| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| */ |
| |
| #include <alist.h> |
| #include <efi_loader.h> |
| #include <event.h> |
| #include <image.h> |
| #include <mapmem.h> |
| #include <lmb.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <spl.h> |
| |
| #include <asm/global_data.h> |
| #include <asm/sections.h> |
| #include <linux/kernel.h> |
| #include <linux/sizes.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define MAP_OP_RESERVE (u8)0x1 |
| #define MAP_OP_FREE (u8)0x2 |
| #define MAP_OP_ADD (u8)0x3 |
| |
| #define LMB_ALLOC_ANYWHERE 0 |
| #define LMB_ALIST_INITIAL_SIZE 4 |
| |
| static struct lmb lmb; |
| |
| static bool lmb_should_notify(enum lmb_flags flags) |
| { |
| return !lmb.test && !(flags & LMB_NONOTIFY) && |
| CONFIG_IS_ENABLED(EFI_LOADER); |
| } |
| |
| static int __maybe_unused lmb_map_update_notify(phys_addr_t addr, |
| phys_size_t size, |
| u8 op) |
| { |
| u64 efi_addr; |
| u64 pages; |
| efi_status_t status; |
| |
| if (op != MAP_OP_RESERVE && op != MAP_OP_FREE && op != MAP_OP_ADD) { |
| log_err("Invalid map update op received (%d)\n", op); |
| return -1; |
| } |
| |
| efi_addr = (uintptr_t)map_sysmem(addr, 0); |
| pages = efi_size_in_pages(size + (efi_addr & EFI_PAGE_MASK)); |
| efi_addr &= ~EFI_PAGE_MASK; |
| |
| status = efi_add_memory_map_pg(efi_addr, pages, |
| op == MAP_OP_RESERVE ? |
| EFI_BOOT_SERVICES_DATA : |
| EFI_CONVENTIONAL_MEMORY, |
| false); |
| if (status != EFI_SUCCESS) { |
| log_err("%s: LMB Map notify failure %lu\n", __func__, |
| status & ~EFI_ERROR_MASK); |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void lmb_print_region_flags(enum lmb_flags flags) |
| { |
| u64 bitpos; |
| const char *flag_str[] = { "none", "no-map", "no-overwrite", "no-notify" }; |
| |
| do { |
| bitpos = flags ? fls(flags) - 1 : 0; |
| assert_noisy(bitpos < ARRAY_SIZE(flag_str)); |
| printf("%s", flag_str[bitpos]); |
| flags &= ~(1ull << bitpos); |
| puts(flags ? ", " : "\n"); |
| } while (flags); |
| } |
| |
| static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name) |
| { |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| unsigned long long base, size, end; |
| enum lmb_flags flags; |
| int i; |
| |
| printf(" %s.count = 0x%x\n", name, lmb_rgn_lst->count); |
| |
| for (i = 0; i < lmb_rgn_lst->count; i++) { |
| base = rgn[i].base; |
| size = rgn[i].size; |
| end = base + size - 1; |
| flags = rgn[i].flags; |
| |
| printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: ", |
| name, i, base, end, size); |
| lmb_print_region_flags(flags); |
| } |
| } |
| |
| void lmb_dump_all_force(void) |
| { |
| printf("lmb_dump_all:\n"); |
| lmb_dump_region(&lmb.free_mem, "memory"); |
| lmb_dump_region(&lmb.used_mem, "reserved"); |
| } |
| |
| void lmb_dump_all(void) |
| { |
| #ifdef DEBUG |
| lmb_dump_all_force(); |
| #endif |
| } |
| |
| static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1, |
| phys_addr_t base2, phys_size_t size2) |
| { |
| const phys_addr_t base1_end = base1 + size1 - 1; |
| const phys_addr_t base2_end = base2 + size2 - 1; |
| |
| return ((base1 <= base2_end) && (base2 <= base1_end)); |
| } |
| |
| static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1, |
| phys_addr_t base2, phys_size_t size2) |
| { |
| if (base2 == base1 + size1) |
| return 1; |
| else if (base1 == base2 + size2) |
| return -1; |
| |
| return 0; |
| } |
| |
| static long lmb_regions_overlap(struct alist *lmb_rgn_lst, unsigned long r1, |
| unsigned long r2) |
| { |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| phys_addr_t base1 = rgn[r1].base; |
| phys_size_t size1 = rgn[r1].size; |
| phys_addr_t base2 = rgn[r2].base; |
| phys_size_t size2 = rgn[r2].size; |
| |
| return lmb_addrs_overlap(base1, size1, base2, size2); |
| } |
| |
| static long lmb_regions_adjacent(struct alist *lmb_rgn_lst, unsigned long r1, |
| unsigned long r2) |
| { |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| phys_addr_t base1 = rgn[r1].base; |
| phys_size_t size1 = rgn[r1].size; |
| phys_addr_t base2 = rgn[r2].base; |
| phys_size_t size2 = rgn[r2].size; |
| return lmb_addrs_adjacent(base1, size1, base2, size2); |
| } |
| |
| static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r) |
| { |
| unsigned long i; |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| for (i = r; i < lmb_rgn_lst->count - 1; i++) { |
| rgn[i].base = rgn[i + 1].base; |
| rgn[i].size = rgn[i + 1].size; |
| rgn[i].flags = rgn[i + 1].flags; |
| } |
| lmb_rgn_lst->count--; |
| } |
| |
| /* Assumption: base addr of region 1 < base addr of region 2 */ |
| static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1, |
| unsigned long r2) |
| { |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| rgn[r1].size += rgn[r2].size; |
| lmb_remove_region(lmb_rgn_lst, r2); |
| } |
| |
| /*Assumption : base addr of region 1 < base addr of region 2*/ |
| static void lmb_fix_over_lap_regions(struct alist *lmb_rgn_lst, |
| unsigned long r1, unsigned long r2) |
| { |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| phys_addr_t base1 = rgn[r1].base; |
| phys_size_t size1 = rgn[r1].size; |
| phys_addr_t base2 = rgn[r2].base; |
| phys_size_t size2 = rgn[r2].size; |
| |
| if (base1 + size1 > base2 + size2) { |
| printf("This will not be a case any time\n"); |
| return; |
| } |
| rgn[r1].size = base2 + size2 - base1; |
| lmb_remove_region(lmb_rgn_lst, r2); |
| } |
| |
| static void lmb_reserve_uboot_region(void) |
| { |
| int bank; |
| ulong end, bank_end; |
| phys_addr_t rsv_start; |
| |
| rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE; |
| end = gd->ram_top; |
| |
| /* |
| * Reserve memory from aligned address below the bottom of U-Boot stack |
| * until end of RAM area to prevent LMB from overwriting that memory. |
| */ |
| debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start); |
| |
| /* adjust sp by 16K to be safe */ |
| rsv_start -= SZ_16K; |
| for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { |
| if (!gd->bd->bi_dram[bank].size || |
| rsv_start < gd->bd->bi_dram[bank].start) |
| continue; |
| /* Watch out for RAM at end of address space! */ |
| bank_end = gd->bd->bi_dram[bank].start + |
| gd->bd->bi_dram[bank].size - 1; |
| if (rsv_start > bank_end) |
| continue; |
| if (bank_end > end) |
| bank_end = end - 1; |
| |
| lmb_reserve_flags(rsv_start, bank_end - rsv_start + 1, |
| LMB_NOOVERWRITE); |
| |
| if (gd->flags & GD_FLG_SKIP_RELOC) |
| lmb_reserve_flags((phys_addr_t)(uintptr_t)_start, |
| gd->mon_len, LMB_NOOVERWRITE); |
| |
| break; |
| } |
| } |
| |
| static void lmb_reserve_common(void *fdt_blob) |
| { |
| lmb_reserve_uboot_region(); |
| |
| if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob) |
| boot_fdt_add_mem_rsv_regions(fdt_blob); |
| } |
| |
| static __maybe_unused void lmb_reserve_common_spl(void) |
| { |
| phys_addr_t rsv_start; |
| phys_size_t rsv_size; |
| |
| /* |
| * Assume a SPL stack of 16KB. This must be |
| * more than enough for the SPL stage. |
| */ |
| if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) { |
| rsv_start = gd->start_addr_sp - 16384; |
| rsv_size = 16384; |
| lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE); |
| } |
| |
| if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) { |
| /* Reserve the bss region */ |
| rsv_start = (phys_addr_t)(uintptr_t)__bss_start; |
| rsv_size = (phys_addr_t)(uintptr_t)__bss_end - |
| (phys_addr_t)(uintptr_t)__bss_start; |
| lmb_reserve_flags(rsv_start, rsv_size, LMB_NOOVERWRITE); |
| } |
| } |
| |
| /** |
| * lmb_add_memory() - Add memory range for LMB allocations |
| * |
| * Add the entire available memory range to the pool of memory that |
| * can be used by the LMB module for allocations. |
| * |
| * Return: None |
| */ |
| void lmb_add_memory(void) |
| { |
| int i; |
| phys_size_t size; |
| u64 ram_top = gd->ram_top; |
| struct bd_info *bd = gd->bd; |
| |
| if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP)) |
| return lmb_arch_add_memory(); |
| |
| /* Assume a 4GB ram_top if not defined */ |
| if (!ram_top) |
| ram_top = 0x100000000ULL; |
| |
| for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { |
| size = bd->bi_dram[i].size; |
| if (size) { |
| lmb_add(bd->bi_dram[i].start, size); |
| |
| /* |
| * Reserve memory above ram_top as |
| * no-overwrite so that it cannot be |
| * allocated |
| */ |
| if (bd->bi_dram[i].start >= ram_top) |
| lmb_reserve_flags(bd->bi_dram[i].start, size, |
| LMB_NOOVERWRITE); |
| } |
| } |
| } |
| |
| static long lmb_resize_regions(struct alist *lmb_rgn_lst, |
| unsigned long idx_start, |
| phys_addr_t base, phys_size_t size) |
| { |
| phys_size_t rgnsize; |
| unsigned long rgn_cnt, idx, idx_end; |
| phys_addr_t rgnbase, rgnend; |
| phys_addr_t mergebase, mergeend; |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| rgn_cnt = 0; |
| idx = idx_start; |
| idx_end = idx_start; |
| |
| /* |
| * First thing to do is to identify how many regions |
| * the requested region overlaps. |
| * If the flags match, combine all these overlapping |
| * regions into a single region, and remove the merged |
| * regions. |
| */ |
| while (idx <= lmb_rgn_lst->count - 1) { |
| rgnbase = rgn[idx].base; |
| rgnsize = rgn[idx].size; |
| |
| if (lmb_addrs_overlap(base, size, rgnbase, |
| rgnsize)) { |
| if (rgn[idx].flags != LMB_NONE) |
| return -1; |
| rgn_cnt++; |
| idx_end = idx; |
| } |
| idx++; |
| } |
| |
| /* The merged region's base and size */ |
| rgnbase = rgn[idx_start].base; |
| mergebase = min(base, rgnbase); |
| rgnend = rgn[idx_end].base + rgn[idx_end].size; |
| mergeend = max(rgnend, (base + size)); |
| |
| rgn[idx_start].base = mergebase; |
| rgn[idx_start].size = mergeend - mergebase; |
| |
| /* Now remove the merged regions */ |
| while (--rgn_cnt) |
| lmb_remove_region(lmb_rgn_lst, idx_start + 1); |
| |
| return 0; |
| } |
| |
| /** |
| * lmb_add_region_flags() - Add an lmb region to the given list |
| * @lmb_rgn_lst: LMB list to which region is to be added(free/used) |
| * @base: Start address of the region |
| * @size: Size of the region to be added |
| * @flags: Attributes of the LMB region |
| * |
| * Add a region of memory to the list. If the region does not exist, add |
| * it to the list. Depending on the attributes of the region to be added, |
| * the function might resize an already existing region or coalesce two |
| * adjacent regions. |
| * |
| * |
| * Returns: 0 if the region addition successful, -1 on failure |
| */ |
| static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base, |
| phys_size_t size, enum lmb_flags flags) |
| { |
| unsigned long coalesced = 0; |
| long ret, i; |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| if (alist_err(lmb_rgn_lst)) |
| return -1; |
| |
| /* First try and coalesce this LMB with another. */ |
| for (i = 0; i < lmb_rgn_lst->count; i++) { |
| phys_addr_t rgnbase = rgn[i].base; |
| phys_size_t rgnsize = rgn[i].size; |
| phys_size_t rgnflags = rgn[i].flags; |
| phys_addr_t end = base + size - 1; |
| phys_addr_t rgnend = rgnbase + rgnsize - 1; |
| if (rgnbase <= base && end <= rgnend) { |
| if (flags == rgnflags) |
| /* Already have this region, so we're done */ |
| return 0; |
| else |
| return -1; /* regions with new flags */ |
| } |
| |
| ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize); |
| if (ret > 0) { |
| if (flags != rgnflags) |
| break; |
| rgn[i].base -= size; |
| rgn[i].size += size; |
| coalesced++; |
| break; |
| } else if (ret < 0) { |
| if (flags != rgnflags) |
| break; |
| rgn[i].size += size; |
| coalesced++; |
| break; |
| } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) { |
| if (flags == LMB_NONE) { |
| ret = lmb_resize_regions(lmb_rgn_lst, i, base, |
| size); |
| if (ret < 0) |
| return -1; |
| |
| coalesced++; |
| break; |
| } else { |
| return -1; |
| } |
| } |
| } |
| |
| if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) { |
| rgn = lmb_rgn_lst->data; |
| if (rgn[i].flags == rgn[i + 1].flags) { |
| if (lmb_regions_adjacent(lmb_rgn_lst, i, i + 1)) { |
| lmb_coalesce_regions(lmb_rgn_lst, i, i + 1); |
| coalesced++; |
| } else if (lmb_regions_overlap(lmb_rgn_lst, i, i + 1)) { |
| /* fix overlapping area */ |
| lmb_fix_over_lap_regions(lmb_rgn_lst, i, i + 1); |
| coalesced++; |
| } |
| } |
| } |
| |
| if (coalesced) |
| return coalesced; |
| |
| if (alist_full(lmb_rgn_lst) && |
| !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc)) |
| return -1; |
| rgn = lmb_rgn_lst->data; |
| |
| /* Couldn't coalesce the LMB, so add it to the sorted table. */ |
| for (i = lmb_rgn_lst->count; i >= 0; i--) { |
| if (i && base < rgn[i - 1].base) { |
| rgn[i] = rgn[i - 1]; |
| } else { |
| rgn[i].base = base; |
| rgn[i].size = size; |
| rgn[i].flags = flags; |
| break; |
| } |
| } |
| |
| lmb_rgn_lst->count++; |
| |
| return 0; |
| } |
| |
| static long lmb_add_region(struct alist *lmb_rgn_lst, phys_addr_t base, |
| phys_size_t size) |
| { |
| return lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE); |
| } |
| |
| /* This routine may be called with relocation disabled. */ |
| long lmb_add(phys_addr_t base, phys_size_t size) |
| { |
| long ret; |
| struct alist *lmb_rgn_lst = &lmb.free_mem; |
| |
| ret = lmb_add_region(lmb_rgn_lst, base, size); |
| if (ret < 0) |
| return ret; |
| |
| if (lmb_should_notify(LMB_NONE)) |
| return lmb_map_update_notify(base, size, MAP_OP_ADD); |
| |
| return 0; |
| } |
| |
| static long _lmb_free(phys_addr_t base, phys_size_t size) |
| { |
| struct lmb_region *rgn; |
| struct alist *lmb_rgn_lst = &lmb.used_mem; |
| phys_addr_t rgnbegin, rgnend; |
| phys_addr_t end = base + size - 1; |
| int i; |
| |
| rgnbegin = rgnend = 0; /* supress gcc warnings */ |
| rgn = lmb_rgn_lst->data; |
| /* Find the region where (base, size) belongs to */ |
| for (i = 0; i < lmb_rgn_lst->count; i++) { |
| rgnbegin = rgn[i].base; |
| rgnend = rgnbegin + rgn[i].size - 1; |
| |
| if ((rgnbegin <= base) && (end <= rgnend)) |
| break; |
| } |
| |
| /* Didn't find the region */ |
| if (i == lmb_rgn_lst->count) |
| return -1; |
| |
| /* Check to see if we are removing entire region */ |
| if ((rgnbegin == base) && (rgnend == end)) { |
| lmb_remove_region(lmb_rgn_lst, i); |
| return 0; |
| } |
| |
| /* Check to see if region is matching at the front */ |
| if (rgnbegin == base) { |
| rgn[i].base = end + 1; |
| rgn[i].size -= size; |
| return 0; |
| } |
| |
| /* Check to see if the region is matching at the end */ |
| if (rgnend == end) { |
| rgn[i].size -= size; |
| return 0; |
| } |
| |
| /* |
| * We need to split the entry - adjust the current one to the |
| * beginging of the hole and add the region after hole. |
| */ |
| rgn[i].size = base - rgn[i].base; |
| return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end, |
| rgn[i].flags); |
| } |
| |
| /** |
| * lmb_free_flags() - Free up a region of memory |
| * @base: Base Address of region to be freed |
| * @size: Size of the region to be freed |
| * @flags: Memory region attributes |
| * |
| * Free up a region of memory. |
| * |
| * Return: 0 if successful, -1 on failure |
| */ |
| long lmb_free_flags(phys_addr_t base, phys_size_t size, |
| uint flags) |
| { |
| long ret; |
| |
| ret = _lmb_free(base, size); |
| if (ret < 0) |
| return ret; |
| |
| if (lmb_should_notify(flags)) |
| return lmb_map_update_notify(base, size, MAP_OP_FREE); |
| |
| return ret; |
| } |
| |
| long lmb_free(phys_addr_t base, phys_size_t size) |
| { |
| return lmb_free_flags(base, size, LMB_NONE); |
| } |
| |
| long lmb_reserve_flags(phys_addr_t base, phys_size_t size, enum lmb_flags flags) |
| { |
| long ret = 0; |
| struct alist *lmb_rgn_lst = &lmb.used_mem; |
| |
| ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags); |
| if (ret < 0) |
| return -1; |
| |
| if (lmb_should_notify(flags)) |
| return lmb_map_update_notify(base, size, MAP_OP_RESERVE); |
| |
| return ret; |
| } |
| |
| long lmb_reserve(phys_addr_t base, phys_size_t size) |
| { |
| return lmb_reserve_flags(base, size, LMB_NONE); |
| } |
| |
| static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base, |
| phys_size_t size) |
| { |
| unsigned long i; |
| struct lmb_region *rgn = lmb_rgn_lst->data; |
| |
| for (i = 0; i < lmb_rgn_lst->count; i++) { |
| phys_addr_t rgnbase = rgn[i].base; |
| phys_size_t rgnsize = rgn[i].size; |
| if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) |
| break; |
| } |
| |
| return (i < lmb_rgn_lst->count) ? i : -1; |
| } |
| |
| static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size) |
| { |
| return addr & ~(size - 1); |
| } |
| |
| static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align, |
| phys_addr_t max_addr, enum lmb_flags flags) |
| { |
| u8 op; |
| int ret; |
| long i, rgn; |
| phys_addr_t base = 0; |
| phys_addr_t res_base; |
| struct lmb_region *lmb_used = lmb.used_mem.data; |
| struct lmb_region *lmb_memory = lmb.free_mem.data; |
| |
| for (i = lmb.free_mem.count - 1; i >= 0; i--) { |
| phys_addr_t lmbbase = lmb_memory[i].base; |
| phys_size_t lmbsize = lmb_memory[i].size; |
| |
| if (lmbsize < size) |
| continue; |
| if (max_addr == LMB_ALLOC_ANYWHERE) |
| base = lmb_align_down(lmbbase + lmbsize - size, align); |
| else if (lmbbase < max_addr) { |
| base = lmbbase + lmbsize; |
| if (base < lmbbase) |
| base = -1; |
| base = min(base, max_addr); |
| base = lmb_align_down(base - size, align); |
| } else |
| continue; |
| |
| while (base && lmbbase <= base) { |
| rgn = lmb_overlaps_region(&lmb.used_mem, base, size); |
| if (rgn < 0) { |
| /* This area isn't reserved, take it */ |
| if (lmb_add_region_flags(&lmb.used_mem, base, |
| size, flags) < 0) |
| return 0; |
| |
| if (lmb_should_notify(flags)) { |
| op = MAP_OP_RESERVE; |
| ret = lmb_map_update_notify(base, size, |
| op); |
| if (ret) |
| return ret; |
| } |
| |
| return base; |
| } |
| |
| res_base = lmb_used[rgn].base; |
| if (res_base < size) |
| break; |
| base = lmb_align_down(res_base - size, align); |
| } |
| } |
| return 0; |
| } |
| |
| phys_addr_t lmb_alloc(phys_size_t size, ulong align) |
| { |
| return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE); |
| } |
| |
| /** |
| * lmb_alloc_flags() - Allocate memory region with specified attributes |
| * @size: Size of the region requested |
| * @align: Alignment of the memory region requested |
| * @flags: Memory region attributes to be set |
| * |
| * Allocate a region of memory with the attributes specified through the |
| * parameter. |
| * |
| * Return: base address on success, 0 on error |
| */ |
| phys_addr_t lmb_alloc_flags(phys_size_t size, ulong align, uint flags) |
| { |
| return _lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE, |
| flags); |
| } |
| |
| phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr) |
| { |
| phys_addr_t alloc; |
| |
| alloc = _lmb_alloc_base(size, align, max_addr, LMB_NONE); |
| |
| if (alloc == 0) |
| printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n", |
| (ulong)size, (ulong)max_addr); |
| |
| return alloc; |
| } |
| |
| /** |
| * lmb_alloc_base_flags() - Allocate specified memory region with specified attributes |
| * @size: Size of the region requested |
| * @align: Alignment of the memory region requested |
| * @max_addr: Maximum address of the requested region |
| * @flags: Memory region attributes to be set |
| * |
| * Allocate a region of memory with the attributes specified through the |
| * parameter. The max_addr parameter is used to specify the maximum address |
| * below which the requested region should be allocated. |
| * |
| * Return: base address on success, 0 on error |
| */ |
| phys_addr_t lmb_alloc_base_flags(phys_size_t size, ulong align, |
| phys_addr_t max_addr, uint flags) |
| { |
| phys_addr_t alloc; |
| |
| alloc = _lmb_alloc_base(size, align, max_addr, flags); |
| |
| if (alloc == 0) |
| printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n", |
| (ulong)size, (ulong)max_addr); |
| |
| return alloc; |
| } |
| |
| static phys_addr_t _lmb_alloc_addr(phys_addr_t base, phys_size_t size, |
| enum lmb_flags flags) |
| { |
| long rgn; |
| struct lmb_region *lmb_memory = lmb.free_mem.data; |
| |
| /* Check if the requested address is in one of the memory regions */ |
| rgn = lmb_overlaps_region(&lmb.free_mem, base, size); |
| if (rgn >= 0) { |
| /* |
| * Check if the requested end address is in the same memory |
| * region we found. |
| */ |
| if (lmb_addrs_overlap(lmb_memory[rgn].base, |
| lmb_memory[rgn].size, |
| base + size - 1, 1)) { |
| /* ok, reserve the memory */ |
| if (lmb_reserve_flags(base, size, flags) >= 0) |
| return base; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Try to allocate a specific address range: must be in defined memory but not |
| * reserved |
| */ |
| phys_addr_t lmb_alloc_addr(phys_addr_t base, phys_size_t size) |
| { |
| return _lmb_alloc_addr(base, size, LMB_NONE); |
| } |
| |
| /** |
| * lmb_alloc_addr_flags() - Allocate specified memory address with specified attributes |
| * @base: Base Address requested |
| * @size: Size of the region requested |
| * @flags: Memory region attributes to be set |
| * |
| * Allocate a region of memory with the attributes specified through the |
| * parameter. The base parameter is used to specify the base address |
| * of the requested region. |
| * |
| * Return: base address on success, 0 on error |
| */ |
| phys_addr_t lmb_alloc_addr_flags(phys_addr_t base, phys_size_t size, |
| uint flags) |
| { |
| return _lmb_alloc_addr(base, size, flags); |
| } |
| |
| /* Return number of bytes from a given address that are free */ |
| phys_size_t lmb_get_free_size(phys_addr_t addr) |
| { |
| int i; |
| long rgn; |
| struct lmb_region *lmb_used = lmb.used_mem.data; |
| struct lmb_region *lmb_memory = lmb.free_mem.data; |
| |
| /* check if the requested address is in the memory regions */ |
| rgn = lmb_overlaps_region(&lmb.free_mem, addr, 1); |
| if (rgn >= 0) { |
| for (i = 0; i < lmb.used_mem.count; i++) { |
| if (addr < lmb_used[i].base) { |
| /* first reserved range > requested address */ |
| return lmb_used[i].base - addr; |
| } |
| if (lmb_used[i].base + |
| lmb_used[i].size > addr) { |
| /* requested addr is in this reserved range */ |
| return 0; |
| } |
| } |
| /* if we come here: no reserved ranges above requested addr */ |
| return lmb_memory[lmb.free_mem.count - 1].base + |
| lmb_memory[lmb.free_mem.count - 1].size - addr; |
| } |
| return 0; |
| } |
| |
| int lmb_is_reserved_flags(phys_addr_t addr, int flags) |
| { |
| int i; |
| struct lmb_region *lmb_used = lmb.used_mem.data; |
| |
| for (i = 0; i < lmb.used_mem.count; i++) { |
| phys_addr_t upper = lmb_used[i].base + |
| lmb_used[i].size - 1; |
| if (addr >= lmb_used[i].base && addr <= upper) |
| return (lmb_used[i].flags & flags) == flags; |
| } |
| return 0; |
| } |
| |
| static int lmb_setup(bool test) |
| { |
| bool ret; |
| |
| ret = alist_init(&lmb.free_mem, sizeof(struct lmb_region), |
| (uint)LMB_ALIST_INITIAL_SIZE); |
| if (!ret) { |
| log_debug("Unable to initialise the list for LMB free memory\n"); |
| return -ENOMEM; |
| } |
| |
| ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region), |
| (uint)LMB_ALIST_INITIAL_SIZE); |
| if (!ret) { |
| log_debug("Unable to initialise the list for LMB used memory\n"); |
| return -ENOMEM; |
| } |
| |
| lmb.test = test; |
| |
| return 0; |
| } |
| |
| /** |
| * lmb_init() - Initialise the LMB module |
| * |
| * Initialise the LMB lists needed for keeping the memory map. There |
| * are two lists, in form of alloced list data structure. One for the |
| * available memory, and one for the used memory. Initialise the two |
| * lists as part of board init. Add memory to the available memory |
| * list and reserve common areas by adding them to the used memory |
| * list. |
| * |
| * Return: 0 on success, -ve on error |
| */ |
| int lmb_init(void) |
| { |
| int ret; |
| |
| ret = lmb_setup(false); |
| if (ret) { |
| log_info("Unable to init LMB\n"); |
| return ret; |
| } |
| |
| lmb_add_memory(); |
| |
| /* Reserve the U-Boot image region once U-Boot has relocated */ |
| if (xpl_phase() == PHASE_SPL) |
| lmb_reserve_common_spl(); |
| else if (xpl_phase() == PHASE_BOARD_R) |
| lmb_reserve_common((void *)gd->fdt_blob); |
| |
| return 0; |
| } |
| |
| struct lmb *lmb_get(void) |
| { |
| return &lmb; |
| } |
| |
| #if CONFIG_IS_ENABLED(UNIT_TEST) |
| int lmb_push(struct lmb *store) |
| { |
| int ret; |
| |
| *store = lmb; |
| ret = lmb_setup(true); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| void lmb_pop(struct lmb *store) |
| { |
| alist_uninit(&lmb.free_mem); |
| alist_uninit(&lmb.used_mem); |
| lmb = *store; |
| } |
| #endif /* UNIT_TEST */ |