| // SPDX-License-Identifier: GPL-2.0+ |
| /* Integrated Flash Controller NAND Machine Driver |
| * |
| * Copyright (c) 2012 Freescale Semiconductor, Inc |
| * |
| * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com> |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <nand.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/nand_ecc.h> |
| |
| #include <asm/io.h> |
| #include <linux/errno.h> |
| #include <fsl_ifc.h> |
| |
| #ifndef CONFIG_SYS_FSL_IFC_BANK_COUNT |
| #define CONFIG_SYS_FSL_IFC_BANK_COUNT 4 |
| #endif |
| |
| #define MAX_BANKS CONFIG_SYS_FSL_IFC_BANK_COUNT |
| #define ERR_BYTE 0xFF /* Value returned for read bytes |
| when read failed */ |
| |
| struct fsl_ifc_ctrl; |
| |
| /* mtd information per set */ |
| struct fsl_ifc_mtd { |
| struct nand_chip chip; |
| struct fsl_ifc_ctrl *ctrl; |
| |
| struct device *dev; |
| int bank; /* Chip select bank number */ |
| unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ |
| u8 __iomem *vbase; /* Chip select base virtual address */ |
| }; |
| |
| /* overview of the fsl ifc controller */ |
| struct fsl_ifc_ctrl { |
| struct nand_hw_control controller; |
| struct fsl_ifc_mtd *chips[MAX_BANKS]; |
| |
| /* device info */ |
| struct fsl_ifc regs; |
| void __iomem *addr; /* Address of assigned IFC buffer */ |
| unsigned int page; /* Last page written to / read from */ |
| unsigned int read_bytes; /* Number of bytes read during command */ |
| unsigned int column; /* Saved column from SEQIN */ |
| unsigned int index; /* Pointer to next byte to 'read' */ |
| unsigned int status; /* status read from NEESR after last op */ |
| unsigned int oob; /* Non zero if operating on OOB data */ |
| unsigned int eccread; /* Non zero for a full-page ECC read */ |
| }; |
| |
| static struct fsl_ifc_ctrl *ifc_ctrl; |
| |
| /* 512-byte page with 4-bit ECC, 8-bit */ |
| static struct nand_ecclayout oob_512_8bit_ecc4 = { |
| .eccbytes = 8, |
| .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobfree = { {0, 5}, {6, 2} }, |
| }; |
| |
| /* 512-byte page with 4-bit ECC, 16-bit */ |
| static struct nand_ecclayout oob_512_16bit_ecc4 = { |
| .eccbytes = 8, |
| .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobfree = { {2, 6}, }, |
| }; |
| |
| /* 2048-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_2048_ecc4 = { |
| .eccbytes = 32, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| }, |
| .oobfree = { {2, 6}, {40, 24} }, |
| }; |
| |
| /* 4096-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_4096_ecc4 = { |
| .eccbytes = 64, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| }, |
| .oobfree = { {2, 6}, {72, 56} }, |
| }; |
| |
| /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ |
| static struct nand_ecclayout oob_4096_ecc8 = { |
| .eccbytes = 128, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| }, |
| .oobfree = { {2, 6}, {136, 82} }, |
| }; |
| |
| /* 8192-byte page size with 4-bit ECC */ |
| static struct nand_ecclayout oob_8192_ecc4 = { |
| .eccbytes = 128, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| }, |
| .oobfree = { {2, 6}, {136, 208} }, |
| }; |
| |
| /* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ |
| static struct nand_ecclayout oob_8192_ecc8 = { |
| .eccbytes = 256, |
| .eccpos = { |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 64, 65, 66, 67, 68, 69, 70, 71, |
| 72, 73, 74, 75, 76, 77, 78, 79, |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127, |
| 128, 129, 130, 131, 132, 133, 134, 135, |
| 136, 137, 138, 139, 140, 141, 142, 143, |
| 144, 145, 146, 147, 148, 149, 150, 151, |
| 152, 153, 154, 155, 156, 157, 158, 159, |
| 160, 161, 162, 163, 164, 165, 166, 167, |
| 168, 169, 170, 171, 172, 173, 174, 175, |
| 176, 177, 178, 179, 180, 181, 182, 183, |
| 184, 185, 186, 187, 188, 189, 190, 191, |
| 192, 193, 194, 195, 196, 197, 198, 199, |
| 200, 201, 202, 203, 204, 205, 206, 207, |
| 208, 209, 210, 211, 212, 213, 214, 215, |
| 216, 217, 218, 219, 220, 221, 222, 223, |
| 224, 225, 226, 227, 228, 229, 230, 231, |
| 232, 233, 234, 235, 236, 237, 238, 239, |
| 240, 241, 242, 243, 244, 245, 246, 247, |
| 248, 249, 250, 251, 252, 253, 254, 255, |
| 256, 257, 258, 259, 260, 261, 262, 263, |
| }, |
| .oobfree = { {2, 6}, {264, 80} }, |
| }; |
| |
| /* |
| * Generic flash bbt descriptors |
| */ |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 2, /* 0 on 8-bit small page */ |
| .len = 4, |
| .veroffs = 6, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /* |
| * Set up the IFC hardware block and page address fields, and the ifc nand |
| * structure addr field to point to the correct IFC buffer in memory |
| */ |
| static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime *ifc = ctrl->regs.rregs; |
| int buf_num; |
| |
| ctrl->page = page_addr; |
| |
| /* Program ROW0/COL0 */ |
| ifc_out32(&ifc->ifc_nand.row0, page_addr); |
| ifc_out32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); |
| |
| buf_num = page_addr & priv->bufnum_mask; |
| |
| ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); |
| ctrl->index = column; |
| |
| /* for OOB data point to the second half of the buffer */ |
| if (oob) |
| ctrl->index += mtd->writesize; |
| } |
| |
| static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
| unsigned int bufnum) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); |
| u32 __iomem *main = (u32 *)addr; |
| u8 __iomem *oob = addr + mtd->writesize; |
| int i; |
| |
| for (i = 0; i < mtd->writesize / 4; i++) { |
| if (__raw_readl(&main[i]) != 0xffffffff) |
| return 0; |
| } |
| |
| for (i = 0; i < chip->ecc.layout->eccbytes; i++) { |
| int pos = chip->ecc.layout->eccpos[i]; |
| |
| if (__raw_readb(&oob[pos]) != 0xff) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* returns nonzero if entire page is blank */ |
| static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, |
| u32 eccstat, unsigned int bufnum) |
| { |
| return (eccstat >> ((3 - bufnum % 4) * 8)) & 15; |
| } |
| |
| /* |
| * execute IFC NAND command and wait for it to complete |
| */ |
| static int fsl_ifc_run_command(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime *ifc = ctrl->regs.rregs; |
| u32 timeo = (CONFIG_SYS_HZ * 10) / 1000; |
| u32 time_start; |
| u32 eccstat; |
| int i; |
| |
| /* set the chip select for NAND Transaction */ |
| ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); |
| |
| /* start read/write seq */ |
| ifc_out32(&ifc->ifc_nand.nandseq_strt, |
| IFC_NAND_SEQ_STRT_FIR_STRT); |
| |
| /* wait for NAND Machine complete flag or timeout */ |
| time_start = get_timer(0); |
| |
| while (get_timer(time_start) < timeo) { |
| ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); |
| |
| if (ctrl->status & IFC_NAND_EVTER_STAT_OPC) |
| break; |
| } |
| |
| ifc_out32(&ifc->ifc_nand.nand_evter_stat, ctrl->status); |
| |
| if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER) |
| printf("%s: Flash Time Out Error\n", __func__); |
| if (ctrl->status & IFC_NAND_EVTER_STAT_WPER) |
| printf("%s: Write Protect Error\n", __func__); |
| |
| if (ctrl->eccread) { |
| int errors; |
| int bufnum = ctrl->page & priv->bufnum_mask; |
| int sector_start = bufnum * chip->ecc.steps; |
| int sector_end = sector_start + chip->ecc.steps - 1; |
| u32 *eccstat_regs; |
| |
| eccstat_regs = ifc->ifc_nand.nand_eccstat; |
| eccstat = ifc_in32(&eccstat_regs[sector_start / 4]); |
| |
| for (i = sector_start; i <= sector_end; i++) { |
| if ((i != sector_start) && !(i % 4)) |
| eccstat = ifc_in32(&eccstat_regs[i / 4]); |
| |
| errors = check_read_ecc(mtd, ctrl, eccstat, i); |
| |
| if (errors == 15) { |
| /* |
| * Uncorrectable error. |
| * OK only if the whole page is blank. |
| * |
| * We disable ECCER reporting due to erratum |
| * IFC-A002770 -- so report it now if we |
| * see an uncorrectable error in ECCSTAT. |
| */ |
| if (!is_blank(mtd, ctrl, bufnum)) |
| ctrl->status |= |
| IFC_NAND_EVTER_STAT_ECCER; |
| break; |
| } |
| |
| mtd->ecc_stats.corrected += errors; |
| } |
| |
| ctrl->eccread = 0; |
| } |
| |
| /* returns 0 on success otherwise non-zero) */ |
| return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; |
| } |
| |
| static void fsl_ifc_do_read(struct nand_chip *chip, |
| int oob, |
| struct mtd_info *mtd) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime *ifc = ctrl->regs.rregs; |
| |
| /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ |
| if (mtd->writesize > 512) { |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); |
| } else { |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); |
| |
| if (oob) |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); |
| else |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); |
| } |
| } |
| |
| /* cmdfunc send commands to the IFC NAND Machine */ |
| static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime *ifc = ctrl->regs.rregs; |
| |
| /* clear the read buffer */ |
| ctrl->read_bytes = 0; |
| if (command != NAND_CMD_PAGEPROG) |
| ctrl->index = 0; |
| |
| switch (command) { |
| /* READ0 read the entire buffer to use hardware ECC. */ |
| case NAND_CMD_READ0: { |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); |
| set_addr(mtd, 0, page_addr, 0); |
| |
| ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| ctrl->index += column; |
| |
| if (chip->ecc.mode == NAND_ECC_HW) |
| ctrl->eccread = 1; |
| |
| fsl_ifc_do_read(chip, 0, mtd); |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| /* READOOB reads only the OOB because no ECC is performed. */ |
| case NAND_CMD_READOOB: |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); |
| set_addr(mtd, column, page_addr, 1); |
| |
| ctrl->read_bytes = mtd->writesize + mtd->oobsize; |
| |
| fsl_ifc_do_read(chip, 1, mtd); |
| fsl_ifc_run_command(mtd); |
| |
| return; |
| |
| /* READID must read all possible bytes while CEB is active */ |
| case NAND_CMD_READID: |
| case NAND_CMD_PARAM: { |
| int timing = IFC_FIR_OP_RB; |
| if (command == NAND_CMD_PARAM) |
| timing = IFC_FIR_OP_RBCD; |
| |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (timing << IFC_NAND_FIR0_OP2_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| command << IFC_NAND_FCR0_CMD0_SHIFT); |
| ifc_out32(&ifc->ifc_nand.row3, column); |
| |
| /* |
| * although currently it's 8 bytes for READID, we always read |
| * the maximum 256 bytes(for PARAM) |
| */ |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 256); |
| ctrl->read_bytes = 256; |
| |
| set_addr(mtd, 0, 0, 0); |
| fsl_ifc_run_command(mtd); |
| return; |
| } |
| |
| /* ERASE1 stores the block and page address */ |
| case NAND_CMD_ERASE1: |
| set_addr(mtd, 0, page_addr, 0); |
| return; |
| |
| /* ERASE2 uses the block and page address from ERASE1 */ |
| case NAND_CMD_ERASE2: |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); |
| ctrl->read_bytes = 0; |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| /* SEQIN sets up the addr buffer and all registers except the length */ |
| case NAND_CMD_SEQIN: { |
| u32 nand_fcr0; |
| ctrl->column = column; |
| ctrl->oob = 0; |
| |
| if (mtd->writesize > 512) { |
| nand_fcr0 = |
| (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | |
| (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | |
| (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_WBCD << |
| IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fir1, |
| (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << |
| IFC_NAND_FIR1_OP6_SHIFT) | |
| (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT)); |
| } else { |
| nand_fcr0 = ((NAND_CMD_PAGEPROG << |
| IFC_NAND_FCR0_CMD1_SHIFT) | |
| (NAND_CMD_SEQIN << |
| IFC_NAND_FCR0_CMD2_SHIFT) | |
| (NAND_CMD_STATUS << |
| IFC_NAND_FCR0_CMD3_SHIFT)); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | |
| (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | |
| (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fir1, |
| (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | |
| (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << |
| IFC_NAND_FIR1_OP7_SHIFT) | |
| (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT)); |
| |
| if (column >= mtd->writesize) |
| nand_fcr0 |= |
| NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; |
| else |
| nand_fcr0 |= |
| NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; |
| } |
| |
| if (column >= mtd->writesize) { |
| /* OOB area --> READOOB */ |
| column -= mtd->writesize; |
| ctrl->oob = 1; |
| } |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); |
| set_addr(mtd, column, page_addr, ctrl->oob); |
| return; |
| } |
| |
| /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ |
| case NAND_CMD_PAGEPROG: |
| if (ctrl->oob) |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, |
| ctrl->index - ctrl->column); |
| else |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); |
| |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| case NAND_CMD_STATUS: |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 1); |
| set_addr(mtd, 0, 0, 0); |
| ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| /* |
| * The chip always seems to report that it is |
| * write-protected, even when it is not. |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| ifc_out16(ctrl->addr, |
| ifc_in16(ctrl->addr) | NAND_STATUS_WP); |
| else |
| out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); |
| return; |
| |
| case NAND_CMD_RESET: |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); |
| fsl_ifc_run_command(mtd); |
| return; |
| |
| default: |
| printf("%s: error, unsupported command 0x%x.\n", |
| __func__, command); |
| } |
| } |
| |
| /* |
| * Write buf to the IFC NAND Controller Data Buffer |
| */ |
| static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| unsigned int bufsize = mtd->writesize + mtd->oobsize; |
| |
| if (len <= 0) { |
| printf("%s of %d bytes", __func__, len); |
| ctrl->status = 0; |
| return; |
| } |
| |
| if ((unsigned int)len > bufsize - ctrl->index) { |
| printf("%s beyond end of buffer " |
| "(%d requested, %u available)\n", |
| __func__, len, bufsize - ctrl->index); |
| len = bufsize - ctrl->index; |
| } |
| |
| memcpy_toio(ctrl->addr + ctrl->index, buf, len); |
| ctrl->index += len; |
| } |
| |
| /* |
| * read a byte from either the IFC hardware buffer if it has any data left |
| * otherwise issue a command to read a single byte. |
| */ |
| static u8 fsl_ifc_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| unsigned int offset; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ctrl->index < ctrl->read_bytes) { |
| offset = ctrl->index++; |
| return in_8(ctrl->addr + offset); |
| } |
| |
| printf("%s beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read two bytes from the IFC hardware buffer |
| * read function for 16-bit buswith |
| */ |
| static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| uint16_t data; |
| |
| /* |
| * If there are still bytes in the IFC buffer, then use the |
| * next byte. |
| */ |
| if (ctrl->index < ctrl->read_bytes) { |
| data = ifc_in16(ctrl->addr + ctrl->index); |
| ctrl->index += 2; |
| return (uint8_t)data; |
| } |
| |
| printf("%s beyond end of buffer\n", __func__); |
| return ERR_BYTE; |
| } |
| |
| /* |
| * Read from the IFC Controller Data Buffer |
| */ |
| static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| int avail; |
| |
| if (len < 0) |
| return; |
| |
| avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); |
| memcpy_fromio(buf, ctrl->addr + ctrl->index, avail); |
| ctrl->index += avail; |
| |
| if (len > avail) |
| printf("%s beyond end of buffer " |
| "(%d requested, %d available)\n", |
| __func__, len, avail); |
| } |
| |
| /* This function is called after Program and Erase Operations to |
| * check for success or failure. |
| */ |
| static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| struct fsl_ifc_runtime *ifc = ctrl->regs.rregs; |
| u32 nand_fsr; |
| int status; |
| |
| if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
| return NAND_STATUS_FAIL; |
| |
| /* Use READ_STATUS command, but wait for the device to be ready */ |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << |
| IFC_NAND_FCR0_CMD0_SHIFT); |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 1); |
| set_addr(mtd, 0, 0, 0); |
| ctrl->read_bytes = 1; |
| |
| fsl_ifc_run_command(mtd); |
| |
| if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
| return NAND_STATUS_FAIL; |
| |
| nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); |
| status = nand_fsr >> 24; |
| |
| /* Chip sometimes reporting write protect even when it's not */ |
| return status | NAND_STATUS_WP; |
| } |
| |
| static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); |
| struct fsl_ifc_ctrl *ctrl = priv->ctrl; |
| |
| fsl_ifc_read_buf(mtd, buf, mtd->writesize); |
| fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) |
| mtd->ecc_stats.failed++; |
| |
| return 0; |
| } |
| |
| /* ECC will be calculated automatically, and errors will be detected in |
| * waitfunc. |
| */ |
| static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, int page) |
| { |
| fsl_ifc_write_buf(mtd, buf, mtd->writesize); |
| fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static void fsl_ifc_ctrl_init(void) |
| { |
| uint32_t ver = 0; |
| ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL); |
| if (!ifc_ctrl) |
| return; |
| |
| ifc_ctrl->regs.gregs = IFC_FCM_BASE_ADDR; |
| |
| ver = ifc_in32(&ifc_ctrl->regs.gregs->ifc_rev); |
| if (ver >= FSL_IFC_V2_0_0) |
| ifc_ctrl->regs.rregs = |
| (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET; |
| else |
| ifc_ctrl->regs.rregs = |
| (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET; |
| |
| /* clear event registers */ |
| ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_stat, ~0U); |
| ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.pgrdcmpl_evt_stat, ~0U); |
| |
| /* Enable error and event for any detected errors */ |
| ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_en, |
| IFC_NAND_EVTER_EN_OPC_EN | |
| IFC_NAND_EVTER_EN_PGRDCMPL_EN | |
| IFC_NAND_EVTER_EN_FTOER_EN | |
| IFC_NAND_EVTER_EN_WPER_EN); |
| |
| ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.ncfgr, 0x0); |
| } |
| |
| static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| } |
| |
| static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv, uint32_t ver) |
| { |
| struct fsl_ifc_runtime *ifc = ifc_ctrl->regs.rregs; |
| uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0; |
| uint32_t ncfgr = 0; |
| u32 timeo = (CONFIG_SYS_HZ * 10) / 1000; |
| u32 time_start; |
| |
| if (ver > FSL_IFC_V1_1_0) { |
| ncfgr = ifc_in32(&ifc->ifc_nand.ncfgr); |
| ifc_out32(&ifc->ifc_nand.ncfgr, ncfgr | IFC_NAND_SRAM_INIT_EN); |
| |
| /* wait for SRAM_INIT bit to be clear or timeout */ |
| time_start = get_timer(0); |
| while (get_timer(time_start) < timeo) { |
| ifc_ctrl->status = |
| ifc_in32(&ifc->ifc_nand.nand_evter_stat); |
| |
| if (!(ifc_ctrl->status & IFC_NAND_SRAM_INIT_EN)) |
| return 0; |
| } |
| printf("fsl-ifc: Failed to Initialise SRAM\n"); |
| return 1; |
| } |
| |
| cs = priv->bank; |
| |
| /* Save CSOR and CSOR_ext */ |
| csor = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor); |
| csor_ext = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext); |
| |
| /* chage PageSize 8K and SpareSize 1K*/ |
| csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; |
| ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor_8k); |
| ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, 0x0000400); |
| |
| /* READID */ |
| ifc_out32(&ifc->ifc_nand.nand_fir0, |
| (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | |
| (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | |
| (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); |
| ifc_out32(&ifc->ifc_nand.nand_fcr0, |
| NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); |
| ifc_out32(&ifc->ifc_nand.row3, 0x0); |
| |
| ifc_out32(&ifc->ifc_nand.nand_fbcr, 0x0); |
| |
| /* Program ROW0/COL0 */ |
| ifc_out32(&ifc->ifc_nand.row0, 0x0); |
| ifc_out32(&ifc->ifc_nand.col0, 0x0); |
| |
| /* set the chip select for NAND Transaction */ |
| ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); |
| |
| /* start read seq */ |
| ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); |
| |
| time_start = get_timer(0); |
| |
| while (get_timer(time_start) < timeo) { |
| ifc_ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); |
| |
| if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC) |
| break; |
| } |
| |
| if (ifc_ctrl->status != IFC_NAND_EVTER_STAT_OPC) { |
| printf("fsl-ifc: Failed to Initialise SRAM\n"); |
| return 1; |
| } |
| |
| ifc_out32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status); |
| |
| /* Restore CSOR and CSOR_ext */ |
| ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor); |
| ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, csor_ext); |
| |
| return 0; |
| } |
| |
| static int fsl_ifc_chip_init(int devnum, u8 *addr) |
| { |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| struct fsl_ifc_mtd *priv; |
| struct nand_ecclayout *layout; |
| struct fsl_ifc_fcm *gregs = NULL; |
| uint32_t cspr = 0, csor = 0, ver = 0; |
| int ret = 0; |
| |
| if (!ifc_ctrl) { |
| fsl_ifc_ctrl_init(); |
| if (!ifc_ctrl) |
| return -1; |
| } |
| |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->ctrl = ifc_ctrl; |
| priv->vbase = addr; |
| gregs = ifc_ctrl->regs.gregs; |
| |
| /* Find which chip select it is connected to. |
| */ |
| for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { |
| phys_addr_t phys_addr = virt_to_phys(addr); |
| |
| cspr = ifc_in32(&gregs->cspr_cs[priv->bank].cspr); |
| csor = ifc_in32(&gregs->csor_cs[priv->bank].csor); |
| |
| if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND && |
| (cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr)) |
| break; |
| } |
| |
| if (priv->bank >= MAX_BANKS) { |
| printf("%s: address did not match any " |
| "chip selects\n", __func__); |
| kfree(priv); |
| return -ENODEV; |
| } |
| |
| nand = &priv->chip; |
| mtd = nand_to_mtd(nand); |
| |
| ifc_ctrl->chips[priv->bank] = priv; |
| |
| /* fill in nand_chip structure */ |
| /* set up function call table */ |
| |
| nand->write_buf = fsl_ifc_write_buf; |
| nand->read_buf = fsl_ifc_read_buf; |
| nand->select_chip = fsl_ifc_select_chip; |
| nand->cmdfunc = fsl_ifc_cmdfunc; |
| nand->waitfunc = fsl_ifc_wait; |
| |
| /* set up nand options */ |
| nand->bbt_td = &bbt_main_descr; |
| nand->bbt_md = &bbt_mirror_descr; |
| |
| /* set up nand options */ |
| nand->options = NAND_NO_SUBPAGE_WRITE; |
| nand->bbt_options = NAND_BBT_USE_FLASH; |
| |
| if (cspr & CSPR_PORT_SIZE_16) { |
| nand->read_byte = fsl_ifc_read_byte16; |
| nand->options |= NAND_BUSWIDTH_16; |
| } else { |
| nand->read_byte = fsl_ifc_read_byte; |
| } |
| |
| nand->controller = &ifc_ctrl->controller; |
| nand_set_controller_data(nand, priv); |
| |
| nand->ecc.read_page = fsl_ifc_read_page; |
| nand->ecc.write_page = fsl_ifc_write_page; |
| |
| /* Hardware generates ECC per 512 Bytes */ |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 8; |
| |
| switch (csor & CSOR_NAND_PGS_MASK) { |
| case CSOR_NAND_PGS_512: |
| if (nand->options & NAND_BUSWIDTH_16) { |
| layout = &oob_512_16bit_ecc4; |
| } else { |
| layout = &oob_512_8bit_ecc4; |
| |
| /* Avoid conflict with bad block marker */ |
| bbt_main_descr.offs = 0; |
| bbt_mirror_descr.offs = 0; |
| } |
| |
| nand->ecc.strength = 4; |
| priv->bufnum_mask = 15; |
| break; |
| |
| case CSOR_NAND_PGS_2K: |
| layout = &oob_2048_ecc4; |
| nand->ecc.strength = 4; |
| priv->bufnum_mask = 3; |
| break; |
| |
| case CSOR_NAND_PGS_4K: |
| if ((csor & CSOR_NAND_ECC_MODE_MASK) == |
| CSOR_NAND_ECC_MODE_4) { |
| layout = &oob_4096_ecc4; |
| nand->ecc.strength = 4; |
| } else { |
| layout = &oob_4096_ecc8; |
| nand->ecc.strength = 8; |
| nand->ecc.bytes = 16; |
| } |
| |
| priv->bufnum_mask = 1; |
| break; |
| |
| case CSOR_NAND_PGS_8K: |
| if ((csor & CSOR_NAND_ECC_MODE_MASK) == |
| CSOR_NAND_ECC_MODE_4) { |
| layout = &oob_8192_ecc4; |
| nand->ecc.strength = 4; |
| } else { |
| layout = &oob_8192_ecc8; |
| nand->ecc.strength = 8; |
| nand->ecc.bytes = 16; |
| } |
| |
| priv->bufnum_mask = 0; |
| break; |
| |
| |
| default: |
| printf("ifc nand: bad csor %#x: bad page size\n", csor); |
| return -ENODEV; |
| } |
| |
| /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ |
| if (csor & CSOR_NAND_ECC_DEC_EN) { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = layout; |
| } else { |
| nand->ecc.mode = NAND_ECC_SOFT; |
| } |
| |
| ver = ifc_in32(&gregs->ifc_rev); |
| if (ver >= FSL_IFC_V1_1_0) |
| ret = fsl_ifc_sram_init(priv, ver); |
| if (ret) |
| return ret; |
| |
| if (ver >= FSL_IFC_V2_0_0) |
| priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; |
| |
| ret = nand_scan_ident(mtd, 1, NULL); |
| if (ret) |
| return ret; |
| |
| ret = nand_scan_tail(mtd); |
| if (ret) |
| return ret; |
| |
| ret = nand_register(devnum, mtd); |
| if (ret) |
| return ret; |
| return 0; |
| } |
| |
| #ifndef CONFIG_SYS_NAND_BASE_LIST |
| #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } |
| #endif |
| |
| static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] = |
| CONFIG_SYS_NAND_BASE_LIST; |
| |
| void board_nand_init(void) |
| { |
| int i; |
| |
| for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) |
| fsl_ifc_chip_init(i, (u8 *)base_address[i]); |
| } |