connect(eth->bus, -1, dev, pdata->phy_interface);
if (!phydev)
return -ENODEV;
eth->phydev = phydev;
phydev->supported &= SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_Pause |
SUPPORTED_Asym_Pause;
if (pdata->max_speed != 1000) {
phydev->supported &= ~SUPPORTED_1000baseT_Full;
reg = phy_read(phydev, -1, MII_CTRL1000);
reg &= ~(BIT(9) | BIT(8));
phy_write(phydev, -1, MII_CTRL1000, reg);
}
phy_config(phydev);
return 0;
}
/* Set Mac address */
static int ravb_write_hwaddr(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
unsigned char *mac = pdata->enetaddr;
writel((mac[0] << 24) | (mac[1] << 16) | (mac[2] << 8) | mac[3],
eth->iobase + RAVB_REG_MAHR);
writel((mac[4] << 8) | mac[5], eth->iobase + RAVB_REG_MALR);
return 0;
}
/* E-MAC init function */
static int ravb_mac_init(struct ravb_priv *eth)
{
/* Disable MAC Interrupt */
writel(0, eth->iobase + RAVB_REG_ECSIPR);
/* Recv frame limit set register */
writel(RFLR_RFL_MIN, eth->iobase + RAVB_REG_RFLR);
return 0;
}
/* AVB-DMAC init function */
static int ravb_dmac_init(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_plat(dev);
int ret = 0;
int mode = 0;
unsigned int delay;
bool explicit_delay = false;
/* Set CONFIG mode */
ret = ravb_reset(dev);
if (ret)
return ret;
/* Disable all interrupts */
writel(0, eth->iobase + RAVB_REG_RIC0);
writel(0, eth->iobase + RAVB_REG_RIC1);
writel(0, eth->iobase + RAVB_REG_RIC2);
writel(0, eth->iobase + RAVB_REG_TIC);
/* Set little endian */
clrbits_le32(eth->iobase + RAVB_REG_CCC, CCC_BOC);
/* AVB rx set */
writel(0x18000001, eth->iobase + RAVB_REG_RCR);
/* FIFO size set */
writel(0x00222210, eth->iobase + RAVB_REG_TGC);
/* Delay CLK: 2ns (not applicable on R-Car E3/D3) */
if ((renesas_get_cpu_type() == RENESAS_CPU_TYPE_R8A77990) ||
(renesas_get_cpu_type() == RENESAS_CPU_TYPE_R8A77995))
return 0;
if (!dev_read_u32(dev, "rx-internal-delay-ps", &delay)) {
/* Valid values are 0 and 1800, according to DT bindings */
if (delay) {
mode |= APSR_RDM;
explicit_delay = true;
}
}
if (!dev_read_u32(dev, "tx-internal-delay-ps", &delay)) {
/* Valid values are 0 and 2000, according to DT bindings */
if (delay) {
mode |= APSR_TDM;
explicit_delay = true;
}
}
if (!explicit_delay) {
if (pdata->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
pdata->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
mode |= APSR_RDM;
if (pdata->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
pdata->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
mode |= APSR_TDM;
}
writel(mode, eth->iobase + RAVB_REG_APSR);
return 0;
}
static int ravb_config(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
struct phy_device *phy = eth->phydev;
u32 mask = ECMR_CHG_DM | ECMR_RE | ECMR_TE;
int ret;
/* Configure AVB-DMAC register */
ravb_dmac_init(dev);
/* Configure E-MAC registers */
ravb_mac_init(eth);
ravb_write_hwaddr(dev);
ret = phy_startup(phy);
if (ret)
return ret;
/* Set the transfer speed */
if (phy->speed == 100)
writel(0, eth->iobase + RAVB_REG_GECMR);
else if (phy->speed == 1000)
writel(1, eth->iobase + RAVB_REG_GECMR);
/* Check if full duplex mode is supported by the phy */
if (phy->duplex)
mask |= ECMR_DM;
writel(mask, eth->iobase + RAVB_REG_ECMR);
return 0;
}
static int ravb_start(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
int ret;
ret = ravb_reset(dev);
if (ret)
return ret;
ravb_base_desc_init(eth);
ravb_tx_desc_init(eth);
ravb_rx_desc_init(eth);
ret = ravb_config(dev);
if (ret)
return ret;
/* Setting the control will start the AVB-DMAC process. */
writel(CCC_OPC_OPERATION, eth->iobase + RAVB_REG_CCC);
return 0;
}
static void ravb_stop(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
phy_shutdown(eth->phydev);
ravb_reset(dev);
}
static int ravb_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct ravb_priv *eth = dev_get_priv(dev);
struct mii_dev *mdiodev;
void __iomem *iobase;
int ret;
iobase = map_physmem(pdata->iobase, 0x1000, MAP_NOCACHE);
eth->iobase = iobase;
ret = clk_get_bulk(dev, &eth->clks);
if (ret < 0)
goto err_mdio_alloc;
mdiodev = mdio_alloc();
if (!mdiodev) {
ret = -ENOMEM;
goto err_mdio_alloc;
}
mdiodev->read = bb_miiphy_read;
mdiodev->write = bb_miiphy_write;
bb_miiphy_buses[0].priv = eth;
snprintf(mdiodev->name, sizeof(mdiodev->name), dev->name);
ret = mdio_register(mdiodev);
if (ret < 0)
goto err_mdio_register;
eth->bus = miiphy_get_dev_by_name(dev->name);
/* Bring up PHY */
ret = clk_enable_bulk(&eth->clks);
if (ret)
goto err_mdio_register;
ret = ravb_reset(dev);
if (ret)
goto err_mdio_reset;
ret = ravb_phy_config(dev);
if (ret)
goto err_mdio_reset;
return 0;
err_mdio_reset:
clk_release_bulk(&eth->clks);
err_mdio_register:
mdio_free(mdiodev);
err_mdio_alloc:
unmap_physmem(eth->iobase, MAP_NOCACHE);
return ret;
}
static int ravb_remove(struct udevice *dev)
{
struct ravb_priv *eth = dev_get_priv(dev);
clk_release_bulk(&eth->clks);
free(eth->phydev);
mdio_unregister(eth->bus);
mdio_free(eth->bus);
unmap_physmem(eth->iobase, MAP_NOCACHE);
return 0;
}
int ravb_bb_init(struct bb_miiphy_bus *bus)
{
return 0;
}
int ravb_bb_mdio_active(struct bb_miiphy_bus *bus)
{
struct ravb_priv *eth = bus->priv;
setbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MMD);
return 0;
}
int ravb_bb_mdio_tristate(struct bb_miiphy_bus *bus)
{
struct ravb_priv *eth = bus->priv;
clrbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MMD);
return 0;
}
int ravb_bb_set_mdio(struct bb_miiphy_bus *bus, int v)
{
struct ravb_priv *eth = bus->priv;
if (v)
setbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MDO);
else
clrbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MDO);
return 0;
}
int ravb_bb_get_mdio(struct bb_miiphy_bus *bus, int *v)
{
struct ravb_priv *eth = bus->priv;
*v = (readl(eth->iobase + RAVB_REG_PIR) & PIR_MDI) >> 3;
return 0;
}
int ravb_bb_set_mdc(struct bb_miiphy_bus *bus, int v)
{
struct ravb_priv *eth = bus->priv;
if (v)
setbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MDC);
else
clrbits_le32(eth->iobase + RAVB_REG_PIR, PIR_MDC);
return 0;
}
int ravb_bb_delay(struct bb_miiphy_bus *bus)
{
udelay(10);
return 0;
}
struct bb_miiphy_bus bb_miiphy_buses[] = {
{
.name = "ravb",
.init = ravb_bb_init,
.mdio_active = ravb_bb_mdio_active,
.mdio_tristate = ravb_bb_mdio_tristate,
.set_mdio = ravb_bb_set_mdio,
.get_mdio = ravb_bb_get_mdio,
.set_mdc = ravb_bb_set_mdc,
.delay = ravb_bb_delay,
},
};
int bb_miiphy_buses_num = ARRAY_SIZE(bb_miiphy_buses);
static const struct eth_ops ravb_ops = {
.start = ravb_start,
.send = ravb_send,
.recv = ravb_recv,
.free_pkt = ravb_free_pkt,
.stop = ravb_stop,
.write_hwaddr = ravb_write_hwaddr,
};
int ravb_of_to_plat(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
const fdt32_t *cell;
pdata->iobase = dev_read_addr(dev);
pdata->phy_interface = dev_read_phy_mode(dev);
if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
return -EINVAL;
pdata->max_speed = 1000;
cell = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "max-speed", NULL);
if (cell)
pdata->max_speed = fdt32_to_cpu(*cell);
sprintf(bb_miiphy_buses[0].name, dev->name);
return 0;
}
static const struct udevice_id ravb_ids[] = {
{ .compatible = "renesas,etheravb-rcar-gen3" },
{ .compatible = "renesas,etheravb-rcar-gen4" },
{ }
};
U_BOOT_DRIVER(eth_ravb) = {
.name = "ravb",
.id = UCLASS_ETH,
.of_match = ravb_ids,
.of_to_plat = ravb_of_to_plat,
.probe = ravb_probe,
.remove = ravb_remove,
.ops = &ravb_ops,
.priv_auto = sizeof(struct ravb_priv),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};