armv8: fsl-layerscape: Organize SoC overview at common location

SoC overviews are getting repeated across board folders.
So, Organize SoC overview at common location i.e. fsl-layerscape/doc

Also move README.lsch2 and README.lsch3 in same folder.

Signed-off-by: Prabhakar Kushwaha <prabhakar.kushwaha@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
diff --git a/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch2 b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch2
new file mode 100644
index 0000000..a6ef830
--- /dev/null
+++ b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch2
@@ -0,0 +1,10 @@
+#
+# Copyright 2015 Freescale Semiconductor
+#
+# SPDX-License-Identifier:      GPL-2.0+
+#
+
+Freescale LayerScape with Chassis Generation 2
+
+This architecture supports Freescale ARMv8 SoCs with Chassis generation 2,
+for example LS1043A.
diff --git a/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch3 b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch3
new file mode 100644
index 0000000..f9323c1
--- /dev/null
+++ b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch3
@@ -0,0 +1,325 @@
+#
+# Copyright 2014-2015 Freescale Semiconductor
+#
+# SPDX-License-Identifier:      GPL-2.0+
+#
+
+Freescale LayerScape with Chassis Generation 3
+
+This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
+for example LS2080A.
+
+DDR Layout
+============
+Entire DDR region splits into two regions.
+ - Region 1 is at address 0x8000_0000 to 0xffff_ffff.
+ - Region 2 is at 0x80_8000_0000 to the top of total memory,
+   for example 16GB, 0x83_ffff_ffff.
+
+All DDR memory is marked as cache-enabled.
+
+When MC and Debug server is enabled, they carve 512MB away from the high
+end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
+with MC and Debug server enabled. Linux only sees 15.5GB.
+
+The reserved 512MB layout looks like
+
+   +---------------+ <-- top/end of memory
+   |    256MB      |  debug server
+   +---------------+
+   |    256MB      |  MC
+   +---------------+
+   |     ...       |
+
+MC requires the memory to be aligned with 512MB, so even debug server is
+not enabled, 512MB is reserved, not 256MB.
+
+Flash Layout
+============
+
+(1) A typical layout of various images (including Linux and other firmware images)
+   is shown below considering a 32MB NOR flash device present on most
+   pre-silicon platforms (simulator and emulator):
+
+	-------------------------
+	| 	FIT Image	|
+	| (linux + DTB + RFS)	|
+	------------------------- ----> 0x0120_0000
+	| 	Debug Server FW |
+	------------------------- ----> 0x00C0_0000
+	|	AIOP FW 	|
+	------------------------- ----> 0x0070_0000
+	|	MC FW 		|
+	------------------------- ----> 0x006C_0000
+	| 	MC DPL Blob 	|
+	------------------------- ----> 0x0020_0000
+	| 	BootLoader + Env|
+	------------------------- ----> 0x0000_1000
+	|	PBI 		|
+	------------------------- ----> 0x0000_0080
+	|	RCW 		|
+	------------------------- ----> 0x0000_0000
+
+	32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
+
+(2) A typical layout of various images (including Linux and other firmware images)
+    is shown below considering a 128MB NOR flash device present on QDS and RDB
+    boards:
+	----------------------------------------- ----> 0x5_8800_0000 ---
+	|	.. Unused .. (7M)		|			|
+	----------------------------------------- ----> 0x5_8790_0000	|
+	| FIT Image (linux + DTB + RFS)	(40M)	|			|
+	----------------------------------------- ----> 0x5_8510_0000	|
+	|	PHY firmware (2M)	 	|			|
+	----------------------------------------- ----> 0x5_84F0_0000	| 64K
+	|	Debug Server FW (2M)		|			| Alt
+	----------------------------------------- ----> 0x5_84D0_0000	| Bank
+	|	AIOP FW (4M)			|			|
+	----------------------------------------- ----> 0x5_8490_0000 (vbank4)
+	|	MC DPC Blob (1M) 		|			|
+	----------------------------------------- ----> 0x5_8480_0000	|
+	|	MC DPL Blob (1M)		|			|
+	----------------------------------------- ----> 0x5_8470_0000	|
+	| 	MC FW (4M)			|			|
+	----------------------------------------- ----> 0x5_8430_0000	|
+	|	BootLoader Environment (1M) 	|			|
+	----------------------------------------- ----> 0x5_8420_0000	|
+	|	BootLoader (1M)			|			|
+	----------------------------------------- ----> 0x5_8410_0000	|
+	|	RCW and PBI (1M) 		|			|
+	----------------------------------------- ----> 0x5_8400_0000 ---
+	|	.. Unused .. (7M)		|			|
+	----------------------------------------- ----> 0x5_8390_0000	|
+	| FIT Image (linux + DTB + RFS)	(40M)	|			|
+	----------------------------------------- ----> 0x5_8110_0000	|
+	|	PHY firmware (2M)	 	|			|
+	----------------------------------------- ----> 0x5_80F0_0000	| 64K
+	|	Debug Server FW (2M)		|			| Bank
+	----------------------------------------- ----> 0x5_80D0_0000	|
+	|	AIOP FW (4M)			|			|
+	----------------------------------------- ----> 0x5_8090_0000 (vbank0)
+	|	MC DPC Blob (1M) 		|			|
+	----------------------------------------- ----> 0x5_8080_0000	|
+	|	MC DPL Blob (1M)		|			|
+	----------------------------------------- ----> 0x5_8070_0000	|
+	| 	MC FW (4M)			|			|
+	----------------------------------------- ----> 0x5_8030_0000	|
+	|	BootLoader Environment (1M) 	|			|
+	----------------------------------------- ----> 0x5_8020_0000	|
+	|	BootLoader (1M)			|			|
+	----------------------------------------- ----> 0x5_8010_0000	|
+	|	RCW and PBI (1M) 		|			|
+	----------------------------------------- ----> 0x5_8000_0000 ---
+
+	128-MB NOR flash layout for QDS and RDB boards
+
+Environment Variables
+=====================
+mcboottimeout:	MC boot timeout in milliseconds. If this variable is not defined
+		the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
+
+mcmemsize:	MC DRAM block size. If this variable is not defined, the value
+		CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
+
+Booting from NAND
+-------------------
+Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
+The difference between NAND boot RCW image and NOR boot image is the PBI
+command sequence. Below is one example for PBI commands for QDS which uses
+NAND device with 2KB/page, block size 128KB.
+
+1) CCSR 4-byte write to 0x00e00404, data=0x00000000
+2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
+The above two commands set bootloc register to 0x00000000_1800a000 where
+the u-boot code will be running in OCRAM.
+
+3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
+BLOCK_SIZE=0x00014000
+This command copies u-boot image from NAND device into OCRAM. The values need
+to adjust accordingly.
+
+SRC		should match the cfg_rcw_src, the reset config pins. It depends
+		on the NAND device. See reference manual for cfg_rcw_src.
+SRC_ADDR	is the offset of u-boot-with-spl.bin image in NAND device. In
+		the example above, 128KB. For easy maintenance, we put it at
+		the beginning of next block from RCW.
+DEST_ADDR	is fixed at 0x1800a000, matching bootloc set above.
+BLOCK_SIZE	is the size to be copied by PBI.
+
+RCW image should be written to the beginning of NAND device. Example of using
+u-boot command
+
+nand write <rcw image in memory> 0 <size of rcw image>
+
+To form the NAND image, build u-boot with NAND config, for example,
+ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
+The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
+
+nand write <u-boot image in memory> 200000 <size of u-boot image>
+
+With these two images in NAND device, the board can boot from NAND.
+
+Another example for RDB boards,
+
+1) CCSR 4-byte write to 0x00e00404, data=0x00000000
+2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
+3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
+BLOCK_SIZE=0x00014000
+
+nand write <rcw image in memory> 0 <size of rcw image>
+nand write <u-boot image in memory> 80000 <size of u-boot image>
+
+Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
+to match board NAND device with 4KB/page, block size 512KB.
+
+MMU Translation Tables
+======================
+
+(1) Early MMU Tables:
+
+     Level 0                   Level 1                   Level 2
+------------------        ------------------        ------------------
+| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
+------------------        ------------------        ------------------
+| 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
+------------------   |    ------------------        ------------------
+|    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
+------------------   |    ------------------        ------------------
+                     |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
+                     |    ------------------        ------------------
+                     |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
+                     |    ------------------        ------------------
+                     |            ...                      ...
+                     |    ------------------
+                     |    | 0x05_8000_0000 |  --|
+                     |    ------------------    |
+                     |    | 0x05_c000_0000 |    |
+                     |    ------------------    |
+                     |            ...           |
+                     |    ------------------    |   ------------------
+                     |--> | 0x80_0000_0000 |    |-> | 0x00_3000_0000 |
+                          ------------------        ------------------
+                          | 0x80_4000_0000 |        | 0x00_3020_0000 |
+                          ------------------        ------------------
+                          | 0x80_8000_0000 |        | 0x00_3040_0000 |
+                          ------------------        ------------------
+                          | 0x80_c000_0000 |        | 0x00_3060_0000 |
+                          ------------------        ------------------
+                          | 0x81_0000_0000 |        | 0x00_3080_0000 |
+                          ------------------        ------------------
+			         ...	                   ...
+
+(2) Final MMU Tables:
+
+     Level 0                   Level 1                   Level 2
+------------------        ------------------        ------------------
+| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
+------------------        ------------------        ------------------
+| 0x80_0000_0000 | --|    | 0x00_4000_0000 |        | 0x00_0020_0000 |
+------------------   |    ------------------        ------------------
+|    invalid     |   |    | 0x00_8000_0000 |        | 0x00_0040_0000 |
+------------------   |    ------------------        ------------------
+                     |    | 0x00_c000_0000 |        | 0x00_0060_0000 |
+                     |    ------------------        ------------------
+                     |    | 0x01_0000_0000 |        | 0x00_0080_0000 |
+                     |    ------------------        ------------------
+                     |            ...                      ...
+                     |    ------------------
+                     |    | 0x08_0000_0000 | --|
+                     |    ------------------   |
+                     |    | 0x08_4000_0000 |   |
+                     |    ------------------   |
+                     |            ...          |
+                     |    ------------------   |    ------------------
+                     |--> | 0x80_0000_0000 |   |--> | 0x08_0000_0000 |
+                          ------------------        ------------------
+                          | 0x80_4000_0000 |        | 0x08_0020_0000 |
+                          ------------------        ------------------
+                          | 0x80_8000_0000 |        | 0x08_0040_0000 |
+                          ------------------        ------------------
+                          | 0x80_c000_0000 |        | 0x08_0060_0000 |
+                          ------------------        ------------------
+                          | 0x81_0000_0000 |        | 0x08_0080_0000 |
+                          ------------------        ------------------
+			         ...	                   ...
+
+
+DPAA2 commands to manage Management Complex (MC)
+------------------------------------------------
+DPAA2 commands has been introduced to manage Management Complex
+(MC). These commands are used to start mc, aiop and apply DPL
+from u-boot command prompt.
+
+Please note Management complex Firmware(MC), DPL and DPC are no
+more deployed during u-boot boot-sequence.
+
+Commands:
+a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+c) fsl_mc start aiop <FW_addr> - Start AIOP
+
+How to use commands :-
+1. Command sequence for u-boot ethernet:
+   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+   b) DPMAC net-devices are now available for use
+
+   Example-
+	Assumption: MC firmware, DPL and DPC dtb is already programmed
+	on NOR flash.
+
+	=> fsl_mc start mc 580300000 580800000
+	=> setenv ethact DPMAC1@xgmii
+	=> ping $serverip
+
+2. Command sequence for Linux boot:
+   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+   b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+   c) No DPMAC net-devices are available for use in u-boot
+   d) boot Linux
+
+   Example-
+	Assumption: MC firmware, DPL and DPC dtb is already programmed
+	on NOR flash.
+
+	=> fsl_mc start mc 580300000 580800000
+	=> setenv ethact DPMAC1@xgmii
+	=> tftp a0000000 kernel.itb
+	=> fsl_mc apply dpl 580700000
+	=> bootm a0000000
+
+3. Command sequence for AIOP boot:
+   a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+   b) fsl_mc start aiop <FW_addr> - Start AIOP
+   c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+   d) No DPMAC net-devices are availabe for use in u-boot
+  Please note actual AIOP start will happen during DPL parsing of
+  Management complex
+
+  Example-
+	Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
+	programmed on NOR flash.
+
+	=> fsl_mc start mc 580300000 580800000
+	=> fsl_mc start aiop 0x580900000
+	=> setenv ethact DPMAC1@xgmii
+	=> fsl_mc apply dpl 580700000
+
+Errata A009635
+---------------
+If the core runs at higher than x3 speed of the platform, there is
+possiblity about sev instruction to getting missed by other cores.
+This is because of SoC Run Control block may not able to sample
+the EVENTI(Sev) signals.
+
+Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
+wake up A57 cores
+
+Errata workaround uses Env variable "a009635_interval_val". It uses decimal
+value.
+- Default value of env variable is platform clock (MHz)
+
+- User can modify default value by updating the env variable
+  setenv a009635_interval_val 600; saveenv;
+  It configure platform clock as 600 MHz
+
+- Env variable as 0 signifies no workaround
diff --git a/arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc
new file mode 100644
index 0000000..a4130ce
--- /dev/null
+++ b/arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc
@@ -0,0 +1,86 @@
+SoC overview
+
+	1. LS1043A
+	2. LS2080A
+
+LS1043A
+---------
+The LS1043A integrated multicore processor combines four ARM Cortex-A53
+processor cores with datapath acceleration optimized for L2/3 packet
+processing, single pass security offload and robust traffic management
+and quality of service.
+
+The LS1043A SoC includes the following function and features:
+ - Four 64-bit ARM Cortex-A53 CPUs
+ - 1 MB unified L2 Cache
+ - One 32-bit DDR3L/DDR4 SDRAM memory controllers with ECC and interleaving
+   support
+ - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
+   the following functions:
+   - Packet parsing, classification, and distribution (FMan)
+   - Queue management for scheduling, packet sequencing, and congestion
+     management (QMan)
+   - Hardware buffer management for buffer allocation and de-allocation (BMan)
+   - Cryptography acceleration (SEC)
+ - Ethernet interfaces by FMan
+   - Up to 1 x XFI supporting 10G interface
+   - Up to 1 x QSGMII
+   - Up to 4 x SGMII supporting 1000Mbps
+   - Up to 2 x SGMII supporting 2500Mbps
+   - Up to 2 x RGMII supporting 1000Mbps
+ - High-speed peripheral interfaces
+   - Three PCIe 2.0 controllers, one supporting x4 operation
+   - One serial ATA (SATA 3.0) controllers
+ - Additional peripheral interfaces
+   - Three high-speed USB 3.0 controllers with integrated PHY
+   - Enhanced secure digital host controller (eSDXC/eMMC)
+   - Quad Serial Peripheral Interface (QSPI) Controller
+   - Serial peripheral interface (SPI) controller
+   - Four I2C controllers
+   - Two DUARTs
+   - Integrated flash controller supporting NAND and NOR flash
+ - QorIQ platform's trust architecture 2.1
+
+LS2080A
+--------
+The LS2080A integrated multicore processor combines eight ARM Cortex-A57
+processor cores with high-performance data path acceleration logic and network
+and peripheral bus interfaces required for networking, telecom/datacom,
+wireless infrastructure, and mil/aerospace applications.
+
+The LS2080A SoC includes the following function and features:
+
+ - Eight 64-bit ARM Cortex-A57 CPUs
+ - 1 MB platform cache with ECC
+ - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
+ - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
+  the AIOP
+ - Data path acceleration architecture (DPAA2) incorporating acceleration for
+ the following functions:
+   - Packet parsing, classification, and distribution (WRIOP)
+   - Queue and Hardware buffer management for scheduling, packet sequencing, and
+     congestion management, buffer allocation and de-allocation (QBMan)
+   - Cryptography acceleration (SEC) at up to 10 Gbps
+   - RegEx pattern matching acceleration (PME) at up to 10 Gbps
+   - Decompression/compression acceleration (DCE) at up to 20 Gbps
+   - Accelerated I/O processing (AIOP) at up to 20 Gbps
+   - QDMA engine
+ - 16 SerDes lanes at up to 10.3125 GHz
+ - Ethernet interfaces
+   - Up to eight 10 Gbps Ethernet MACs
+   - Up to eight 1 / 2.5 Gbps Ethernet MACs
+ - High-speed peripheral interfaces
+   - Four PCIe 3.0 controllers, one supporting SR-IOV
+ - Additional peripheral interfaces
+   - Two serial ATA (SATA 3.0) controllers
+   - Two high-speed USB 3.0 controllers with integrated PHY
+   - Enhanced secure digital host controller (eSDXC/eMMC)
+   - Serial peripheral interface (SPI) controller
+   - Quad Serial Peripheral Interface (QSPI) Controller
+   - Four I2C controllers
+   - Two DUARTs
+   - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
+ - Support for hardware virtualization and partitioning enforcement
+ - QorIQ platform's trust architecture 3.0
+ - Service processor (SP) provides pre-boot initialization and secure-boot
+  capabilities