| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Porting to u-boot: |
| * |
| * (C) Copyright 2010 |
| * Stefano Babic, DENX Software Engineering, sbabic@denx.de. |
| * |
| * Lattice ispVME Embedded code to load Lattice's FPGA: |
| * |
| * Copyright 2009 Lattice Semiconductor Corp. |
| * |
| * ispVME Embedded allows programming of Lattice's suite of FPGA |
| * devices on embedded systems through the JTAG port. The software |
| * is distributed in source code form and is open to re - distribution |
| * and modification where applicable. |
| * |
| * Revision History of ivm_core.c module: |
| * 4/25/06 ht Change some variables from unsigned short or int |
| * to long int to make the code compiler independent. |
| * 5/24/06 ht Support using RESET (TRST) pin as a special purpose |
| * control pin such as triggering the loading of known |
| * state exit. |
| * 3/6/07 ht added functions to support output to terminals |
| * |
| * 09/11/07 NN Type cast mismatch variables |
| * Moved the sclock() function to hardware.c |
| * 08/28/08 NN Added Calculate checksum support. |
| * 4/1/09 Nguyen replaced the recursive function call codes on |
| * the ispVMLCOUNT function |
| */ |
| |
| #include <log.h> |
| #include <linux/string.h> |
| #include <malloc.h> |
| #include <lattice.h> |
| |
| #define vme_out_char(c) printf("%c", c) |
| #define vme_out_hex(c) printf("%x", c) |
| #define vme_out_string(s) printf("%s", s) |
| |
| /* |
| * |
| * Global variables used to specify the flow control and data type. |
| * |
| * g_usFlowControl: flow control register. Each bit in the |
| * register can potentially change the |
| * personality of the embedded engine. |
| * g_usDataType: holds the data type of the current row. |
| * |
| */ |
| |
| static unsigned short g_usFlowControl; |
| unsigned short g_usDataType; |
| |
| /* |
| * |
| * Global variables used to specify the ENDDR and ENDIR. |
| * |
| * g_ucEndDR: the state that the device goes to after SDR. |
| * g_ucEndIR: the state that the device goes to after SIR. |
| * |
| */ |
| |
| unsigned char g_ucEndDR = DRPAUSE; |
| unsigned char g_ucEndIR = IRPAUSE; |
| |
| /* |
| * |
| * Global variables used to support header/trailer. |
| * |
| * g_usHeadDR: the number of lead devices in bypass. |
| * g_usHeadIR: the sum of IR length of lead devices. |
| * g_usTailDR: the number of tail devices in bypass. |
| * g_usTailIR: the sum of IR length of tail devices. |
| * |
| */ |
| |
| static unsigned short g_usHeadDR; |
| static unsigned short g_usHeadIR; |
| static unsigned short g_usTailDR; |
| static unsigned short g_usTailIR; |
| |
| /* |
| * |
| * Global variable to store the number of bits of data or instruction |
| * to be shifted into or out from the device. |
| * |
| */ |
| |
| static unsigned short g_usiDataSize; |
| |
| /* |
| * |
| * Stores the frequency. Default to 1 MHz. |
| * |
| */ |
| |
| static int g_iFrequency = 1000; |
| |
| /* |
| * |
| * Stores the maximum amount of ram needed to hold a row of data. |
| * |
| */ |
| |
| static unsigned short g_usMaxSize; |
| |
| /* |
| * |
| * Stores the LSH or RSH value. |
| * |
| */ |
| |
| static unsigned short g_usShiftValue; |
| |
| /* |
| * |
| * Stores the current repeat loop value. |
| * |
| */ |
| |
| static unsigned short g_usRepeatLoops; |
| |
| /* |
| * |
| * Stores the current vendor. |
| * |
| */ |
| |
| static signed char g_cVendor = LATTICE; |
| |
| /* |
| * |
| * Stores the VME file CRC. |
| * |
| */ |
| |
| unsigned short g_usCalculatedCRC; |
| |
| /* |
| * |
| * Stores the Device Checksum. |
| * |
| */ |
| /* 08/28/08 NN Added Calculate checksum support. */ |
| unsigned long g_usChecksum; |
| static unsigned int g_uiChecksumIndex; |
| |
| /* |
| * |
| * Stores the current state of the JTAG state machine. |
| * |
| */ |
| |
| static signed char g_cCurrentJTAGState; |
| |
| /* |
| * |
| * Global variables used to support looping. |
| * |
| * g_pucHeapMemory: holds the entire repeat loop. |
| * g_iHeapCounter: points to the current byte in the repeat loop. |
| * g_iHEAPSize: the current size of the repeat in bytes. |
| * |
| */ |
| |
| unsigned char *g_pucHeapMemory; |
| unsigned short g_iHeapCounter; |
| unsigned short g_iHEAPSize; |
| static unsigned short previous_size; |
| |
| /* |
| * |
| * Global variables used to support intelligent programming. |
| * |
| * g_usIntelDataIndex: points to the current byte of the |
| * intelligent buffer. |
| * g_usIntelBufferSize: holds the size of the intelligent |
| * buffer. |
| * |
| */ |
| |
| unsigned short g_usIntelDataIndex; |
| unsigned short g_usIntelBufferSize; |
| |
| /* |
| * |
| * Supported VME versions. |
| * |
| */ |
| |
| const char *const g_szSupportedVersions[] = { |
| "__VME2.0", "__VME3.0", "____12.0", "____12.1", 0}; |
| |
| /* |
| * |
| * Holds the maximum size of each respective buffer. These variables are used |
| * to write the HEX files when converting VME to HEX. |
| * |
| */ |
| |
| static unsigned short g_usTDOSize; |
| static unsigned short g_usMASKSize; |
| static unsigned short g_usTDISize; |
| static unsigned short g_usDMASKSize; |
| static unsigned short g_usLCOUNTSize; |
| static unsigned short g_usHDRSize; |
| static unsigned short g_usTDRSize; |
| static unsigned short g_usHIRSize; |
| static unsigned short g_usTIRSize; |
| static unsigned short g_usHeapSize; |
| |
| /* |
| * |
| * Global variables used to store data. |
| * |
| * g_pucOutMaskData: local RAM to hold one row of MASK data. |
| * g_pucInData: local RAM to hold one row of TDI data. |
| * g_pucOutData: local RAM to hold one row of TDO data. |
| * g_pucHIRData: local RAM to hold the current SIR header. |
| * g_pucTIRData: local RAM to hold the current SIR trailer. |
| * g_pucHDRData: local RAM to hold the current SDR header. |
| * g_pucTDRData: local RAM to hold the current SDR trailer. |
| * g_pucIntelBuffer: local RAM to hold the current intelligent buffer |
| * g_pucOutDMaskData: local RAM to hold one row of DMASK data. |
| * |
| */ |
| |
| unsigned char *g_pucOutMaskData = NULL, |
| *g_pucInData = NULL, |
| *g_pucOutData = NULL, |
| *g_pucHIRData = NULL, |
| *g_pucTIRData = NULL, |
| *g_pucHDRData = NULL, |
| *g_pucTDRData = NULL, |
| *g_pucIntelBuffer = NULL, |
| *g_pucOutDMaskData = NULL; |
| |
| /* |
| * |
| * JTAG state machine transition table. |
| * |
| */ |
| |
| struct { |
| unsigned char CurState; /* From this state */ |
| unsigned char NextState; /* Step to this state */ |
| unsigned char Pattern; /* The tragetory of TMS */ |
| unsigned char Pulses; /* The number of steps */ |
| } g_JTAGTransistions[25] = { |
| { RESET, RESET, 0xFC, 6 }, /* Transitions from RESET */ |
| { RESET, IDLE, 0x00, 1 }, |
| { RESET, DRPAUSE, 0x50, 5 }, |
| { RESET, IRPAUSE, 0x68, 6 }, |
| { IDLE, RESET, 0xE0, 3 }, /* Transitions from IDLE */ |
| { IDLE, DRPAUSE, 0xA0, 4 }, |
| { IDLE, IRPAUSE, 0xD0, 5 }, |
| { DRPAUSE, RESET, 0xF8, 5 }, /* Transitions from DRPAUSE */ |
| { DRPAUSE, IDLE, 0xC0, 3 }, |
| { DRPAUSE, IRPAUSE, 0xF4, 7 }, |
| { DRPAUSE, DRPAUSE, 0xE8, 6 },/* 06/14/06 Support POLL STATUS LOOP*/ |
| { IRPAUSE, RESET, 0xF8, 5 }, /* Transitions from IRPAUSE */ |
| { IRPAUSE, IDLE, 0xC0, 3 }, |
| { IRPAUSE, DRPAUSE, 0xE8, 6 }, |
| { DRPAUSE, SHIFTDR, 0x80, 2 }, /* Extra transitions using SHIFTDR */ |
| { IRPAUSE, SHIFTDR, 0xE0, 5 }, |
| { SHIFTDR, DRPAUSE, 0x80, 2 }, |
| { SHIFTDR, IDLE, 0xC0, 3 }, |
| { IRPAUSE, SHIFTIR, 0x80, 2 },/* Extra transitions using SHIFTIR */ |
| { SHIFTIR, IRPAUSE, 0x80, 2 }, |
| { SHIFTIR, IDLE, 0xC0, 3 }, |
| { DRPAUSE, DRCAPTURE, 0xE0, 4 }, /* 11/15/05 Support DRCAPTURE*/ |
| { DRCAPTURE, DRPAUSE, 0x80, 2 }, |
| { IDLE, DRCAPTURE, 0x80, 2 }, |
| { IRPAUSE, DRCAPTURE, 0xE0, 4 } |
| }; |
| |
| /* |
| * |
| * List to hold all LVDS pairs. |
| * |
| */ |
| |
| LVDSPair *g_pLVDSList; |
| unsigned short g_usLVDSPairCount; |
| |
| /* |
| * |
| * Function prototypes. |
| * |
| */ |
| |
| static signed char ispVMDataCode(void); |
| static long int ispVMDataSize(void); |
| static void ispVMData(unsigned char *Data); |
| static signed char ispVMShift(signed char Code); |
| static signed char ispVMAmble(signed char Code); |
| static signed char ispVMLoop(unsigned short a_usLoopCount); |
| static signed char ispVMBitShift(signed char mode, unsigned short bits); |
| static void ispVMComment(unsigned short a_usCommentSize); |
| static void ispVMHeader(unsigned short a_usHeaderSize); |
| static signed char ispVMLCOUNT(unsigned short a_usCountSize); |
| static void ispVMClocks(unsigned short Clocks); |
| static void ispVMBypass(signed char ScanType, unsigned short Bits); |
| static void ispVMStateMachine(signed char NextState); |
| static signed char ispVMSend(unsigned short int); |
| static signed char ispVMRead(unsigned short int); |
| static signed char ispVMReadandSave(unsigned short int); |
| static signed char ispVMProcessLVDS(unsigned short a_usLVDSCount); |
| static void ispVMMemManager(signed char types, unsigned short size); |
| |
| /* |
| * |
| * External variables and functions in hardware.c module |
| * |
| */ |
| static signed char g_cCurrentJTAGState; |
| |
| #ifdef DEBUG |
| |
| /* |
| * |
| * GetState |
| * |
| * Returns the state as a string based on the opcode. Only used |
| * for debugging purposes. |
| * |
| */ |
| |
| const char *GetState(unsigned char a_ucState) |
| { |
| switch (a_ucState) { |
| case RESET: |
| return "RESET"; |
| case IDLE: |
| return "IDLE"; |
| case IRPAUSE: |
| return "IRPAUSE"; |
| case DRPAUSE: |
| return "DRPAUSE"; |
| case SHIFTIR: |
| return "SHIFTIR"; |
| case SHIFTDR: |
| return "SHIFTDR"; |
| case DRCAPTURE:/* 11/15/05 support DRCAPTURE*/ |
| return "DRCAPTURE"; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * PrintData |
| * |
| * Prints the data. Only used for debugging purposes. |
| * |
| */ |
| |
| void PrintData(unsigned short a_iDataSize, unsigned char *a_pucData) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short usByteSize = 0; |
| unsigned short usBitIndex = 0; |
| signed short usByteIndex = 0; |
| unsigned char ucByte = 0; |
| unsigned char ucFlipByte = 0; |
| |
| if (a_iDataSize % 8) { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usByteSize = (unsigned short)(a_iDataSize / 8 + 1); |
| } else { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usByteSize = (unsigned short)(a_iDataSize / 8); |
| } |
| puts("("); |
| /* 09/11/07 NN Type cast mismatch variables */ |
| for (usByteIndex = (signed short)(usByteSize - 1); |
| usByteIndex >= 0; usByteIndex--) { |
| ucByte = a_pucData[usByteIndex]; |
| ucFlipByte = 0x00; |
| |
| /* |
| * |
| * Flip each byte. |
| * |
| */ |
| |
| for (usBitIndex = 0; usBitIndex < 8; usBitIndex++) { |
| ucFlipByte <<= 1; |
| if (ucByte & 0x1) { |
| ucFlipByte |= 0x1; |
| } |
| |
| ucByte >>= 1; |
| } |
| |
| /* |
| * |
| * Print the flipped byte. |
| * |
| */ |
| |
| printf("%.02X", ucFlipByte); |
| if ((usByteSize - usByteIndex) % 40 == 39) { |
| puts("\n\t\t"); |
| } |
| if (usByteIndex < 0) |
| break; |
| } |
| puts(")"); |
| } |
| #endif /* DEBUG */ |
| |
| void ispVMMemManager(signed char cTarget, unsigned short usSize) |
| { |
| switch (cTarget) { |
| case XTDI: |
| case TDI: |
| if (g_pucInData != NULL) { |
| if (previous_size == usSize) {/*memory exist*/ |
| break; |
| } else { |
| free(g_pucInData); |
| g_pucInData = NULL; |
| } |
| } |
| g_pucInData = (unsigned char *) malloc(usSize / 8 + 2); |
| previous_size = usSize; |
| case XTDO: |
| case TDO: |
| if (g_pucOutData != NULL) { |
| if (previous_size == usSize) { /*already exist*/ |
| break; |
| } else { |
| free(g_pucOutData); |
| g_pucOutData = NULL; |
| } |
| } |
| g_pucOutData = (unsigned char *) malloc(usSize / 8 + 2); |
| previous_size = usSize; |
| break; |
| case MASK: |
| if (g_pucOutMaskData != NULL) { |
| if (previous_size == usSize) {/*already allocated*/ |
| break; |
| } else { |
| free(g_pucOutMaskData); |
| g_pucOutMaskData = NULL; |
| } |
| } |
| g_pucOutMaskData = (unsigned char *) malloc(usSize / 8 + 2); |
| previous_size = usSize; |
| break; |
| case HIR: |
| if (g_pucHIRData != NULL) { |
| free(g_pucHIRData); |
| g_pucHIRData = NULL; |
| } |
| g_pucHIRData = (unsigned char *) malloc(usSize / 8 + 2); |
| break; |
| case TIR: |
| if (g_pucTIRData != NULL) { |
| free(g_pucTIRData); |
| g_pucTIRData = NULL; |
| } |
| g_pucTIRData = (unsigned char *) malloc(usSize / 8 + 2); |
| break; |
| case HDR: |
| if (g_pucHDRData != NULL) { |
| free(g_pucHDRData); |
| g_pucHDRData = NULL; |
| } |
| g_pucHDRData = (unsigned char *) malloc(usSize / 8 + 2); |
| break; |
| case TDR: |
| if (g_pucTDRData != NULL) { |
| free(g_pucTDRData); |
| g_pucTDRData = NULL; |
| } |
| g_pucTDRData = (unsigned char *) malloc(usSize / 8 + 2); |
| break; |
| case HEAP: |
| if (g_pucHeapMemory != NULL) { |
| free(g_pucHeapMemory); |
| g_pucHeapMemory = NULL; |
| } |
| g_pucHeapMemory = (unsigned char *) malloc(usSize + 2); |
| break; |
| case DMASK: |
| if (g_pucOutDMaskData != NULL) { |
| if (previous_size == usSize) { /*already allocated*/ |
| break; |
| } else { |
| free(g_pucOutDMaskData); |
| g_pucOutDMaskData = NULL; |
| } |
| } |
| g_pucOutDMaskData = (unsigned char *) malloc(usSize / 8 + 2); |
| previous_size = usSize; |
| break; |
| case LHEAP: |
| if (g_pucIntelBuffer != NULL) { |
| free(g_pucIntelBuffer); |
| g_pucIntelBuffer = NULL; |
| } |
| g_pucIntelBuffer = (unsigned char *) malloc(usSize + 2); |
| break; |
| case LVDS: |
| if (g_pLVDSList != NULL) { |
| free(g_pLVDSList); |
| g_pLVDSList = NULL; |
| } |
| g_pLVDSList = (LVDSPair *) malloc(usSize * sizeof(LVDSPair)); |
| if (g_pLVDSList) |
| memset(g_pLVDSList, 0, usSize * sizeof(LVDSPair)); |
| break; |
| default: |
| return; |
| } |
| } |
| |
| void ispVMFreeMem(void) |
| { |
| if (g_pucHeapMemory != NULL) { |
| free(g_pucHeapMemory); |
| g_pucHeapMemory = NULL; |
| } |
| |
| if (g_pucOutMaskData != NULL) { |
| free(g_pucOutMaskData); |
| g_pucOutMaskData = NULL; |
| } |
| |
| if (g_pucInData != NULL) { |
| free(g_pucInData); |
| g_pucInData = NULL; |
| } |
| |
| if (g_pucOutData != NULL) { |
| free(g_pucOutData); |
| g_pucOutData = NULL; |
| } |
| |
| if (g_pucHIRData != NULL) { |
| free(g_pucHIRData); |
| g_pucHIRData = NULL; |
| } |
| |
| if (g_pucTIRData != NULL) { |
| free(g_pucTIRData); |
| g_pucTIRData = NULL; |
| } |
| |
| if (g_pucHDRData != NULL) { |
| free(g_pucHDRData); |
| g_pucHDRData = NULL; |
| } |
| |
| if (g_pucTDRData != NULL) { |
| free(g_pucTDRData); |
| g_pucTDRData = NULL; |
| } |
| |
| if (g_pucOutDMaskData != NULL) { |
| free(g_pucOutDMaskData); |
| g_pucOutDMaskData = NULL; |
| } |
| |
| if (g_pucIntelBuffer != NULL) { |
| free(g_pucIntelBuffer); |
| g_pucIntelBuffer = NULL; |
| } |
| |
| if (g_pLVDSList != NULL) { |
| free(g_pLVDSList); |
| g_pLVDSList = NULL; |
| } |
| } |
| |
| |
| /* |
| * |
| * ispVMDataSize |
| * |
| * Returns a VME-encoded number, usually used to indicate the |
| * bit length of an SIR/SDR command. |
| * |
| */ |
| |
| long int ispVMDataSize() |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| long int iSize = 0; |
| signed char cCurrentByte = 0; |
| signed char cIndex = 0; |
| cIndex = 0; |
| while ((cCurrentByte = GetByte()) & 0x80) { |
| iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex; |
| cIndex += 7; |
| } |
| iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex; |
| return iSize; |
| } |
| |
| /* |
| * |
| * ispVMCode |
| * |
| * This is the heart of the embedded engine. All the high-level opcodes |
| * are extracted here. Once they have been identified, then it |
| * will call other functions to handle the processing. |
| * |
| */ |
| |
| signed char ispVMCode() |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short iRepeatSize = 0; |
| signed char cOpcode = 0; |
| signed char cRetCode = 0; |
| unsigned char ucState = 0; |
| unsigned short usDelay = 0; |
| unsigned short usToggle = 0; |
| unsigned char usByte = 0; |
| |
| /* |
| * |
| * Check the compression flag only if this is the first time |
| * this function is entered. Do not check the compression flag if |
| * it is being called recursively from other functions within |
| * the embedded engine. |
| * |
| */ |
| |
| if (!(g_usDataType & LHEAP_IN) && !(g_usDataType & HEAP_IN)) { |
| usByte = GetByte(); |
| if (usByte == 0xf1) { |
| g_usDataType |= COMPRESS; |
| } else if (usByte == 0xf2) { |
| g_usDataType &= ~COMPRESS; |
| } else { |
| return VME_INVALID_FILE; |
| } |
| } |
| |
| /* |
| * |
| * Begin looping through all the VME opcodes. |
| * |
| */ |
| |
| while ((cOpcode = GetByte()) >= 0) { |
| |
| switch (cOpcode) { |
| case STATE: |
| |
| /* |
| * Step the JTAG state machine. |
| */ |
| |
| ucState = GetByte(); |
| |
| /* |
| * Step the JTAG state machine to DRCAPTURE |
| * to support Looping. |
| */ |
| |
| if ((g_usDataType & LHEAP_IN) && |
| (ucState == DRPAUSE) && |
| (g_cCurrentJTAGState == ucState)) { |
| ispVMStateMachine(DRCAPTURE); |
| } |
| |
| ispVMStateMachine(ucState); |
| |
| #ifdef DEBUG |
| if (g_usDataType & LHEAP_IN) { |
| debug("LDELAY %s ", GetState(ucState)); |
| } else { |
| debug("STATE %s;\n", GetState(ucState)); |
| } |
| #endif /* DEBUG */ |
| break; |
| case SIR: |
| case SDR: |
| case XSDR: |
| |
| #ifdef DEBUG |
| switch (cOpcode) { |
| case SIR: |
| puts("SIR "); |
| break; |
| case SDR: |
| case XSDR: |
| if (g_usDataType & LHEAP_IN) { |
| puts("LSDR "); |
| } else { |
| puts("SDR "); |
| } |
| break; |
| } |
| #endif /* DEBUG */ |
| /* |
| * |
| * Shift in data into the device. |
| * |
| */ |
| |
| cRetCode = ispVMShift(cOpcode); |
| if (cRetCode != 0) { |
| return cRetCode; |
| } |
| break; |
| case WAIT: |
| |
| /* |
| * |
| * Observe delay. |
| * |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usDelay = (unsigned short) ispVMDataSize(); |
| ispVMDelay(usDelay); |
| |
| #ifdef DEBUG |
| if (usDelay & 0x8000) { |
| |
| /* |
| * Since MSB is set, the delay time must be |
| * decoded to millisecond. The SVF2VME encodes |
| * the MSB to represent millisecond. |
| */ |
| |
| usDelay &= ~0x8000; |
| if (g_usDataType & LHEAP_IN) { |
| printf("%.2E SEC;\n", |
| (float) usDelay / 1000); |
| } else { |
| printf("RUNTEST %.2E SEC;\n", |
| (float) usDelay / 1000); |
| } |
| } else { |
| /* |
| * Since MSB is not set, the delay time |
| * is given as microseconds. |
| */ |
| |
| if (g_usDataType & LHEAP_IN) { |
| printf("%.2E SEC;\n", |
| (float) usDelay / 1000000); |
| } else { |
| printf("RUNTEST %.2E SEC;\n", |
| (float) usDelay / 1000000); |
| } |
| } |
| #endif /* DEBUG */ |
| break; |
| case TCK: |
| |
| /* |
| * Issue clock toggles. |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usToggle = (unsigned short) ispVMDataSize(); |
| ispVMClocks(usToggle); |
| |
| #ifdef DEBUG |
| printf("RUNTEST %d TCK;\n", usToggle); |
| #endif /* DEBUG */ |
| break; |
| case ENDDR: |
| |
| /* |
| * |
| * Set the ENDDR. |
| * |
| */ |
| |
| g_ucEndDR = GetByte(); |
| |
| #ifdef DEBUG |
| printf("ENDDR %s;\n", GetState(g_ucEndDR)); |
| #endif /* DEBUG */ |
| break; |
| case ENDIR: |
| |
| /* |
| * |
| * Set the ENDIR. |
| * |
| */ |
| |
| g_ucEndIR = GetByte(); |
| |
| #ifdef DEBUG |
| printf("ENDIR %s;\n", GetState(g_ucEndIR)); |
| #endif /* DEBUG */ |
| break; |
| case HIR: |
| case TIR: |
| case HDR: |
| case TDR: |
| |
| #ifdef DEBUG |
| switch (cOpcode) { |
| case HIR: |
| puts("HIR "); |
| break; |
| case TIR: |
| puts("TIR "); |
| break; |
| case HDR: |
| puts("HDR "); |
| break; |
| case TDR: |
| puts("TDR "); |
| break; |
| } |
| #endif /* DEBUG */ |
| /* |
| * Set the header/trailer of the device in order |
| * to bypass |
| * successfully. |
| */ |
| |
| cRetCode = ispVMAmble(cOpcode); |
| if (cRetCode != 0) { |
| return cRetCode; |
| } |
| |
| #ifdef DEBUG |
| puts(";\n"); |
| #endif /* DEBUG */ |
| break; |
| case MEM: |
| |
| /* |
| * The maximum RAM required to support |
| * processing one row of the VME file. |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usMaxSize = (unsigned short) ispVMDataSize(); |
| |
| #ifdef DEBUG |
| printf("// MEMSIZE %d\n", g_usMaxSize); |
| #endif /* DEBUG */ |
| break; |
| case VENDOR: |
| |
| /* |
| * |
| * Set the VENDOR type. |
| * |
| */ |
| |
| cOpcode = GetByte(); |
| switch (cOpcode) { |
| case LATTICE: |
| #ifdef DEBUG |
| puts("// VENDOR LATTICE\n"); |
| #endif /* DEBUG */ |
| g_cVendor = LATTICE; |
| break; |
| case ALTERA: |
| #ifdef DEBUG |
| puts("// VENDOR ALTERA\n"); |
| #endif /* DEBUG */ |
| g_cVendor = ALTERA; |
| break; |
| case XILINX: |
| #ifdef DEBUG |
| puts("// VENDOR XILINX\n"); |
| #endif /* DEBUG */ |
| g_cVendor = XILINX; |
| break; |
| default: |
| break; |
| } |
| break; |
| case SETFLOW: |
| |
| /* |
| * Set the flow control. Flow control determines |
| * the personality of the embedded engine. |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usFlowControl |= (unsigned short) ispVMDataSize(); |
| break; |
| case RESETFLOW: |
| |
| /* |
| * |
| * Unset the flow control. |
| * |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usFlowControl &= (unsigned short) ~(ispVMDataSize()); |
| break; |
| case HEAP: |
| |
| /* |
| * |
| * Allocate heap size to store loops. |
| * |
| */ |
| |
| cRetCode = GetByte(); |
| if (cRetCode != SECUREHEAP) { |
| return VME_INVALID_FILE; |
| } |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_iHEAPSize = (unsigned short) ispVMDataSize(); |
| |
| /* |
| * Store the maximum size of the HEAP buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_iHEAPSize > g_usHeapSize) { |
| g_usHeapSize = g_iHEAPSize; |
| } |
| |
| ispVMMemManager(HEAP, (unsigned short) g_iHEAPSize); |
| break; |
| case REPEAT: |
| |
| /* |
| * |
| * Execute loops. |
| * |
| */ |
| |
| g_usRepeatLoops = 0; |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| iRepeatSize = (unsigned short) ispVMDataSize(); |
| |
| cRetCode = ispVMLoop((unsigned short) iRepeatSize); |
| if (cRetCode != 0) { |
| return cRetCode; |
| } |
| break; |
| case ENDLOOP: |
| |
| /* |
| * |
| * Exit point from processing loops. |
| * |
| */ |
| |
| return cRetCode; |
| case ENDVME: |
| |
| /* |
| * The only valid exit point that indicates |
| * end of programming. |
| */ |
| |
| return cRetCode; |
| case SHR: |
| |
| /* |
| * |
| * Right-shift address. |
| * |
| */ |
| |
| g_usFlowControl |= SHIFTRIGHT; |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usShiftValue = (unsigned short) (g_usRepeatLoops * |
| (unsigned short)GetByte()); |
| break; |
| case SHL: |
| |
| /* |
| * Left-shift address. |
| */ |
| |
| g_usFlowControl |= SHIFTLEFT; |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usShiftValue = (unsigned short) (g_usRepeatLoops * |
| (unsigned short)GetByte()); |
| break; |
| case FREQUENCY: |
| |
| /* |
| * |
| * Set the frequency. |
| * |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_iFrequency = (int) (ispVMDataSize() / 1000); |
| if (g_iFrequency == 1) |
| g_iFrequency = 1000; |
| |
| #ifdef DEBUG |
| printf("FREQUENCY %.2E HZ;\n", |
| (float) g_iFrequency * 1000); |
| #endif /* DEBUG */ |
| break; |
| case LCOUNT: |
| |
| /* |
| * |
| * Process LCOUNT command. |
| * |
| */ |
| |
| cRetCode = ispVMLCOUNT((unsigned short)ispVMDataSize()); |
| if (cRetCode != 0) { |
| return cRetCode; |
| } |
| break; |
| case VUES: |
| |
| /* |
| * |
| * Set the flow control to verify USERCODE. |
| * |
| */ |
| |
| g_usFlowControl |= VERIFYUES; |
| break; |
| case COMMENT: |
| |
| /* |
| * |
| * Display comment. |
| * |
| */ |
| |
| ispVMComment((unsigned short) ispVMDataSize()); |
| break; |
| case LVDS: |
| |
| /* |
| * |
| * Process LVDS command. |
| * |
| */ |
| |
| ispVMProcessLVDS((unsigned short) ispVMDataSize()); |
| break; |
| case HEADER: |
| |
| /* |
| * |
| * Discard header. |
| * |
| */ |
| |
| ispVMHeader((unsigned short) ispVMDataSize()); |
| break; |
| /* 03/14/06 Support Toggle ispENABLE signal*/ |
| case ispEN: |
| ucState = GetByte(); |
| if ((ucState == ON) || (ucState == 0x01)) |
| writePort(g_ucPinENABLE, 0x01); |
| else |
| writePort(g_ucPinENABLE, 0x00); |
| ispVMDelay(1); |
| break; |
| /* 05/24/06 support Toggle TRST pin*/ |
| case TRST: |
| ucState = GetByte(); |
| if (ucState == 0x01) |
| writePort(g_ucPinTRST, 0x01); |
| else |
| writePort(g_ucPinTRST, 0x00); |
| ispVMDelay(1); |
| break; |
| default: |
| |
| /* |
| * |
| * Invalid opcode encountered. |
| * |
| */ |
| |
| #ifdef DEBUG |
| printf("\nINVALID OPCODE: 0x%.2X\n", cOpcode); |
| #endif /* DEBUG */ |
| |
| return VME_INVALID_FILE; |
| } |
| } |
| |
| /* |
| * |
| * Invalid exit point. Processing the token 'ENDVME' is the only |
| * valid way to exit the embedded engine. |
| * |
| */ |
| |
| return VME_INVALID_FILE; |
| } |
| |
| /* |
| * |
| * ispVMDataCode |
| * |
| * Processes the TDI/TDO/MASK/DMASK etc of an SIR/SDR command. |
| * |
| */ |
| |
| signed char ispVMDataCode() |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| signed char cDataByte = 0; |
| signed char siDataSource = 0; /*source of data from file by default*/ |
| |
| if (g_usDataType & HEAP_IN) { |
| siDataSource = 1; /*the source of data from memory*/ |
| } |
| |
| /* |
| * |
| * Clear the data type register. |
| * |
| **/ |
| |
| g_usDataType &= ~(MASK_DATA + TDI_DATA + |
| TDO_DATA + DMASK_DATA + CMASK_DATA); |
| |
| /* |
| * Iterate through SIR/SDR command and look for TDI, |
| * TDO, MASK, etc. |
| */ |
| |
| while ((cDataByte = GetByte()) >= 0) { |
| ispVMMemManager(cDataByte, g_usMaxSize); |
| switch (cDataByte) { |
| case TDI: |
| |
| /* |
| * Store the maximum size of the TDI buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usTDISize) { |
| g_usTDISize = g_usiDataSize; |
| } |
| /* |
| * Updated data type register to indicate that |
| * TDI data is currently being used. Process the |
| * data in the VME file into the TDI buffer. |
| */ |
| |
| g_usDataType |= TDI_DATA; |
| ispVMData(g_pucInData); |
| break; |
| case XTDO: |
| |
| /* |
| * Store the maximum size of the TDO buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usTDOSize) { |
| g_usTDOSize = g_usiDataSize; |
| } |
| |
| /* |
| * Updated data type register to indicate that |
| * TDO data is currently being used. |
| */ |
| |
| g_usDataType |= TDO_DATA; |
| break; |
| case TDO: |
| |
| /* |
| * Store the maximum size of the TDO buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usTDOSize) { |
| g_usTDOSize = g_usiDataSize; |
| } |
| |
| /* |
| * Updated data type register to indicate |
| * that TDO data is currently being used. |
| * Process the data in the VME file into the |
| * TDO buffer. |
| */ |
| |
| g_usDataType |= TDO_DATA; |
| ispVMData(g_pucOutData); |
| break; |
| case MASK: |
| |
| /* |
| * Store the maximum size of the MASK buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usMASKSize) { |
| g_usMASKSize = g_usiDataSize; |
| } |
| |
| /* |
| * Updated data type register to indicate that |
| * MASK data is currently being used. Process |
| * the data in the VME file into the MASK buffer |
| */ |
| |
| g_usDataType |= MASK_DATA; |
| ispVMData(g_pucOutMaskData); |
| break; |
| case DMASK: |
| |
| /* |
| * Store the maximum size of the DMASK buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usDMASKSize) { |
| g_usDMASKSize = g_usiDataSize; |
| } |
| |
| /* |
| * Updated data type register to indicate that |
| * DMASK data is currently being used. Process |
| * the data in the VME file into the DMASK |
| * buffer. |
| */ |
| |
| g_usDataType |= DMASK_DATA; |
| ispVMData(g_pucOutDMaskData); |
| break; |
| case CMASK: |
| |
| /* |
| * Updated data type register to indicate that |
| * MASK data is currently being used. Process |
| * the data in the VME file into the MASK buffer |
| */ |
| |
| g_usDataType |= CMASK_DATA; |
| ispVMData(g_pucOutMaskData); |
| break; |
| case CONTINUE: |
| return 0; |
| default: |
| /* |
| * Encountered invalid opcode. |
| */ |
| return VME_INVALID_FILE; |
| } |
| |
| switch (cDataByte) { |
| case TDI: |
| |
| /* |
| * Left bit shift. Used when performing |
| * algorithm looping. |
| */ |
| |
| if (g_usFlowControl & SHIFTLEFT) { |
| ispVMBitShift(SHL, g_usShiftValue); |
| g_usFlowControl &= ~SHIFTLEFT; |
| } |
| |
| /* |
| * Right bit shift. Used when performing |
| * algorithm looping. |
| */ |
| |
| if (g_usFlowControl & SHIFTRIGHT) { |
| ispVMBitShift(SHR, g_usShiftValue); |
| g_usFlowControl &= ~SHIFTRIGHT; |
| } |
| default: |
| break; |
| } |
| |
| if (siDataSource) { |
| g_usDataType |= HEAP_IN; /*restore from memory*/ |
| } |
| } |
| |
| if (siDataSource) { /*fetch data from heap memory upon return*/ |
| g_usDataType |= HEAP_IN; |
| } |
| |
| if (cDataByte < 0) { |
| |
| /* |
| * Encountered invalid opcode. |
| */ |
| |
| return VME_INVALID_FILE; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* |
| * |
| * ispVMData |
| * Extract one row of data operand from the current data type opcode. Perform |
| * the decompression if necessary. Extra RAM is not required for the |
| * decompression process. The decompression scheme employed in this module |
| * is on row by row basis. The format of the data stream: |
| * [compression code][compressed data stream] |
| * 0x00 --No compression |
| * 0x01 --Compress by 0x00. |
| * Example: |
| * Original stream: 0x000000000000000000000001 |
| * Compressed stream: 0x01000901 |
| * Detail: 0x01 is the code, 0x00 is the key, |
| * 0x09 is the count of 0x00 bytes, |
| * 0x01 is the uncompressed byte. |
| * 0x02 --Compress by 0xFF. |
| * Example: |
| * Original stream: 0xFFFFFFFFFFFFFFFFFFFFFF01 |
| * Compressed stream: 0x02FF0901 |
| * Detail: 0x02 is the code, 0xFF is the key, |
| * 0x09 is the count of 0xFF bytes, |
| * 0x01 is the uncompressed byte. |
| * 0x03 |
| * : : |
| * 0xFE -- Compress by nibble blocks. |
| * Example: |
| * Original stream: 0x84210842108421084210 |
| * Compressed stream: 0x0584210 |
| * Detail: 0x05 is the code, means 5 nibbles block. |
| * 0x84210 is the 5 nibble blocks. |
| * The whole row is 80 bits given by g_usiDataSize. |
| * The number of times the block repeat itself |
| * is found by g_usiDataSize/(4*0x05) which is 4. |
| * 0xFF -- Compress by the most frequently happen byte. |
| * Example: |
| * Original stream: 0x04020401030904040404 |
| * Compressed stream: 0xFF04(0,1,0x02,0,1,0x01,1,0x03,1,0x09,0,0,0) |
| * or: 0xFF044090181C240 |
| * Detail: 0xFF is the code, 0x04 is the key. |
| * a bit of 0 represent the key shall be put into |
| * the current bit position and a bit of 1 |
| * represent copying the next of 8 bits of data |
| * in. |
| * |
| */ |
| |
| void ispVMData(unsigned char *ByteData) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short size = 0; |
| unsigned short i, j, m, getData = 0; |
| unsigned char cDataByte = 0; |
| unsigned char compress = 0; |
| unsigned short FFcount = 0; |
| unsigned char compr_char = 0xFF; |
| unsigned short index = 0; |
| signed char compression = 0; |
| |
| /*convert number in bits to bytes*/ |
| if (g_usiDataSize % 8 > 0) { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| size = (unsigned short)(g_usiDataSize / 8 + 1); |
| } else { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| size = (unsigned short)(g_usiDataSize / 8); |
| } |
| |
| /* |
| * If there is compression, then check if compress by key |
| * of 0x00 or 0xFF or by other keys or by nibble blocks |
| */ |
| |
| if (g_usDataType & COMPRESS) { |
| compression = 1; |
| compress = GetByte(); |
| if ((compress == VAR) && (g_usDataType & HEAP_IN)) { |
| getData = 1; |
| g_usDataType &= ~(HEAP_IN); |
| compress = GetByte(); |
| } |
| |
| switch (compress) { |
| case 0x00: |
| /* No compression */ |
| compression = 0; |
| break; |
| case 0x01: |
| /* Compress by byte 0x00 */ |
| compr_char = 0x00; |
| break; |
| case 0x02: |
| /* Compress by byte 0xFF */ |
| compr_char = 0xFF; |
| break; |
| case 0xFF: |
| /* Huffman encoding */ |
| compr_char = GetByte(); |
| i = 8; |
| for (index = 0; index < size; index++) { |
| ByteData[index] = 0x00; |
| if (i > 7) { |
| cDataByte = GetByte(); |
| i = 0; |
| } |
| if ((cDataByte << i++) & 0x80) |
| m = 8; |
| else { |
| ByteData[index] = compr_char; |
| m = 0; |
| } |
| |
| for (j = 0; j < m; j++) { |
| if (i > 7) { |
| cDataByte = GetByte(); |
| i = 0; |
| } |
| ByteData[index] |= |
| ((cDataByte << i++) & 0x80) >> j; |
| } |
| } |
| size = 0; |
| break; |
| default: |
| for (index = 0; index < size; index++) |
| ByteData[index] = 0x00; |
| for (index = 0; index < compress; index++) { |
| if (index % 2 == 0) |
| cDataByte = GetByte(); |
| for (i = 0; i < size * 2 / compress; i++) { |
| j = (unsigned short)(index + |
| (i * (unsigned short)compress)); |
| /*clear the nibble to zero first*/ |
| if (j%2) { |
| if (index % 2) |
| ByteData[j/2] |= |
| cDataByte & 0xF; |
| else |
| ByteData[j/2] |= |
| cDataByte >> 4; |
| } else { |
| if (index % 2) |
| ByteData[j/2] |= |
| cDataByte << 4; |
| else |
| ByteData[j/2] |= |
| cDataByte & 0xF0; |
| } |
| } |
| } |
| size = 0; |
| break; |
| } |
| } |
| |
| FFcount = 0; |
| |
| /* Decompress by byte 0x00 or 0xFF */ |
| for (index = 0; index < size; index++) { |
| if (FFcount <= 0) { |
| cDataByte = GetByte(); |
| if ((cDataByte == VAR) && (g_usDataType&HEAP_IN) && |
| !getData && !(g_usDataType&COMPRESS)) { |
| getData = 1; |
| g_usDataType &= ~(HEAP_IN); |
| cDataByte = GetByte(); |
| } |
| ByteData[index] = cDataByte; |
| if ((compression) && (cDataByte == compr_char)) |
| /* 09/11/07 NN Type cast mismatch variables */ |
| FFcount = (unsigned short) ispVMDataSize(); |
| /*The number of 0xFF or 0x00 bytes*/ |
| } else { |
| FFcount--; /*Use up the 0xFF chain first*/ |
| ByteData[index] = compr_char; |
| } |
| } |
| |
| if (getData) { |
| g_usDataType |= HEAP_IN; |
| getData = 0; |
| } |
| } |
| |
| /* |
| * |
| * ispVMShift |
| * |
| * Processes the SDR/XSDR/SIR commands. |
| * |
| */ |
| |
| signed char ispVMShift(signed char a_cCode) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short iDataIndex = 0; |
| unsigned short iReadLoop = 0; |
| signed char cRetCode = 0; |
| |
| cRetCode = 0; |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usiDataSize = (unsigned short) ispVMDataSize(); |
| |
| /*clear the flags first*/ |
| g_usDataType &= ~(SIR_DATA + EXPRESS + SDR_DATA); |
| switch (a_cCode) { |
| case SIR: |
| g_usDataType |= SIR_DATA; |
| /* |
| * 1/15/04 If performing cascading, then go directly to SHIFTIR. |
| * Else, go to IRPAUSE before going to SHIFTIR |
| */ |
| if (g_usFlowControl & CASCADE) { |
| ispVMStateMachine(SHIFTIR); |
| } else { |
| ispVMStateMachine(IRPAUSE); |
| ispVMStateMachine(SHIFTIR); |
| if (g_usHeadIR > 0) { |
| ispVMBypass(HIR, g_usHeadIR); |
| sclock(); |
| } |
| } |
| break; |
| case XSDR: |
| g_usDataType |= EXPRESS; /*mark simultaneous in and out*/ |
| case SDR: |
| g_usDataType |= SDR_DATA; |
| /* |
| * 1/15/04 If already in SHIFTDR, then do not move state or |
| * shift in header. This would imply that the previously |
| * shifted frame was a cascaded frame. |
| */ |
| if (g_cCurrentJTAGState != SHIFTDR) { |
| /* |
| * 1/15/04 If performing cascading, then go directly |
| * to SHIFTDR. Else, go to DRPAUSE before going |
| * to SHIFTDR |
| */ |
| if (g_usFlowControl & CASCADE) { |
| if (g_cCurrentJTAGState == DRPAUSE) { |
| ispVMStateMachine(SHIFTDR); |
| /* |
| * 1/15/04 If cascade flag has been seat |
| * and the current state is DRPAUSE, |
| * this implies that the first cascaded |
| * frame is about to be shifted in. The |
| * header must be shifted prior to |
| * shifting the first cascaded frame. |
| */ |
| if (g_usHeadDR > 0) { |
| ispVMBypass(HDR, g_usHeadDR); |
| sclock(); |
| } |
| } else { |
| ispVMStateMachine(SHIFTDR); |
| } |
| } else { |
| ispVMStateMachine(DRPAUSE); |
| ispVMStateMachine(SHIFTDR); |
| if (g_usHeadDR > 0) { |
| ispVMBypass(HDR, g_usHeadDR); |
| sclock(); |
| } |
| } |
| } |
| break; |
| default: |
| return VME_INVALID_FILE; |
| } |
| |
| cRetCode = ispVMDataCode(); |
| |
| if (cRetCode != 0) { |
| return VME_INVALID_FILE; |
| } |
| |
| #ifdef DEBUG |
| printf("%d ", g_usiDataSize); |
| |
| if (g_usDataType & TDI_DATA) { |
| puts("TDI "); |
| PrintData(g_usiDataSize, g_pucInData); |
| } |
| |
| if (g_usDataType & TDO_DATA) { |
| puts("\n\t\tTDO "); |
| PrintData(g_usiDataSize, g_pucOutData); |
| } |
| |
| if (g_usDataType & MASK_DATA) { |
| puts("\n\t\tMASK "); |
| PrintData(g_usiDataSize, g_pucOutMaskData); |
| } |
| |
| if (g_usDataType & DMASK_DATA) { |
| puts("\n\t\tDMASK "); |
| PrintData(g_usiDataSize, g_pucOutDMaskData); |
| } |
| |
| puts(";\n"); |
| #endif /* DEBUG */ |
| |
| if (g_usDataType & TDO_DATA || g_usDataType & DMASK_DATA) { |
| if (g_usDataType & DMASK_DATA) { |
| cRetCode = ispVMReadandSave(g_usiDataSize); |
| if (!cRetCode) { |
| if (g_usTailDR > 0) { |
| sclock(); |
| ispVMBypass(TDR, g_usTailDR); |
| } |
| ispVMStateMachine(DRPAUSE); |
| ispVMStateMachine(SHIFTDR); |
| if (g_usHeadDR > 0) { |
| ispVMBypass(HDR, g_usHeadDR); |
| sclock(); |
| } |
| for (iDataIndex = 0; |
| iDataIndex < g_usiDataSize / 8 + 1; |
| iDataIndex++) |
| g_pucInData[iDataIndex] = |
| g_pucOutData[iDataIndex]; |
| g_usDataType &= ~(TDO_DATA + DMASK_DATA); |
| cRetCode = ispVMSend(g_usiDataSize); |
| } |
| } else { |
| cRetCode = ispVMRead(g_usiDataSize); |
| if (cRetCode == -1 && g_cVendor == XILINX) { |
| for (iReadLoop = 0; iReadLoop < 30; |
| iReadLoop++) { |
| cRetCode = ispVMRead(g_usiDataSize); |
| if (!cRetCode) { |
| break; |
| } else { |
| /* Always DRPAUSE */ |
| ispVMStateMachine(DRPAUSE); |
| /* |
| * Bypass other devices |
| * when appropriate |
| */ |
| ispVMBypass(TDR, g_usTailDR); |
| ispVMStateMachine(g_ucEndDR); |
| ispVMStateMachine(IDLE); |
| ispVMDelay(1000); |
| } |
| } |
| } |
| } |
| } else { /*TDI only*/ |
| cRetCode = ispVMSend(g_usiDataSize); |
| } |
| |
| /*transfer the input data to the output buffer for the next verify*/ |
| if ((g_usDataType & EXPRESS) || (a_cCode == SDR)) { |
| if (g_pucOutData) { |
| for (iDataIndex = 0; iDataIndex < g_usiDataSize / 8 + 1; |
| iDataIndex++) |
| g_pucOutData[iDataIndex] = |
| g_pucInData[iDataIndex]; |
| } |
| } |
| |
| switch (a_cCode) { |
| case SIR: |
| /* 1/15/04 If not performing cascading, then shift ENDIR */ |
| if (!(g_usFlowControl & CASCADE)) { |
| if (g_usTailIR > 0) { |
| sclock(); |
| ispVMBypass(TIR, g_usTailIR); |
| } |
| ispVMStateMachine(g_ucEndIR); |
| } |
| break; |
| case XSDR: |
| case SDR: |
| /* 1/15/04 If not performing cascading, then shift ENDDR */ |
| if (!(g_usFlowControl & CASCADE)) { |
| if (g_usTailDR > 0) { |
| sclock(); |
| ispVMBypass(TDR, g_usTailDR); |
| } |
| ispVMStateMachine(g_ucEndDR); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return cRetCode; |
| } |
| |
| /* |
| * |
| * ispVMAmble |
| * |
| * This routine is to extract Header and Trailer parameter for SIR and |
| * SDR operations. |
| * |
| * The Header and Trailer parameter are the pre-amble and post-amble bit |
| * stream need to be shifted into TDI or out of TDO of the devices. Mostly |
| * is for the purpose of bypassing the leading or trailing devices. ispVM |
| * supports only shifting data into TDI to bypass the devices. |
| * |
| * For a single device, the header and trailer parameters are all set to 0 |
| * as default by ispVM. If it is for multiple devices, the header and trailer |
| * value will change as specified by the VME file. |
| * |
| */ |
| |
| signed char ispVMAmble(signed char Code) |
| { |
| signed char compress = 0; |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_usiDataSize = (unsigned short)ispVMDataSize(); |
| |
| #ifdef DEBUG |
| printf("%d", g_usiDataSize); |
| #endif /* DEBUG */ |
| |
| if (g_usiDataSize) { |
| |
| /* |
| * Discard the TDI byte and set the compression bit in the data |
| * type register to false if compression is set because TDI data |
| * after HIR/HDR/TIR/TDR is not compressed. |
| */ |
| |
| GetByte(); |
| if (g_usDataType & COMPRESS) { |
| g_usDataType &= ~(COMPRESS); |
| compress = 1; |
| } |
| } |
| |
| switch (Code) { |
| case HIR: |
| |
| /* |
| * Store the maximum size of the HIR buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usHIRSize) { |
| g_usHIRSize = g_usiDataSize; |
| } |
| |
| /* |
| * Assign the HIR value and allocate memory. |
| */ |
| |
| g_usHeadIR = g_usiDataSize; |
| if (g_usHeadIR) { |
| ispVMMemManager(HIR, g_usHeadIR); |
| ispVMData(g_pucHIRData); |
| |
| #ifdef DEBUG |
| puts(" TDI "); |
| PrintData(g_usHeadIR, g_pucHIRData); |
| #endif /* DEBUG */ |
| } |
| break; |
| case TIR: |
| |
| /* |
| * Store the maximum size of the TIR buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usTIRSize) { |
| g_usTIRSize = g_usiDataSize; |
| } |
| |
| /* |
| * Assign the TIR value and allocate memory. |
| */ |
| |
| g_usTailIR = g_usiDataSize; |
| if (g_usTailIR) { |
| ispVMMemManager(TIR, g_usTailIR); |
| ispVMData(g_pucTIRData); |
| |
| #ifdef DEBUG |
| puts(" TDI "); |
| PrintData(g_usTailIR, g_pucTIRData); |
| #endif /* DEBUG */ |
| } |
| break; |
| case HDR: |
| |
| /* |
| * Store the maximum size of the HDR buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usHDRSize) { |
| g_usHDRSize = g_usiDataSize; |
| } |
| |
| /* |
| * Assign the HDR value and allocate memory. |
| * |
| */ |
| |
| g_usHeadDR = g_usiDataSize; |
| if (g_usHeadDR) { |
| ispVMMemManager(HDR, g_usHeadDR); |
| ispVMData(g_pucHDRData); |
| |
| #ifdef DEBUG |
| puts(" TDI "); |
| PrintData(g_usHeadDR, g_pucHDRData); |
| #endif /* DEBUG */ |
| } |
| break; |
| case TDR: |
| |
| /* |
| * Store the maximum size of the TDR buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usiDataSize > g_usTDRSize) { |
| g_usTDRSize = g_usiDataSize; |
| } |
| |
| /* |
| * Assign the TDR value and allocate memory. |
| * |
| */ |
| |
| g_usTailDR = g_usiDataSize; |
| if (g_usTailDR) { |
| ispVMMemManager(TDR, g_usTailDR); |
| ispVMData(g_pucTDRData); |
| |
| #ifdef DEBUG |
| puts(" TDI "); |
| PrintData(g_usTailDR, g_pucTDRData); |
| #endif /* DEBUG */ |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * |
| * Re-enable compression if it was previously set. |
| * |
| **/ |
| |
| if (compress) { |
| g_usDataType |= COMPRESS; |
| } |
| |
| if (g_usiDataSize) { |
| Code = GetByte(); |
| if (Code == CONTINUE) { |
| return 0; |
| } else { |
| |
| /* |
| * Encountered invalid opcode. |
| */ |
| |
| return VME_INVALID_FILE; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * ispVMLoop |
| * |
| * Perform the function call upon by the REPEAT opcode. |
| * Memory is to be allocated to store the entire loop from REPEAT to ENDLOOP. |
| * After the loop is stored then execution begin. The REPEATLOOP flag is set |
| * on the g_usFlowControl register to indicate the repeat loop is in session |
| * and therefore fetch opcode from the memory instead of from the file. |
| * |
| */ |
| |
| signed char ispVMLoop(unsigned short a_usLoopCount) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| signed char cRetCode = 0; |
| unsigned short iHeapIndex = 0; |
| unsigned short iLoopIndex = 0; |
| |
| g_usShiftValue = 0; |
| for (iHeapIndex = 0; iHeapIndex < g_iHEAPSize; iHeapIndex++) { |
| g_pucHeapMemory[iHeapIndex] = GetByte(); |
| } |
| |
| if (g_pucHeapMemory[iHeapIndex - 1] != ENDLOOP) { |
| return VME_INVALID_FILE; |
| } |
| |
| g_usFlowControl |= REPEATLOOP; |
| g_usDataType |= HEAP_IN; |
| |
| for (iLoopIndex = 0; iLoopIndex < a_usLoopCount; iLoopIndex++) { |
| g_iHeapCounter = 0; |
| cRetCode = ispVMCode(); |
| g_usRepeatLoops++; |
| if (cRetCode < 0) { |
| break; |
| } |
| } |
| |
| g_usDataType &= ~(HEAP_IN); |
| g_usFlowControl &= ~(REPEATLOOP); |
| return cRetCode; |
| } |
| |
| /* |
| * |
| * ispVMBitShift |
| * |
| * Shift the TDI stream left or right by the number of bits. The data in |
| * *g_pucInData is of the VME format, so the actual shifting is the reverse of |
| * IEEE 1532 or SVF format. |
| * |
| */ |
| |
| signed char ispVMBitShift(signed char mode, unsigned short bits) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short i = 0; |
| unsigned short size = 0; |
| unsigned short tmpbits = 0; |
| |
| if (g_usiDataSize % 8 > 0) { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| size = (unsigned short)(g_usiDataSize / 8 + 1); |
| } else { |
| /* 09/11/07 NN Type cast mismatch variables */ |
| size = (unsigned short)(g_usiDataSize / 8); |
| } |
| |
| switch (mode) { |
| case SHR: |
| for (i = 0; i < size; i++) { |
| if (g_pucInData[i] != 0) { |
| tmpbits = bits; |
| while (tmpbits > 0) { |
| g_pucInData[i] <<= 1; |
| if (g_pucInData[i] == 0) { |
| i--; |
| g_pucInData[i] = 1; |
| } |
| tmpbits--; |
| } |
| } |
| } |
| break; |
| case SHL: |
| for (i = 0; i < size; i++) { |
| if (g_pucInData[i] != 0) { |
| tmpbits = bits; |
| while (tmpbits > 0) { |
| g_pucInData[i] >>= 1; |
| if (g_pucInData[i] == 0) { |
| i--; |
| g_pucInData[i] = 8; |
| } |
| tmpbits--; |
| } |
| } |
| } |
| break; |
| default: |
| return VME_INVALID_FILE; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * ispVMComment |
| * |
| * Displays the SVF comments. |
| * |
| */ |
| |
| void ispVMComment(unsigned short a_usCommentSize) |
| { |
| char cCurByte = 0; |
| for (; a_usCommentSize > 0; a_usCommentSize--) { |
| /* |
| * |
| * Print character to the terminal. |
| * |
| **/ |
| cCurByte = GetByte(); |
| vme_out_char(cCurByte); |
| } |
| cCurByte = '\n'; |
| vme_out_char(cCurByte); |
| } |
| |
| /* |
| * |
| * ispVMHeader |
| * |
| * Iterate the length of the header and discard it. |
| * |
| */ |
| |
| void ispVMHeader(unsigned short a_usHeaderSize) |
| { |
| for (; a_usHeaderSize > 0; a_usHeaderSize--) { |
| GetByte(); |
| } |
| } |
| |
| /* |
| * |
| * ispVMCalculateCRC32 |
| * |
| * Calculate the 32-bit CRC. |
| * |
| */ |
| |
| void ispVMCalculateCRC32(unsigned char a_ucData) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned char ucIndex = 0; |
| unsigned char ucFlipData = 0; |
| unsigned short usCRCTableEntry = 0; |
| unsigned int crc_table[16] = { |
| 0x0000, 0xCC01, 0xD801, |
| 0x1400, 0xF001, 0x3C00, |
| 0x2800, 0xE401, 0xA001, |
| 0x6C00, 0x7800, 0xB401, |
| 0x5000, 0x9C01, 0x8801, |
| 0x4400 |
| }; |
| |
| for (ucIndex = 0; ucIndex < 8; ucIndex++) { |
| ucFlipData <<= 1; |
| if (a_ucData & 0x01) { |
| ucFlipData |= 0x01; |
| } |
| a_ucData >>= 1; |
| } |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]); |
| g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF); |
| g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^ |
| usCRCTableEntry ^ crc_table[ucFlipData & 0xF]); |
| usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]); |
| g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF); |
| g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^ |
| usCRCTableEntry ^ crc_table[(ucFlipData >> 4) & 0xF]); |
| } |
| |
| /* |
| * |
| * ispVMLCOUNT |
| * |
| * Process the intelligent programming loops. |
| * |
| */ |
| |
| signed char ispVMLCOUNT(unsigned short a_usCountSize) |
| { |
| unsigned short usContinue = 1; |
| unsigned short usIntelBufferIndex = 0; |
| unsigned short usCountIndex = 0; |
| signed char cRetCode = 0; |
| signed char cRepeatHeap = 0; |
| signed char cOpcode = 0; |
| unsigned char ucState = 0; |
| unsigned short usDelay = 0; |
| unsigned short usToggle = 0; |
| |
| g_usIntelBufferSize = (unsigned short)ispVMDataSize(); |
| |
| /* |
| * Allocate memory for intel buffer. |
| * |
| */ |
| |
| ispVMMemManager(LHEAP, g_usIntelBufferSize); |
| |
| /* |
| * Store the maximum size of the intelligent buffer. |
| * Used to convert VME to HEX. |
| */ |
| |
| if (g_usIntelBufferSize > g_usLCOUNTSize) { |
| g_usLCOUNTSize = g_usIntelBufferSize; |
| } |
| |
| /* |
| * Copy intel data to the buffer. |
| */ |
| |
| for (usIntelBufferIndex = 0; usIntelBufferIndex < g_usIntelBufferSize; |
| usIntelBufferIndex++) { |
| g_pucIntelBuffer[usIntelBufferIndex] = GetByte(); |
| } |
| |
| /* |
| * Set the data type register to get data from the intelligent |
| * data buffer. |
| */ |
| |
| g_usDataType |= LHEAP_IN; |
| |
| /* |
| * |
| * If the HEAP_IN flag is set, temporarily unset the flag so data will be |
| * retrieved from the status buffer. |
| * |
| **/ |
| |
| if (g_usDataType & HEAP_IN) { |
| g_usDataType &= ~HEAP_IN; |
| cRepeatHeap = 1; |
| } |
| |
| #ifdef DEBUG |
| printf("LCOUNT %d;\n", a_usCountSize); |
| #endif /* DEBUG */ |
| |
| /* |
| * Iterate through the intelligent programming command. |
| */ |
| |
| for (usCountIndex = 0; usCountIndex < a_usCountSize; usCountIndex++) { |
| |
| /* |
| * |
| * Initialize the intel data index to 0 before each iteration. |
| * |
| **/ |
| |
| g_usIntelDataIndex = 0; |
| cOpcode = 0; |
| ucState = 0; |
| usDelay = 0; |
| usToggle = 0; |
| usContinue = 1; |
| |
| /* |
| * |
| * Begin looping through all the VME opcodes. |
| * |
| */ |
| /* |
| * 4/1/09 Nguyen replaced the recursive function call codes on |
| * the ispVMLCOUNT function |
| * |
| */ |
| while (usContinue) { |
| cOpcode = GetByte(); |
| switch (cOpcode) { |
| case HIR: |
| case TIR: |
| case HDR: |
| case TDR: |
| /* |
| * Set the header/trailer of the device in order |
| * to bypass successfully. |
| */ |
| |
| ispVMAmble(cOpcode); |
| break; |
| case STATE: |
| |
| /* |
| * Step the JTAG state machine. |
| */ |
| |
| ucState = GetByte(); |
| /* |
| * Step the JTAG state machine to DRCAPTURE |
| * to support Looping. |
| */ |
| |
| if ((g_usDataType & LHEAP_IN) && |
| (ucState == DRPAUSE) && |
| (g_cCurrentJTAGState == ucState)) { |
| ispVMStateMachine(DRCAPTURE); |
| } |
| ispVMStateMachine(ucState); |
| #ifdef DEBUG |
| printf("LDELAY %s ", GetState(ucState)); |
| #endif /* DEBUG */ |
| break; |
| case SIR: |
| #ifdef DEBUG |
| printf("SIR "); |
| #endif /* DEBUG */ |
| /* |
| * Shift in data into the device. |
| */ |
| |
| cRetCode = ispVMShift(cOpcode); |
| break; |
| case SDR: |
| |
| #ifdef DEBUG |
| printf("LSDR "); |
| #endif /* DEBUG */ |
| /* |
| * Shift in data into the device. |
| */ |
| |
| cRetCode = ispVMShift(cOpcode); |
| break; |
| case WAIT: |
| |
| /* |
| * |
| * Observe delay. |
| * |
| */ |
| |
| usDelay = (unsigned short)ispVMDataSize(); |
| ispVMDelay(usDelay); |
| |
| #ifdef DEBUG |
| if (usDelay & 0x8000) { |
| |
| /* |
| * Since MSB is set, the delay time must |
| * be decoded to millisecond. The |
| * SVF2VME encodes the MSB to represent |
| * millisecond. |
| */ |
| |
| usDelay &= ~0x8000; |
| printf("%.2E SEC;\n", |
| (float) usDelay / 1000); |
| } else { |
| /* |
| * Since MSB is not set, the delay time |
| * is given as microseconds. |
| */ |
| |
| printf("%.2E SEC;\n", |
| (float) usDelay / 1000000); |
| } |
| #endif /* DEBUG */ |
| break; |
| case TCK: |
| |
| /* |
| * Issue clock toggles. |
| */ |
| |
| usToggle = (unsigned short)ispVMDataSize(); |
| ispVMClocks(usToggle); |
| |
| #ifdef DEBUG |
| printf("RUNTEST %d TCK;\n", usToggle); |
| #endif /* DEBUG */ |
| break; |
| case ENDLOOP: |
| |
| /* |
| * Exit point from processing loops. |
| */ |
| usContinue = 0; |
| break; |
| |
| case COMMENT: |
| |
| /* |
| * Display comment. |
| */ |
| |
| ispVMComment((unsigned short) ispVMDataSize()); |
| break; |
| case ispEN: |
| ucState = GetByte(); |
| if ((ucState == ON) || (ucState == 0x01)) |
| writePort(g_ucPinENABLE, 0x01); |
| else |
| writePort(g_ucPinENABLE, 0x00); |
| ispVMDelay(1); |
| break; |
| case TRST: |
| if (GetByte() == 0x01) |
| writePort(g_ucPinTRST, 0x01); |
| else |
| writePort(g_ucPinTRST, 0x00); |
| ispVMDelay(1); |
| break; |
| default: |
| |
| /* |
| * Invalid opcode encountered. |
| */ |
| |
| debug("\nINVALID OPCODE: 0x%.2X\n", cOpcode); |
| |
| return VME_INVALID_FILE; |
| } |
| } |
| if (cRetCode >= 0) { |
| /* |
| * Break if intelligent programming is successful. |
| */ |
| |
| break; |
| } |
| |
| } |
| /* |
| * If HEAP_IN flag was temporarily disabled, |
| * re-enable it before exiting |
| */ |
| |
| if (cRepeatHeap) { |
| g_usDataType |= HEAP_IN; |
| } |
| |
| /* |
| * Set the data type register to not get data from the |
| * intelligent data buffer. |
| */ |
| |
| g_usDataType &= ~LHEAP_IN; |
| return cRetCode; |
| } |
| /* |
| * |
| * ispVMClocks |
| * |
| * Applies the specified number of pulses to TCK. |
| * |
| */ |
| |
| void ispVMClocks(unsigned short Clocks) |
| { |
| unsigned short iClockIndex = 0; |
| for (iClockIndex = 0; iClockIndex < Clocks; iClockIndex++) { |
| sclock(); |
| } |
| } |
| |
| /* |
| * |
| * ispVMBypass |
| * |
| * This procedure takes care of the HIR, HDR, TIR, TDR for the |
| * purpose of putting the other devices into Bypass mode. The |
| * current state is checked to find out if it is at DRPAUSE or |
| * IRPAUSE. If it is at DRPAUSE, perform bypass register scan. |
| * If it is at IRPAUSE, scan into instruction registers the bypass |
| * instruction. |
| * |
| */ |
| |
| void ispVMBypass(signed char ScanType, unsigned short Bits) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short iIndex = 0; |
| unsigned short iSourceIndex = 0; |
| unsigned char cBitState = 0; |
| unsigned char cCurByte = 0; |
| unsigned char *pcSource = NULL; |
| |
| if (Bits <= 0) { |
| return; |
| } |
| |
| switch (ScanType) { |
| case HIR: |
| pcSource = g_pucHIRData; |
| break; |
| case TIR: |
| pcSource = g_pucTIRData; |
| break; |
| case HDR: |
| pcSource = g_pucHDRData; |
| break; |
| case TDR: |
| pcSource = g_pucTDRData; |
| break; |
| default: |
| break; |
| } |
| |
| iSourceIndex = 0; |
| cBitState = 0; |
| for (iIndex = 0; iIndex < Bits - 1; iIndex++) { |
| /* Scan instruction or bypass register */ |
| if (iIndex % 8 == 0) { |
| cCurByte = pcSource[iSourceIndex++]; |
| } |
| cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| ? 0x01 : 0x00); |
| writePort(g_ucPinTDI, cBitState); |
| sclock(); |
| } |
| |
| if (iIndex % 8 == 0) { |
| cCurByte = pcSource[iSourceIndex++]; |
| } |
| |
| cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| ? 0x01 : 0x00); |
| writePort(g_ucPinTDI, cBitState); |
| } |
| |
| /* |
| * |
| * ispVMStateMachine |
| * |
| * This procedure steps all devices in the daisy chain from a given |
| * JTAG state to the next desirable state. If the next state is TLR, |
| * the JTAG state machine is brute forced into TLR by driving TMS |
| * high and pulse TCK 6 times. |
| * |
| */ |
| |
| void ispVMStateMachine(signed char cNextJTAGState) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| signed char cPathIndex = 0; |
| signed char cStateIndex = 0; |
| |
| if ((g_cCurrentJTAGState == cNextJTAGState) && |
| (cNextJTAGState != RESET)) { |
| return; |
| } |
| |
| for (cStateIndex = 0; cStateIndex < 25; cStateIndex++) { |
| if ((g_cCurrentJTAGState == |
| g_JTAGTransistions[cStateIndex].CurState) && |
| (cNextJTAGState == |
| g_JTAGTransistions[cStateIndex].NextState)) { |
| break; |
| } |
| } |
| |
| g_cCurrentJTAGState = cNextJTAGState; |
| for (cPathIndex = 0; |
| cPathIndex < g_JTAGTransistions[cStateIndex].Pulses; |
| cPathIndex++) { |
| if ((g_JTAGTransistions[cStateIndex].Pattern << cPathIndex) |
| & 0x80) { |
| writePort(g_ucPinTMS, (unsigned char) 0x01); |
| } else { |
| writePort(g_ucPinTMS, (unsigned char) 0x00); |
| } |
| sclock(); |
| } |
| |
| writePort(g_ucPinTDI, 0x00); |
| writePort(g_ucPinTMS, 0x00); |
| } |
| |
| /* |
| * |
| * ispVMStart |
| * |
| * Enable the port to the device and set the state to RESET (TLR). |
| * |
| */ |
| |
| void ispVMStart() |
| { |
| #ifdef DEBUG |
| printf("// ISPVM EMBEDDED ADDED\n"); |
| printf("STATE RESET;\n"); |
| #endif |
| g_usFlowControl = 0; |
| g_usDataType = g_uiChecksumIndex = g_cCurrentJTAGState = 0; |
| g_usHeadDR = g_usHeadIR = g_usTailDR = g_usTailIR = 0; |
| g_usMaxSize = g_usShiftValue = g_usRepeatLoops = 0; |
| g_usTDOSize = g_usMASKSize = g_usTDISize = 0; |
| g_usDMASKSize = g_usLCOUNTSize = g_usHDRSize = 0; |
| g_usTDRSize = g_usHIRSize = g_usTIRSize = g_usHeapSize = 0; |
| g_pLVDSList = NULL; |
| g_usLVDSPairCount = 0; |
| previous_size = 0; |
| |
| ispVMStateMachine(RESET); /*step devices to RESET state*/ |
| } |
| |
| /* |
| * |
| * ispVMEnd |
| * |
| * Set the state of devices to RESET to enable the devices and disable |
| * the port. |
| * |
| */ |
| |
| void ispVMEnd() |
| { |
| #ifdef DEBUG |
| printf("// ISPVM EMBEDDED ADDED\n"); |
| printf("STATE RESET;\n"); |
| printf("RUNTEST 1.00E-001 SEC;\n"); |
| #endif |
| |
| ispVMStateMachine(RESET); /*step devices to RESET state */ |
| ispVMDelay(1000); /*wake up devices*/ |
| } |
| |
| /* |
| * |
| * ispVMSend |
| * |
| * Send the TDI data stream to devices. The data stream can be |
| * instructions or data. |
| * |
| */ |
| |
| signed char ispVMSend(unsigned short a_usiDataSize) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short iIndex = 0; |
| unsigned short iInDataIndex = 0; |
| unsigned char cCurByte = 0; |
| unsigned char cBitState = 0; |
| |
| for (iIndex = 0; iIndex < a_usiDataSize - 1; iIndex++) { |
| if (iIndex % 8 == 0) { |
| cCurByte = g_pucInData[iInDataIndex++]; |
| } |
| cBitState = (unsigned char)(((cCurByte << iIndex % 8) & 0x80) |
| ? 0x01 : 0x00); |
| writePort(g_ucPinTDI, cBitState); |
| sclock(); |
| } |
| |
| if (iIndex % 8 == 0) { |
| /* Take care of the last bit */ |
| cCurByte = g_pucInData[iInDataIndex]; |
| } |
| |
| cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80) |
| ? 0x01 : 0x00); |
| |
| writePort(g_ucPinTDI, cBitState); |
| if (g_usFlowControl & CASCADE) { |
| /*1/15/04 Clock in last bit for the first n-1 cascaded frames */ |
| sclock(); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * ispVMRead |
| * |
| * Read the data stream from devices and verify. |
| * |
| */ |
| |
| signed char ispVMRead(unsigned short a_usiDataSize) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short usDataSizeIndex = 0; |
| unsigned short usErrorCount = 0; |
| unsigned short usLastBitIndex = 0; |
| unsigned char cDataByte = 0; |
| unsigned char cMaskByte = 0; |
| unsigned char cInDataByte = 0; |
| unsigned char cCurBit = 0; |
| unsigned char cByteIndex = 0; |
| unsigned short usBufferIndex = 0; |
| unsigned char ucDisplayByte = 0x00; |
| unsigned char ucDisplayFlag = 0x01; |
| char StrChecksum[256] = {0}; |
| unsigned char g_usCalculateChecksum = 0x00; |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usLastBitIndex = (unsigned short)(a_usiDataSize - 1); |
| |
| #ifndef DEBUG |
| /* |
| * If mask is not all zeros, then set the display flag to 0x00, |
| * otherwise it shall be set to 0x01 to indicate that data read |
| * from the device shall be displayed. If DEBUG is defined, |
| * always display data. |
| */ |
| |
| for (usDataSizeIndex = 0; usDataSizeIndex < (a_usiDataSize + 7) / 8; |
| usDataSizeIndex++) { |
| if (g_usDataType & MASK_DATA) { |
| if (g_pucOutMaskData[usDataSizeIndex] != 0x00) { |
| ucDisplayFlag = 0x00; |
| break; |
| } |
| } else if (g_usDataType & CMASK_DATA) { |
| g_usCalculateChecksum = 0x01; |
| ucDisplayFlag = 0x00; |
| break; |
| } else { |
| ucDisplayFlag = 0x00; |
| break; |
| } |
| } |
| #endif /* DEBUG */ |
| |
| /* |
| * |
| * Begin shifting data in and out of the device. |
| * |
| **/ |
| |
| for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize; |
| usDataSizeIndex++) { |
| if (cByteIndex == 0) { |
| |
| /* |
| * Grab byte from TDO buffer. |
| */ |
| |
| if (g_usDataType & TDO_DATA) { |
| cDataByte = g_pucOutData[usBufferIndex]; |
| } |
| |
| /* |
| * Grab byte from MASK buffer. |
| */ |
| |
| if (g_usDataType & MASK_DATA) { |
| cMaskByte = g_pucOutMaskData[usBufferIndex]; |
| } else { |
| cMaskByte = 0xFF; |
| } |
| |
| /* |
| * Grab byte from CMASK buffer. |
| */ |
| |
| if (g_usDataType & CMASK_DATA) { |
| cMaskByte = 0x00; |
| g_usCalculateChecksum = 0x01; |
| } |
| |
| /* |
| * Grab byte from TDI buffer. |
| */ |
| |
| if (g_usDataType & TDI_DATA) { |
| cInDataByte = g_pucInData[usBufferIndex]; |
| } |
| |
| usBufferIndex++; |
| } |
| |
| cCurBit = readPort(); |
| |
| if (ucDisplayFlag) { |
| ucDisplayByte <<= 1; |
| ucDisplayByte |= cCurBit; |
| } |
| |
| /* |
| * Check if data read from port matches with expected TDO. |
| */ |
| |
| if (g_usDataType & TDO_DATA) { |
| /* 08/28/08 NN Added Calculate checksum support. */ |
| if (g_usCalculateChecksum) { |
| if (cCurBit == 0x01) |
| g_usChecksum += |
| (1 << (g_uiChecksumIndex % 8)); |
| g_uiChecksumIndex++; |
| } else { |
| if ((((cMaskByte << cByteIndex) & 0x80) |
| ? 0x01 : 0x00)) { |
| if (cCurBit != (unsigned char) |
| (((cDataByte << cByteIndex) & 0x80) |
| ? 0x01 : 0x00)) { |
| usErrorCount++; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Write TDI data to the port. |
| */ |
| |
| writePort(g_ucPinTDI, |
| (unsigned char)(((cInDataByte << cByteIndex) & 0x80) |
| ? 0x01 : 0x00)); |
| |
| if (usDataSizeIndex < usLastBitIndex) { |
| |
| /* |
| * Clock data out from the data shift register. |
| */ |
| |
| sclock(); |
| } else if (g_usFlowControl & CASCADE) { |
| |
| /* |
| * Clock in last bit for the first N - 1 cascaded frames |
| */ |
| |
| sclock(); |
| } |
| |
| /* |
| * Increment the byte index. If it exceeds 7, then reset it back |
| * to zero. |
| */ |
| |
| cByteIndex++; |
| if (cByteIndex >= 8) { |
| if (ucDisplayFlag) { |
| |
| /* |
| * Store displayed data in the TDO buffer. By reusing |
| * the TDO buffer to store displayed data, there is no |
| * need to allocate a buffer simply to hold display |
| * data. This will not cause any false verification |
| * errors because the true TDO byte has already |
| * been consumed. |
| */ |
| |
| g_pucOutData[usBufferIndex - 1] = ucDisplayByte; |
| ucDisplayByte = 0; |
| } |
| |
| cByteIndex = 0; |
| } |
| /* 09/12/07 Nguyen changed to display the 1 bit expected data */ |
| else if (a_usiDataSize == 1) { |
| if (ucDisplayFlag) { |
| |
| /* |
| * Store displayed data in the TDO buffer. |
| * By reusing the TDO buffer to store displayed |
| * data, there is no need to allocate |
| * a buffer simply to hold display data. This |
| * will not cause any false verification errors |
| * because the true TDO byte has already |
| * been consumed. |
| */ |
| |
| /* |
| * Flip ucDisplayByte and store it in cDataByte. |
| */ |
| cDataByte = 0x00; |
| for (usBufferIndex = 0; usBufferIndex < 8; |
| usBufferIndex++) { |
| cDataByte <<= 1; |
| if (ucDisplayByte & 0x01) { |
| cDataByte |= 0x01; |
| } |
| ucDisplayByte >>= 1; |
| } |
| g_pucOutData[0] = cDataByte; |
| ucDisplayByte = 0; |
| } |
| |
| cByteIndex = 0; |
| } |
| } |
| |
| if (ucDisplayFlag) { |
| |
| #ifdef DEBUG |
| debug("RECEIVED TDO ("); |
| #else |
| vme_out_string("Display Data: 0x"); |
| #endif /* DEBUG */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| for (usDataSizeIndex = (unsigned short) |
| ((a_usiDataSize + 7) / 8); |
| usDataSizeIndex > 0 ; usDataSizeIndex--) { |
| cMaskByte = g_pucOutData[usDataSizeIndex - 1]; |
| cDataByte = 0x00; |
| |
| /* |
| * Flip cMaskByte and store it in cDataByte. |
| */ |
| |
| for (usBufferIndex = 0; usBufferIndex < 8; |
| usBufferIndex++) { |
| cDataByte <<= 1; |
| if (cMaskByte & 0x01) { |
| cDataByte |= 0x01; |
| } |
| cMaskByte >>= 1; |
| } |
| #ifdef DEBUG |
| printf("%.2X", cDataByte); |
| if ((((a_usiDataSize + 7) / 8) - usDataSizeIndex) |
| % 40 == 39) { |
| printf("\n\t\t"); |
| } |
| #else |
| vme_out_hex(cDataByte); |
| #endif /* DEBUG */ |
| } |
| |
| #ifdef DEBUG |
| printf(")\n\n"); |
| #else |
| vme_out_string("\n\n"); |
| #endif /* DEBUG */ |
| /* 09/02/08 Nguyen changed to display the data Checksum */ |
| if (g_usChecksum != 0) { |
| g_usChecksum &= 0xFFFF; |
| sprintf(StrChecksum, "Data Checksum: %.4lX\n\n", |
| g_usChecksum); |
| vme_out_string(StrChecksum); |
| g_usChecksum = 0; |
| } |
| } |
| |
| if (usErrorCount > 0) { |
| if (g_usFlowControl & VERIFYUES) { |
| vme_out_string( |
| "USERCODE verification failed. " |
| "Continue programming......\n\n"); |
| g_usFlowControl &= ~(VERIFYUES); |
| return 0; |
| } else { |
| |
| #ifdef DEBUG |
| printf("TOTAL ERRORS: %d\n", usErrorCount); |
| #endif /* DEBUG */ |
| |
| return VME_VERIFICATION_FAILURE; |
| } |
| } else { |
| if (g_usFlowControl & VERIFYUES) { |
| vme_out_string("USERCODE verification passed. " |
| "Programming aborted.\n\n"); |
| g_usFlowControl &= ~(VERIFYUES); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| * |
| * ispVMReadandSave |
| * |
| * Support dynamic I/O. |
| * |
| */ |
| |
| signed char ispVMReadandSave(unsigned short int a_usiDataSize) |
| { |
| /* 09/11/07 NN added local variables initialization */ |
| unsigned short int usDataSizeIndex = 0; |
| unsigned short int usLastBitIndex = 0; |
| unsigned short int usBufferIndex = 0; |
| unsigned short int usOutBitIndex = 0; |
| unsigned short int usLVDSIndex = 0; |
| unsigned char cDataByte = 0; |
| unsigned char cDMASKByte = 0; |
| unsigned char cInDataByte = 0; |
| unsigned char cCurBit = 0; |
| unsigned char cByteIndex = 0; |
| signed char cLVDSByteIndex = 0; |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| usLastBitIndex = (unsigned short) (a_usiDataSize - 1); |
| |
| /* |
| * |
| * Iterate through the data bits. |
| * |
| */ |
| |
| for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize; |
| usDataSizeIndex++) { |
| if (cByteIndex == 0) { |
| |
| /* |
| * Grab byte from DMASK buffer. |
| */ |
| |
| if (g_usDataType & DMASK_DATA) { |
| cDMASKByte = g_pucOutDMaskData[usBufferIndex]; |
| } else { |
| cDMASKByte = 0x00; |
| } |
| |
| /* |
| * Grab byte from TDI buffer. |
| */ |
| |
| if (g_usDataType & TDI_DATA) { |
| cInDataByte = g_pucInData[usBufferIndex]; |
| } |
| |
| usBufferIndex++; |
| } |
| |
| cCurBit = readPort(); |
| cDataByte = (unsigned char)(((cInDataByte << cByteIndex) & 0x80) |
| ? 0x01 : 0x00); |
| |
| /* |
| * Initialize the byte to be zero. |
| */ |
| |
| if (usOutBitIndex % 8 == 0) { |
| g_pucOutData[usOutBitIndex / 8] = 0x00; |
| } |
| |
| /* |
| * Use TDI, DMASK, and device TDO to create new TDI (actually |
| * stored in g_pucOutData). |
| */ |
| |
| if ((((cDMASKByte << cByteIndex) & 0x80) ? 0x01 : 0x00)) { |
| |
| if (g_pLVDSList) { |
| for (usLVDSIndex = 0; |
| usLVDSIndex < g_usLVDSPairCount; |
| usLVDSIndex++) { |
| if (g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex == |
| usDataSizeIndex) { |
| g_pLVDSList[usLVDSIndex]. |
| ucUpdate = 0x01; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * DMASK bit is 1, use TDI. |
| */ |
| |
| g_pucOutData[usOutBitIndex / 8] |= (unsigned char) |
| (((cDataByte & 0x1) ? 0x01 : 0x00) << |
| (7 - usOutBitIndex % 8)); |
| } else { |
| |
| /* |
| * DMASK bit is 0, use device TDO. |
| */ |
| |
| g_pucOutData[usOutBitIndex / 8] |= (unsigned char) |
| (((cCurBit & 0x1) ? 0x01 : 0x00) << |
| (7 - usOutBitIndex % 8)); |
| } |
| |
| /* |
| * Shift in TDI in order to get TDO out. |
| */ |
| |
| usOutBitIndex++; |
| writePort(g_ucPinTDI, cDataByte); |
| if (usDataSizeIndex < usLastBitIndex) { |
| sclock(); |
| } |
| |
| /* |
| * Increment the byte index. If it exceeds 7, then reset it back |
| * to zero. |
| */ |
| |
| cByteIndex++; |
| if (cByteIndex >= 8) { |
| cByteIndex = 0; |
| } |
| } |
| |
| /* |
| * If g_pLVDSList exists and pairs need updating, then update |
| * the negative-pair to receive the flipped positive-pair value. |
| */ |
| |
| if (g_pLVDSList) { |
| for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; |
| usLVDSIndex++) { |
| if (g_pLVDSList[usLVDSIndex].ucUpdate) { |
| |
| /* |
| * Read the positive value and flip it. |
| */ |
| |
| cDataByte = (unsigned char) |
| (((g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| usPositiveIndex / 8] |
| << (g_pLVDSList[usLVDSIndex]. |
| usPositiveIndex % 8)) & 0x80) ? |
| 0x01 : 0x00); |
| /* 09/11/07 NN Type cast mismatch variables */ |
| cDataByte = (unsigned char) (!cDataByte); |
| |
| /* |
| * Get the byte that needs modification. |
| */ |
| |
| cInDataByte = |
| g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex / 8]; |
| |
| if (cDataByte) { |
| |
| /* |
| * Copy over the current byte and |
| * set the negative bit to 1. |
| */ |
| |
| cDataByte = 0x00; |
| for (cLVDSByteIndex = 7; |
| cLVDSByteIndex >= 0; |
| cLVDSByteIndex--) { |
| cDataByte <<= 1; |
| if (7 - |
| (g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex % 8) == |
| cLVDSByteIndex) { |
| |
| /* |
| * Set negative bit to 1 |
| */ |
| |
| cDataByte |= 0x01; |
| } else if (cInDataByte & 0x80) { |
| cDataByte |= 0x01; |
| } |
| |
| cInDataByte <<= 1; |
| } |
| |
| /* |
| * Store the modified byte. |
| */ |
| |
| g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex / 8] = cDataByte; |
| } else { |
| |
| /* |
| * Copy over the current byte and set |
| * the negative bit to 0. |
| */ |
| |
| cDataByte = 0x00; |
| for (cLVDSByteIndex = 7; |
| cLVDSByteIndex >= 0; |
| cLVDSByteIndex--) { |
| cDataByte <<= 1; |
| if (7 - |
| (g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex % 8) == |
| cLVDSByteIndex) { |
| |
| /* |
| * Set negative bit to 0 |
| */ |
| |
| cDataByte |= 0x00; |
| } else if (cInDataByte & 0x80) { |
| cDataByte |= 0x01; |
| } |
| |
| cInDataByte <<= 1; |
| } |
| |
| /* |
| * Store the modified byte. |
| */ |
| |
| g_pucOutData[g_pLVDSList[usLVDSIndex]. |
| usNegativeIndex / 8] = cDataByte; |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| signed char ispVMProcessLVDS(unsigned short a_usLVDSCount) |
| { |
| unsigned short usLVDSIndex = 0; |
| |
| /* |
| * Allocate memory to hold LVDS pairs. |
| */ |
| |
| ispVMMemManager(LVDS, a_usLVDSCount); |
| g_usLVDSPairCount = a_usLVDSCount; |
| |
| #ifdef DEBUG |
| printf("LVDS %d (", a_usLVDSCount); |
| #endif /* DEBUG */ |
| |
| /* |
| * Iterate through each given LVDS pair. |
| */ |
| |
| for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; usLVDSIndex++) { |
| |
| /* |
| * Assign the positive and negative indices of the LVDS pair. |
| */ |
| |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_pLVDSList[usLVDSIndex].usPositiveIndex = |
| (unsigned short) ispVMDataSize(); |
| /* 09/11/07 NN Type cast mismatch variables */ |
| g_pLVDSList[usLVDSIndex].usNegativeIndex = |
| (unsigned short)ispVMDataSize(); |
| |
| #ifdef DEBUG |
| if (usLVDSIndex < g_usLVDSPairCount - 1) { |
| printf("%d:%d, ", |
| g_pLVDSList[usLVDSIndex].usPositiveIndex, |
| g_pLVDSList[usLVDSIndex].usNegativeIndex); |
| } else { |
| printf("%d:%d", |
| g_pLVDSList[usLVDSIndex].usPositiveIndex, |
| g_pLVDSList[usLVDSIndex].usNegativeIndex); |
| } |
| #endif /* DEBUG */ |
| |
| } |
| |
| #ifdef DEBUG |
| printf(");\n"); |
| #endif /* DEBUG */ |
| |
| return 0; |
| } |