mmc: Add MMC controller driver for OcteonTX / TX2
Adds support for MMC controllers found on OcteonTX or
OcteonTX2 SoC platforms.
Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Suneel Garapati <sgarapati@marvell.com>
Cc: Peng Fan <peng.fan@nxp.com>
diff --git a/drivers/mmc/octeontx_hsmmc.c b/drivers/mmc/octeontx_hsmmc.c
new file mode 100644
index 0000000..ddc3669
--- /dev/null
+++ b/drivers/mmc/octeontx_hsmmc.c
@@ -0,0 +1,3897 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Marvell International Ltd.
+ *
+ * https://spdx.org/licenses
+ */
+
+//#define DEBUG
+#include <cpu_func.h>
+#include <dm.h>
+#include <dm/lists.h>
+#include <env.h>
+#include <errno.h>
+#include <fdtdec.h>
+#include <log.h>
+#include <malloc.h>
+#include <memalign.h>
+#include <mmc.h>
+#include <part.h>
+#include <pci.h>
+#include <pci_ids.h>
+#include <time.h>
+#include <watchdog.h>
+
+#include <linux/delay.h>
+#include <linux/kernel.h>
+#include <linux/libfdt.h>
+
+#include <asm/arch/board.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/csrs/csrs-mio_emm.h>
+#include <asm/io.h>
+
+#include <power/regulator.h>
+
+#include "octeontx_hsmmc.h"
+
+#define MMC_TIMEOUT_SHORT 20 /* in ms */
+#define MMC_TIMEOUT_LONG 1000
+#define MMC_TIMEOUT_ERASE 10000
+
+#define MMC_DEFAULT_DATA_IN_TAP 10
+#define MMC_DEFAULT_CMD_IN_TAP 10
+#define MMC_DEFAULT_CMD_OUT_TAP 39
+#define MMC_DEFAULT_DATA_OUT_TAP 39
+#define MMC_DEFAULT_HS200_CMD_IN_TAP 24
+#define MMC_DEFAULT_HS200_DATA_IN_TAP 24
+#define MMC_DEFAULT_HS200_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
+#define MMC_DEFAULT_HS200_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
+#define MMC_DEFAULT_HS400_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
+#define MMC_DEFAULT_HS400_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 5 : 3)
+#define MMC_DEFAULT_HS200_CMD_OUT_DLY 800 /* Delay in ps */
+#define MMC_DEFAULT_HS200_DATA_OUT_DLY 800 /* Delay in ps */
+#define MMC_DEFAULT_HS400_CMD_OUT_DLY 800 /* Delay in ps */
+#define MMC_DEFAULT_HS400_DATA_OUT_DLY 400 /* Delay in ps */
+#define MMC_DEFAULT_SD_UHS_SDR104_CMD_OUT_TAP MMC_DEFAULT_HS200_CMD_OUT_TAP
+#define MMC_DEFAULT_SD_UHS_SDR104_DATA_OUT_TAP MMC_DEFAULT_HS200_DATA_OUT_TAP
+#define MMC_LEGACY_DEFAULT_CMD_OUT_TAP 39
+#define MMC_LEGACY_DEFAULT_DATA_OUT_TAP 39
+#define MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP 63
+#define MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP 63
+#define MMC_HS_CMD_OUT_TAP 32
+#define MMC_HS_DATA_OUT_TAP 32
+#define MMC_SD_HS_CMD_OUT_TAP 26
+#define MMC_SD_HS_DATA_OUT_TAP 26
+#define MMC_SD_UHS_SDR25_CMD_OUT_TAP 26
+#define MMC_SD_UHS_SDR25_DATA_OUT_TAP 26
+#define MMC_SD_UHS_SDR50_CMD_OUT_TAP 26
+#define MMC_SD_UHS_SDR50_DATA_OUT_TAP 26
+#define MMC_DEFAULT_TAP_DELAY 4
+#define TOTAL_NO_OF_TAPS 512
+static void octeontx_mmc_switch_to(struct mmc *mmc);
+static int octeontx_mmc_configure_delay(struct mmc *mmc);
+static void octeontx_mmc_set_timing(struct mmc *mmc);
+static void set_wdog(struct mmc *mmc, u64 us);
+static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch);
+static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
+ struct mmc_data *data);
+static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay);
+static int octeontx_mmc_calibrate_delay(struct mmc *mmc);
+static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc);
+static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc);
+
+static bool host_probed;
+
+/**
+ * Get the slot data structure from a MMC data structure
+ */
+static inline struct octeontx_mmc_slot *mmc_to_slot(struct mmc *mmc)
+{
+ return container_of(mmc, struct octeontx_mmc_slot, mmc);
+}
+
+static inline struct octeontx_mmc_host *mmc_to_host(struct mmc *mmc)
+{
+ return mmc_to_slot(mmc)->host;
+}
+
+static inline struct octeontx_mmc_slot *dev_to_mmc_slot(struct udevice *dev)
+{
+ return dev_get_priv(dev);
+}
+
+static inline struct mmc *dev_to_mmc(struct udevice *dev)
+{
+ return &((struct octeontx_mmc_slot *)dev_get_priv(dev))->mmc;
+}
+
+#ifdef DEBUG
+const char *mmc_reg_str(u64 reg)
+{
+ if (reg == MIO_EMM_DMA_CFG())
+ return "MIO_EMM_DMA_CFG";
+ if (reg == MIO_EMM_DMA_ADR())
+ return "MIO_EMM_DMA_ADR";
+ if (reg == MIO_EMM_DMA_INT())
+ return "MIO_EMM_DMA_INT";
+ if (reg == MIO_EMM_CFG())
+ return "MIO_EMM_CFG";
+ if (reg == MIO_EMM_MODEX(0))
+ return "MIO_EMM_MODE0";
+ if (reg == MIO_EMM_MODEX(1))
+ return "MIO_EMM_MODE1";
+ if (reg == MIO_EMM_MODEX(2))
+ return "MIO_EMM_MODE2";
+ if (reg == MIO_EMM_MODEX(3))
+ return "MIO_EMM_MODE3";
+ if (reg == MIO_EMM_IO_CTL())
+ return "MIO_EMM_IO_CTL";
+ if (reg == MIO_EMM_SWITCH())
+ return "MIO_EMM_SWITCH";
+ if (reg == MIO_EMM_DMA())
+ return "MIO_EMM_DMA";
+ if (reg == MIO_EMM_CMD())
+ return "MIO_EMM_CMD";
+ if (reg == MIO_EMM_RSP_STS())
+ return "MIO_EMM_RSP_STS";
+ if (reg == MIO_EMM_RSP_LO())
+ return "MIO_EMM_RSP_LO";
+ if (reg == MIO_EMM_RSP_HI())
+ return "MIO_EMM_RSP_HI";
+ if (reg == MIO_EMM_INT())
+ return "MIO_EMM_INT";
+ if (reg == MIO_EMM_WDOG())
+ return "MIO_EMM_WDOG";
+ if (reg == MIO_EMM_DMA_ARG())
+ return "MIO_EMM_DMA_ARG";
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ if (reg == MIO_EMM_SAMPLE())
+ return "MIO_EMM_SAMPLE";
+ }
+ if (reg == MIO_EMM_STS_MASK())
+ return "MIO_EMM_STS_MASK";
+ if (reg == MIO_EMM_RCA())
+ return "MIO_EMM_RCA";
+ if (reg == MIO_EMM_BUF_IDX())
+ return "MIO_EMM_BUF_IDX";
+ if (reg == MIO_EMM_BUF_DAT())
+ return "MIO_EMM_BUF_DAT";
+ if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ if (reg == MIO_EMM_CALB())
+ return "MIO_EMM_CALB";
+ if (reg == MIO_EMM_TAP())
+ return "MIO_EMM_TAP";
+ if (reg == MIO_EMM_TIMING())
+ return "MIO_EMM_TIMING";
+ if (reg == MIO_EMM_DEBUG())
+ return "MIO_EMM_DEBUG";
+ }
+
+ return "UNKNOWN";
+}
+#endif
+
+static void octeontx_print_rsp_sts(struct mmc *mmc)
+{
+#ifdef DEBUG
+ union mio_emm_rsp_sts emm_rsp_sts;
+ const struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ static const char * const ctype_xor_str[] = {
+ "No data",
+ "Read data into Dbuf",
+ "Write data from Dbuf",
+ "Reserved"
+ };
+
+ static const char * const rtype_xor_str[] = {
+ "No response",
+ "R1, 48 bits",
+ "R2, 136 bits",
+ "R3, 48 bits",
+ "R4, 48 bits",
+ "R5, 48 bits",
+ "Reserved 6",
+ "Reserved 7"
+ };
+
+ emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS());
+ printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u);
+ printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id);
+ printf(" 59: cmd_val: %s\n",
+ emm_rsp_sts.s.cmd_val ? "yes" : "no");
+ printf(" 58: switch_val: %s\n",
+ emm_rsp_sts.s.switch_val ? "yes" : "no");
+ printf(" 57: dma_val: %s\n",
+ emm_rsp_sts.s.dma_val ? "yes" : "no");
+ printf(" 56: dma_pend: %s\n",
+ emm_rsp_sts.s.dma_pend ? "yes" : "no");
+ printf(" 28: dbuf_err: %s\n",
+ emm_rsp_sts.s.dbuf_err ? "yes" : "no");
+ printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf);
+ printf(" 22: blk_timeout: %s\n",
+ emm_rsp_sts.s.blk_timeout ? "yes" : "no");
+ printf(" 21: blk_crc_err: %s\n",
+ emm_rsp_sts.s.blk_crc_err ? "yes" : "no");
+ printf(" 20: rsp_busybit: %s\n",
+ emm_rsp_sts.s.rsp_busybit ? "yes" : "no");
+ printf(" 19: stp_timeout: %s\n",
+ emm_rsp_sts.s.stp_timeout ? "yes" : "no");
+ printf(" 18: stp_crc_err: %s\n",
+ emm_rsp_sts.s.stp_crc_err ? "yes" : "no");
+ printf(" 17: stp_bad_sts: %s\n",
+ emm_rsp_sts.s.stp_bad_sts ? "yes" : "no");
+ printf(" 16: stp_val: %s\n",
+ emm_rsp_sts.s.stp_val ? "yes" : "no");
+ printf(" 15: rsp_timeout: %s\n",
+ emm_rsp_sts.s.rsp_timeout ? "yes" : "no");
+ printf(" 14: rsp_crc_err: %s\n",
+ emm_rsp_sts.s.rsp_crc_err ? "yes" : "no");
+ printf(" 13: rsp_bad_sts: %s\n",
+ emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no");
+ printf(" 12: rsp_val: %s\n",
+ emm_rsp_sts.s.rsp_val ? "yes" : "no");
+ printf(" 9-11: rsp_type: %s\n",
+ rtype_xor_str[emm_rsp_sts.s.rsp_type]);
+ printf(" 7-8: cmd_type: %s\n",
+ ctype_xor_str[emm_rsp_sts.s.cmd_type]);
+ printf(" 1-6: cmd_idx: %u\n",
+ emm_rsp_sts.s.cmd_idx);
+ printf(" 0: cmd_done: %s\n",
+ emm_rsp_sts.s.cmd_done ? "yes" : "no");
+#endif
+}
+
+static inline u64 read_csr(struct mmc *mmc, u64 reg)
+{
+ const struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ u64 value = readq(host->base_addr + reg);
+#ifdef DEBUG_CSR
+ printf(" %s: %s(0x%p) => 0x%llx\n", __func__,
+ mmc_reg_str(reg), host->base_addr + reg,
+ value);
+#endif
+ return value;
+}
+
+/**
+ * Writes to a CSR register
+ *
+ * @param[in] mmc pointer to mmc data structure
+ * @param reg register offset
+ * @param value value to write to register
+ */
+static inline void write_csr(struct mmc *mmc, u64 reg, u64 value)
+{
+ const struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ void *addr = host->base_addr + reg;
+
+#ifdef DEBUG_CSR
+ printf(" %s: %s(0x%p) <= 0x%llx\n", __func__, mmc_reg_str(reg),
+ addr, value);
+#endif
+ writeq(value, addr);
+}
+
+#ifdef DEBUG
+static void mmc_print_status(u32 status)
+{
+#ifdef DEBUG_STATUS
+ static const char * const state[] = {
+ "Idle", /* 0 */
+ "Ready", /* 1 */
+ "Ident", /* 2 */
+ "Standby", /* 3 */
+ "Tran", /* 4 */
+ "Data", /* 5 */
+ "Receive", /* 6 */
+ "Program", /* 7 */
+ "Dis", /* 8 */
+ "Btst", /* 9 */
+ "Sleep", /* 10 */
+ "reserved", /* 11 */
+ "reserved", /* 12 */
+ "reserved", /* 13 */
+ "reserved", /* 14 */
+ "reserved" /* 15 */ };
+ if (status & R1_APP_CMD)
+ puts("MMC ACMD\n");
+ if (status & R1_SWITCH_ERROR)
+ puts("MMC switch error\n");
+ if (status & R1_READY_FOR_DATA)
+ puts("MMC ready for data\n");
+ printf("MMC %s state\n", state[R1_CURRENT_STATE(status)]);
+ if (status & R1_ERASE_RESET)
+ puts("MMC erase reset\n");
+ if (status & R1_WP_ERASE_SKIP)
+ puts("MMC partial erase due to write protected blocks\n");
+ if (status & R1_CID_CSD_OVERWRITE)
+ puts("MMC CID/CSD overwrite error\n");
+ if (status & R1_ERROR)
+ puts("MMC undefined device error\n");
+ if (status & R1_CC_ERROR)
+ puts("MMC device error\n");
+ if (status & R1_CARD_ECC_FAILED)
+ puts("MMC internal ECC failed to correct data\n");
+ if (status & R1_ILLEGAL_COMMAND)
+ puts("MMC illegal command\n");
+ if (status & R1_COM_CRC_ERROR)
+ puts("MMC CRC of previous command failed\n");
+ if (status & R1_LOCK_UNLOCK_FAILED)
+ puts("MMC sequence or password error in lock/unlock device command\n");
+ if (status & R1_CARD_IS_LOCKED)
+ puts("MMC device locked by host\n");
+ if (status & R1_WP_VIOLATION)
+ puts("MMC attempt to program write protected block\n");
+ if (status & R1_ERASE_PARAM)
+ puts("MMC invalid selection of erase groups for erase\n");
+ if (status & R1_ERASE_SEQ_ERROR)
+ puts("MMC error in sequence of erase commands\n");
+ if (status & R1_BLOCK_LEN_ERROR)
+ puts("MMC block length error\n");
+ if (status & R1_ADDRESS_ERROR)
+ puts("MMC address misalign error\n");
+ if (status & R1_OUT_OF_RANGE)
+ puts("MMC address out of range\n");
+#endif
+}
+#endif
+
+/**
+ * Print out all of the register values where mmc is optional
+ *
+ * @param mmc MMC device (can be NULL)
+ * @param host Pointer to host data structure (can be NULL if mmc is !NULL)
+ */
+static void octeontx_mmc_print_registers2(struct mmc *mmc,
+ struct octeontx_mmc_host *host)
+{
+ struct octeontx_mmc_slot *slot = mmc ? mmc->priv : NULL;
+ union mio_emm_dma_cfg emm_dma_cfg;
+ union mio_emm_dma_adr emm_dma_adr;
+ union mio_emm_dma_int emm_dma_int;
+ union mio_emm_cfg emm_cfg;
+ union mio_emm_modex emm_mode;
+ union mio_emm_switch emm_switch;
+ union mio_emm_dma emm_dma;
+ union mio_emm_cmd emm_cmd;
+ union mio_emm_rsp_sts emm_rsp_sts;
+ union mio_emm_rsp_lo emm_rsp_lo;
+ union mio_emm_rsp_hi emm_rsp_hi;
+ union mio_emm_int emm_int;
+ union mio_emm_wdog emm_wdog;
+ union mio_emm_sample emm_sample;
+ union mio_emm_calb emm_calb;
+ union mio_emm_tap emm_tap;
+ union mio_emm_timing emm_timing;
+ union mio_emm_io_ctl io_ctl;
+ union mio_emm_debug emm_debug;
+ union mio_emm_sts_mask emm_sts_mask;
+ union mio_emm_rca emm_rca;
+ int bus;
+
+ static const char * const bus_width_str[] = {
+ "1-bit data bus (power on)",
+ "4-bit data bus",
+ "8-bit data bus",
+ "reserved (3)",
+ "reserved (4)",
+ "4-bit data bus (dual data rate)",
+ "8-bit data bus (dual data rate)",
+ "reserved (7)",
+ "reserved (8)",
+ "invalid (9)",
+ "invalid (10)",
+ "invalid (11)",
+ "invalid (12)",
+ "invalid (13)",
+ "invalid (14)",
+ "invalid (15)",
+ };
+ static const char * const ctype_xor_str[] = {
+ "No data",
+ "Read data into Dbuf",
+ "Write data from Dbuf",
+ "Reserved"
+ };
+
+ static const char * const rtype_xor_str[] = {
+ "No response",
+ "R1, 48 bits",
+ "R2, 136 bits",
+ "R3, 48 bits",
+ "R4, 48 bits",
+ "R5, 48 bits",
+ "Reserved 6",
+ "Reserved 7"
+ };
+
+ if (!host && mmc)
+ host = mmc_to_host(mmc);
+
+ if (mmc)
+ printf("%s: bus id: %u\n", __func__, slot->bus_id);
+ emm_dma_cfg.u = readq(host->base_addr + MIO_EMM_DMA_CFG());
+ printf("MIO_EMM_DMA_CFG: 0x%016llx\n",
+ emm_dma_cfg.u);
+ printf(" 63: en: %s\n",
+ emm_dma_cfg.s.en ? "enabled" : "disabled");
+ printf(" 62: rw: %s\n",
+ emm_dma_cfg.s.rw ? "write" : "read");
+ printf(" 61: clr: %s\n",
+ emm_dma_cfg.s.clr ? "clear" : "not clear");
+ printf(" 59: swap32: %s\n",
+ emm_dma_cfg.s.swap32 ? "yes" : "no");
+ printf(" 58: swap16: %s\n",
+ emm_dma_cfg.s.swap16 ? "yes" : "no");
+ printf(" 57: swap8: %s\n",
+ emm_dma_cfg.s.swap8 ? "yes" : "no");
+ printf(" 56: endian: %s\n",
+ emm_dma_cfg.s.endian ? "little" : "big");
+ printf(" 36-55: size: %u\n",
+ emm_dma_cfg.s.size);
+
+ emm_dma_adr.u = readq(host->base_addr + MIO_EMM_DMA_ADR());
+ printf("MIO_EMM_DMA_ADR: 0x%016llx\n", emm_dma_adr.u);
+ printf(" 0-49: adr: 0x%llx\n",
+ (u64)emm_dma_adr.s.adr);
+
+ emm_dma_int.u = readq(host->base_addr + MIO_EMM_DMA_INT());
+ printf("\nMIO_EMM_DMA_INT: 0x%016llx\n",
+ emm_dma_int.u);
+ printf(" 1: FIFO: %s\n",
+ emm_dma_int.s.fifo ? "yes" : "no");
+ printf(" 0: Done: %s\n",
+ emm_dma_int.s.done ? "yes" : "no");
+ emm_cfg.u = readq(host->base_addr + MIO_EMM_CFG());
+
+ printf("\nMIO_EMM_CFG: 0x%016llx\n",
+ emm_cfg.u);
+ printf(" 3: bus_ena3: %s\n",
+ emm_cfg.s.bus_ena & 0x08 ? "yes" : "no");
+ printf(" 2: bus_ena2: %s\n",
+ emm_cfg.s.bus_ena & 0x04 ? "yes" : "no");
+ printf(" 1: bus_ena1: %s\n",
+ emm_cfg.s.bus_ena & 0x02 ? "yes" : "no");
+ printf(" 0: bus_ena0: %s\n",
+ emm_cfg.s.bus_ena & 0x01 ? "yes" : "no");
+ for (bus = 0; bus < 4; bus++) {
+ emm_mode.u = readq(host->base_addr + MIO_EMM_MODEX(bus));
+ printf("\nMIO_EMM_MODE%u: 0x%016llx\n",
+ bus, emm_mode.u);
+ if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ printf(" 50: hs400_timing: %s\n",
+ emm_mode.s.hs400_timing ? "yes" : "no");
+ printf(" 49: hs200_timing: %s\n",
+ emm_mode.s.hs200_timing ? "yes" : "no");
+ }
+ printf(" 48: hs_timing: %s\n",
+ emm_mode.s.hs_timing ? "yes" : "no");
+ printf(" 40-42: bus_width: %s\n",
+ bus_width_str[emm_mode.s.bus_width]);
+ printf(" 32-35: power_class %u\n",
+ emm_mode.s.power_class);
+ printf(" 16-31: clk_hi: %u\n",
+ emm_mode.s.clk_hi);
+ printf(" 0-15: clk_lo: %u\n",
+ emm_mode.s.clk_lo);
+ }
+
+ emm_switch.u = readq(host->base_addr + MIO_EMM_SWITCH());
+ printf("\nMIO_EMM_SWITCH: 0x%016llx\n", emm_switch.u);
+ printf(" 60-61: bus_id: %u\n", emm_switch.s.bus_id);
+ printf(" 59: switch_exe: %s\n",
+ emm_switch.s.switch_exe ? "yes" : "no");
+ printf(" 58: switch_err0: %s\n",
+ emm_switch.s.switch_err0 ? "yes" : "no");
+ printf(" 57: switch_err1: %s\n",
+ emm_switch.s.switch_err1 ? "yes" : "no");
+ printf(" 56: switch_err2: %s\n",
+ emm_switch.s.switch_err2 ? "yes" : "no");
+ printf(" 48: hs_timing: %s\n",
+ emm_switch.s.hs_timing ? "yes" : "no");
+ printf(" 42-40: bus_width: %s\n",
+ bus_width_str[emm_switch.s.bus_width]);
+ printf(" 32-35: power_class: %u\n",
+ emm_switch.s.power_class);
+ printf(" 16-31: clk_hi: %u\n",
+ emm_switch.s.clk_hi);
+ printf(" 0-15: clk_lo: %u\n", emm_switch.s.clk_lo);
+
+ emm_dma.u = readq(host->base_addr + MIO_EMM_DMA());
+ printf("\nMIO_EMM_DMA: 0x%016llx\n", emm_dma.u);
+ printf(" 60-61: bus_id: %u\n", emm_dma.s.bus_id);
+ printf(" 59: dma_val: %s\n",
+ emm_dma.s.dma_val ? "yes" : "no");
+ printf(" 58: sector: %s mode\n",
+ emm_dma.s.sector ? "sector" : "byte");
+ printf(" 57: dat_null: %s\n",
+ emm_dma.s.dat_null ? "yes" : "no");
+ printf(" 51-56: thres: %u\n", emm_dma.s.thres);
+ printf(" 50: rel_wr: %s\n",
+ emm_dma.s.rel_wr ? "yes" : "no");
+ printf(" 49: rw: %s\n",
+ emm_dma.s.rw ? "write" : "read");
+ printf(" 48: multi: %s\n",
+ emm_dma.s.multi ? "yes" : "no");
+ printf(" 32-47: block_cnt: %u\n",
+ emm_dma.s.block_cnt);
+ printf(" 0-31: card_addr: 0x%x\n",
+ emm_dma.s.card_addr);
+
+ emm_cmd.u = readq(host->base_addr + MIO_EMM_CMD());
+ printf("\nMIO_EMM_CMD: 0x%016llx\n", emm_cmd.u);
+ printf("\n 62: skip_busy: %s\n",
+ emm_cmd.s.skip_busy ? "yes" : "no");
+ printf(" 60-61: bus_id: %u\n", emm_cmd.s.bus_id);
+ printf(" 59: cmd_val: %s\n",
+ emm_cmd.s.cmd_val ? "yes" : "no");
+ printf(" 55: dbuf: %u\n", emm_cmd.s.dbuf);
+ printf(" 49-54: offset: %u\n", emm_cmd.s.offset);
+ printf(" 41-42: ctype_xor: %s\n",
+ ctype_xor_str[emm_cmd.s.ctype_xor]);
+ printf(" 38-40: rtype_xor: %s\n",
+ rtype_xor_str[emm_cmd.s.rtype_xor]);
+ printf(" 32-37: cmd_idx: %u\n", emm_cmd.s.cmd_idx);
+ printf(" 0-31: arg: 0x%x\n", emm_cmd.s.arg);
+
+ emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS());
+ printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u);
+ printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id);
+ printf(" 59: cmd_val: %s\n",
+ emm_rsp_sts.s.cmd_val ? "yes" : "no");
+ printf(" 58: switch_val: %s\n",
+ emm_rsp_sts.s.switch_val ? "yes" : "no");
+ printf(" 57: dma_val: %s\n",
+ emm_rsp_sts.s.dma_val ? "yes" : "no");
+ printf(" 56: dma_pend: %s\n",
+ emm_rsp_sts.s.dma_pend ? "yes" : "no");
+ printf(" 28: dbuf_err: %s\n",
+ emm_rsp_sts.s.dbuf_err ? "yes" : "no");
+ printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf);
+ printf(" 22: blk_timeout: %s\n",
+ emm_rsp_sts.s.blk_timeout ? "yes" : "no");
+ printf(" 21: blk_crc_err: %s\n",
+ emm_rsp_sts.s.blk_crc_err ? "yes" : "no");
+ printf(" 20: rsp_busybit: %s\n",
+ emm_rsp_sts.s.rsp_busybit ? "yes" : "no");
+ printf(" 19: stp_timeout: %s\n",
+ emm_rsp_sts.s.stp_timeout ? "yes" : "no");
+ printf(" 18: stp_crc_err: %s\n",
+ emm_rsp_sts.s.stp_crc_err ? "yes" : "no");
+ printf(" 17: stp_bad_sts: %s\n",
+ emm_rsp_sts.s.stp_bad_sts ? "yes" : "no");
+ printf(" 16: stp_val: %s\n",
+ emm_rsp_sts.s.stp_val ? "yes" : "no");
+ printf(" 15: rsp_timeout: %s\n",
+ emm_rsp_sts.s.rsp_timeout ? "yes" : "no");
+ printf(" 14: rsp_crc_err: %s\n",
+ emm_rsp_sts.s.rsp_crc_err ? "yes" : "no");
+ printf(" 13: rsp_bad_sts: %s\n",
+ emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no");
+ printf(" 12: rsp_val: %s\n",
+ emm_rsp_sts.s.rsp_val ? "yes" : "no");
+ printf(" 9-11: rsp_type: %s\n",
+ rtype_xor_str[emm_rsp_sts.s.rsp_type]);
+ printf(" 7-8: cmd_type: %s\n",
+ ctype_xor_str[emm_rsp_sts.s.cmd_type]);
+ printf(" 1-6: cmd_idx: %u\n",
+ emm_rsp_sts.s.cmd_idx);
+ printf(" 0: cmd_done: %s\n",
+ emm_rsp_sts.s.cmd_done ? "yes" : "no");
+
+ emm_rsp_lo.u = readq(host->base_addr + MIO_EMM_RSP_LO());
+ printf("\nMIO_EMM_RSP_STS_LO: 0x%016llx\n", emm_rsp_lo.u);
+
+ emm_rsp_hi.u = readq(host->base_addr + MIO_EMM_RSP_HI());
+ printf("\nMIO_EMM_RSP_STS_HI: 0x%016llx\n", emm_rsp_hi.u);
+
+ emm_int.u = readq(host->base_addr + MIO_EMM_INT());
+ printf("\nMIO_EMM_INT: 0x%016llx\n", emm_int.u);
+ printf(" 6: switch_err: %s\n",
+ emm_int.s.switch_err ? "yes" : "no");
+ printf(" 5: switch_done: %s\n",
+ emm_int.s.switch_done ? "yes" : "no");
+ printf(" 4: dma_err: %s\n",
+ emm_int.s.dma_err ? "yes" : "no");
+ printf(" 3: cmd_err: %s\n",
+ emm_int.s.cmd_err ? "yes" : "no");
+ printf(" 2: dma_done: %s\n",
+ emm_int.s.dma_done ? "yes" : "no");
+ printf(" 1: cmd_done: %s\n",
+ emm_int.s.cmd_done ? "yes" : "no");
+ printf(" 0: buf_done: %s\n",
+ emm_int.s.buf_done ? "yes" : "no");
+
+ emm_wdog.u = readq(host->base_addr + MIO_EMM_WDOG());
+ printf("\nMIO_EMM_WDOG: 0x%016llx (%u)\n",
+ emm_wdog.u, emm_wdog.s.clk_cnt);
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ emm_sample.u = readq(host->base_addr + MIO_EMM_SAMPLE());
+ printf("\nMIO_EMM_SAMPLE: 0x%016llx\n",
+ emm_sample.u);
+ printf(" 16-25: cmd_cnt: %u\n",
+ emm_sample.s.cmd_cnt);
+ printf(" 0-9: dat_cnt: %u\n",
+ emm_sample.s.dat_cnt);
+ }
+
+ emm_sts_mask.u = readq(host->base_addr + MIO_EMM_STS_MASK());
+ printf("\nMIO_EMM_STS_MASK: 0x%016llx\n", emm_sts_mask.u);
+
+ emm_rca.u = readq(host->base_addr + MIO_EMM_RCA());
+ printf("\nMIO_EMM_RCA: 0x%016llx\n", emm_rca.u);
+ printf(" 0-15: card_rca: 0x%04x\n",
+ emm_rca.s.card_rca);
+ if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ emm_calb.u = readq(host->base_addr + MIO_EMM_CALB());
+ printf("\nMIO_EMM_CALB: 0x%016llx\n",
+ emm_calb.u);
+ printf(" 0: start: %u\n",
+ emm_calb.s.start);
+ emm_tap.u = readq(host->base_addr + MIO_EMM_TAP());
+ printf("\nMIO_EMM_TAP: 0x%016llx\n",
+ emm_tap.u);
+ printf(" 7-0: delay: %u\n", emm_tap.s.delay);
+ emm_timing.u = readq(host->base_addr + MIO_EMM_TIMING());
+ printf("\nMIO_EMM_TIMING: 0x%016llx\n",
+ emm_timing.u);
+ printf(" 53-48: cmd_in_tap: %u\n",
+ emm_timing.s.cmd_in_tap);
+ printf(" 37-32: cmd_out_tap: %u\n",
+ emm_timing.s.cmd_out_tap);
+ printf(" 21-16: data_in_tap: %u\n",
+ emm_timing.s.data_in_tap);
+ printf(" 5-0: data_out_tap: %u\n",
+ emm_timing.s.data_out_tap);
+ io_ctl.u = readq(host->base_addr + MIO_EMM_IO_CTL());
+ printf("\nMIO_IO_CTL: 0x%016llx\n", io_ctl.u);
+ printf(" 3-2: drive: %u (%u mA)\n",
+ io_ctl.s.drive, 2 << io_ctl.s.drive);
+ printf(" 0: slew: %u %s\n", io_ctl.s.slew,
+ io_ctl.s.slew ? "high" : "low");
+ emm_debug.u = readq(host->base_addr + MIO_EMM_DEBUG());
+ printf("\nMIO_EMM_DEBUG: 0x%016llx\n",
+ emm_debug.u);
+ printf(" 21: rdsync_rst 0x%x\n",
+ emm_debug.s.rdsync_rst);
+ printf(" 20: emmc_clk_disable 0x%x\n",
+ emm_debug.s.emmc_clk_disable);
+ printf(" 19-16: dma_sm: 0x%x\n",
+ emm_debug.s.dma_sm);
+ printf(" 15-12: data_sm: 0x%x\n",
+ emm_debug.s.data_sm);
+ printf(" 11-8: cmd_sm: 0x%x\n",
+ emm_debug.s.cmd_sm);
+ printf(" 0: clk_on: 0x%x\n",
+ emm_debug.s.clk_on);
+ }
+
+ puts("\n");
+}
+
+/**
+ * Print out all of the register values
+ *
+ * @param mmc MMC device
+ */
+static void octeontx_mmc_print_registers(struct mmc *mmc)
+{
+#ifdef DEBUG_REGISTERS
+ const int print = 1;
+#else
+ const int print = 0;
+#endif
+ if (print)
+ octeontx_mmc_print_registers2(mmc, mmc_to_host(mmc));
+}
+
+static const struct octeontx_sd_mods octeontx_cr_types[] = {
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD0 */
+{ {0, 3}, {0, 3}, {0, 0} }, /* CMD1 */
+{ {0, 2}, {0, 2}, {0, 0} }, /* CMD2 */
+{ {0, 1}, {0, 3}, {0, 0} }, /* CMD3 SD_CMD_SEND_RELATIVE_ADDR 0, 2 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD4 */
+{ {0, 1}, {0, 1}, {0, 0} }, /* CMD5 */
+{ {0, 1}, {1, 1}, {0, 1} }, /*
+ * CMD6 SD_CMD_SWITCH_FUNC 1,0
+ * (ACMD) SD_APP_SET_BUS_WIDTH
+ */
+{ {0, 1}, {0, 1}, {0, 0} }, /* CMD7 */
+{ {1, 1}, {0, 3}, {0, 0} }, /* CMD8 SD_CMD_SEND_IF_COND 1,2 */
+{ {0, 2}, {0, 2}, {0, 0} }, /* CMD9 */
+{ {0, 2}, {0, 2}, {0, 0} }, /* CMD10 */
+{ {1, 1}, {0, 1}, {1, 1} }, /* CMD11 SD_CMD_SWITCH_UHS18V 1,0 */
+{ {0, 1}, {0, 1}, {0, 0} }, /* CMD12 */
+{ {0, 1}, {0, 1}, {1, 3} }, /* CMD13 (ACMD)) SD_CMD_APP_SD_STATUS 1,2 */
+{ {1, 1}, {1, 1}, {0, 0} }, /* CMD14 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD15 */
+{ {0, 1}, {0, 1}, {0, 0} }, /* CMD16 */
+{ {1, 1}, {1, 1}, {0, 0} }, /* CMD17 */
+{ {1, 1}, {1, 1}, {0, 0} }, /* CMD18 */
+{ {3, 1}, {3, 1}, {0, 0} }, /* CMD19 */
+{ {2, 1}, {0, 0}, {0, 0} }, /* CMD20 */ /* SD 2,0 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD21 */
+{ {0, 0}, {0, 0}, {1, 1} }, /* CMD22 (ACMD) SD_APP_SEND_NUM_WR_BLKS 1,0 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD23 */ /* SD ACMD 1,0 */
+{ {2, 1}, {2, 1}, {2, 1} }, /* CMD24 */
+{ {2, 1}, {2, 1}, {2, 1} }, /* CMD25 */
+{ {2, 1}, {2, 1}, {2, 1} }, /* CMD26 */
+{ {2, 1}, {2, 1}, {2, 1} }, /* CMD27 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD28 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD29 */
+{ {1, 1}, {1, 1}, {1, 1} }, /* CMD30 */
+{ {1, 1}, {1, 1}, {1, 1} }, /* CMD31 */
+{ {0, 0}, {0, 1}, {0, 0} }, /* CMD32 SD_CMD_ERASE_WR_BLK_START 0,1 */
+{ {0, 0}, {0, 1}, {0, 0} }, /* CMD33 SD_CMD_ERASE_WR_BLK_END 0,1 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD34 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD35 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD36 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD37 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD38 */
+{ {0, 4}, {0, 4}, {0, 4} }, /* CMD39 */
+{ {0, 5}, {0, 5}, {0, 5} }, /* CMD40 */
+{ {0, 0}, {0, 0}, {0, 3} }, /* CMD41 (ACMD) SD_CMD_APP_SEND_OP_COND 0,3 */
+{ {2, 1}, {2, 1}, {2, 1} }, /* CMD42 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD43 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD44 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD45 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD46 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD47 */
+{ {0, 0}, {1, 0}, {0, 0} }, /* CMD48 SD_CMD_READ_EXTR_SINGLE */
+{ {0, 0}, {2, 0}, {0, 0} }, /* CMD49 SD_CMD_WRITE_EXTR_SINGLE */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD50 */
+{ {0, 0}, {0, 0}, {1, 1} }, /* CMD51 (ACMD) SD_CMD_APP_SEND_SCR 1,1 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD52 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD53 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD54 */
+{ {0, 1}, {0, 1}, {0, 1} }, /* CMD55 */
+{ {0xff, 0xff}, {0xff, 0xff}, {0xff, 0xff} }, /* CMD56 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD57 */
+{ {0, 0}, {0, 3}, {0, 3} }, /* CMD58 SD_CMD_SPI_READ_OCR 0,3 */
+{ {0, 0}, {0, 1}, {0, 0} }, /* CMD59 SD_CMD_SPI_CRC_ON_OFF 0,1 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD60 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD61 */
+{ {0, 0}, {0, 0}, {0, 0} }, /* CMD62 */
+{ {0, 0}, {0, 0}, {0, 0} } /* CMD63 */
+};
+
+/**
+ * Returns XOR values needed for SD commands and other quirks
+ *
+ * @param mmc mmc device
+ * @param cmd command information
+ *
+ * @return octeontx_mmc_cr_mods data structure with various quirks and flags
+ */
+static struct octeontx_mmc_cr_mods
+octeontx_mmc_get_cr_mods(struct mmc *mmc, const struct mmc_cmd *cmd,
+ const struct mmc_data *data)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_cr_mods cr = {0, 0};
+ const struct octeontx_sd_mods *sdm =
+ &octeontx_cr_types[cmd->cmdidx & 0x3f];
+ u8 c = sdm->mmc.c, r = sdm->mmc.r;
+ u8 desired_ctype = 0;
+
+ if (IS_MMC(mmc)) {
+#ifdef MMC_SUPPORTS_TUNING
+ if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
+ if (cmd->resp_type == MMC_RSP_R1)
+ cr.rtype_xor = 1;
+ if (data && data->flags & MMC_DATA_READ)
+ cr.ctype_xor = 1;
+ }
+#endif
+ return cr;
+ }
+
+ if (cmd->cmdidx == 56)
+ c = (cmd->cmdarg & 1) ? 1 : 2;
+
+ if (data) {
+ if (data->flags & MMC_DATA_READ)
+ desired_ctype = 1;
+ else if (data->flags & MMC_DATA_WRITE)
+ desired_ctype = 2;
+ }
+
+ cr.ctype_xor = c ^ desired_ctype;
+ if (slot->is_acmd)
+ cr.rtype_xor = r ^ sdm->sdacmd.r;
+ else
+ cr.rtype_xor = r ^ sdm->sd.r;
+
+ debug("%s(%s): mmc c: %d, mmc r: %d, desired c: %d, xor c: %d, xor r: %d\n",
+ __func__, mmc->dev->name, c, r, desired_ctype,
+ cr.ctype_xor, cr.rtype_xor);
+ return cr;
+}
+
+/**
+ * Keep track of switch commands internally
+ */
+static void octeontx_mmc_track_switch(struct mmc *mmc, u32 cmd_arg)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ u8 how = (cmd_arg >> 24) & 3;
+ u8 where = (u8)(cmd_arg >> 16);
+ u8 val = (u8)(cmd_arg >> 8);
+
+ slot->want_switch = slot->cached_switch;
+
+ if (slot->is_acmd)
+ return;
+
+ if (how != 3)
+ return;
+
+ switch (where) {
+ case EXT_CSD_BUS_WIDTH:
+ slot->want_switch.s.bus_width = val;
+ break;
+ case EXT_CSD_POWER_CLASS:
+ slot->want_switch.s.power_class = val;
+ break;
+ case EXT_CSD_HS_TIMING:
+ slot->want_switch.s.hs_timing = 0;
+ slot->want_switch.s.hs200_timing = 0;
+ slot->want_switch.s.hs400_timing = 0;
+ switch (val & 0xf) {
+ case 0:
+ break;
+ case 1:
+ slot->want_switch.s.hs_timing = 1;
+ break;
+ case 2:
+ if (!slot->is_asim && !slot->is_emul)
+ slot->want_switch.s.hs200_timing = 1;
+ break;
+ case 3:
+ if (!slot->is_asim && !slot->is_emul)
+ slot->want_switch.s.hs400_timing = 1;
+ break;
+ default:
+ pr_err("%s(%s): Unsupported timing mode 0x%x\n",
+ __func__, mmc->dev->name, val & 0xf);
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+static int octeontx_mmc_print_rsp_errors(struct mmc *mmc,
+ union mio_emm_rsp_sts rsp_sts)
+{
+ bool err = false;
+ const char *name = mmc->dev->name;
+
+ if (rsp_sts.s.acc_timeout) {
+ pr_warn("%s(%s): acc_timeout\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.dbuf_err) {
+ pr_warn("%s(%s): dbuf_err\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.blk_timeout) {
+ pr_warn("%s(%s): blk_timeout\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.blk_crc_err) {
+ pr_warn("%s(%s): blk_crc_err\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.stp_timeout) {
+ pr_warn("%s(%s): stp_timeout\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.stp_crc_err) {
+ pr_warn("%s(%s): stp_crc_err\n", __func__, name);
+ err = true;
+ }
+ if (rsp_sts.s.stp_bad_sts) {
+ pr_warn("%s(%s): stp_bad_sts\n", __func__, name);
+ err = true;
+ }
+ if (err)
+ pr_warn(" rsp_sts: 0x%llx\n", rsp_sts.u);
+
+ return err ? -1 : 0;
+}
+
+/**
+ * Starts a DMA operation for block read/write
+ *
+ * @param mmc mmc device
+ * @param write true if write operation
+ * @param clear true to clear DMA operation
+ * @param adr source or destination DMA address
+ * @param size size in blocks
+ * @param timeout timeout in ms
+ */
+static void octeontx_mmc_start_dma(struct mmc *mmc, bool write,
+ bool clear, u32 block, dma_addr_t adr,
+ u32 size, int timeout)
+{
+ const struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_dma_cfg emm_dma_cfg;
+ union mio_emm_dma_adr emm_dma_adr;
+ union mio_emm_dma emm_dma;
+
+ /* Clear any interrupts */
+ write_csr(mmc, MIO_EMM_DMA_INT(),
+ read_csr(mmc, MIO_EMM_DMA_INT()));
+
+ emm_dma_cfg.u = 0;
+ emm_dma_cfg.s.en = 1;
+ emm_dma_cfg.s.rw = !!write;
+ emm_dma_cfg.s.clr = !!clear;
+ emm_dma_cfg.s.size = ((u64)(size * mmc->read_bl_len) / 8) - 1;
+#if __BYTE_ORDER != __BIG_ENDIAN
+ emm_dma_cfg.s.endian = 1;
+#endif
+ emm_dma_adr.u = 0;
+ emm_dma_adr.s.adr = adr;
+ write_csr(mmc, MIO_EMM_DMA_ADR(), emm_dma_adr.u);
+ write_csr(mmc, MIO_EMM_DMA_CFG(), emm_dma_cfg.u);
+
+ emm_dma.u = 0;
+ emm_dma.s.bus_id = slot->bus_id;
+ emm_dma.s.dma_val = 1;
+ emm_dma.s.rw = !!write;
+ emm_dma.s.sector = mmc->high_capacity ? 1 : 0;
+
+ if (size > 1 && ((IS_SD(mmc) && (mmc->scr[0] & 2)) || !IS_SD(mmc)))
+ emm_dma.s.multi = 1;
+ else
+ emm_dma.s.multi = 0;
+
+ emm_dma.s.block_cnt = size;
+ if (!mmc->high_capacity)
+ block *= mmc->read_bl_len;
+ emm_dma.s.card_addr = block;
+ debug("%s(%s): card address: 0x%x, size: %d, multi: %d\n",
+ __func__, mmc->dev->name, block, size, emm_dma.s.multi);
+
+ if (timeout > 0)
+ timeout = (timeout * 1000) - 1000;
+ set_wdog(mmc, timeout);
+
+ debug(" Writing 0x%llx to mio_emm_dma\n", emm_dma.u);
+ write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
+}
+
+/**
+ * Waits for a DMA operation to complete
+ *
+ * @param mmc mmc device
+ * @param timeout timeout in ms
+ *
+ * @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout
+ */
+
+/**
+ * Cleanup DMA engine after a failure
+ *
+ * @param mmc mmc device
+ * @param rsp_sts rsp status
+ */
+static void octeontx_mmc_cleanup_dma(struct mmc *mmc,
+ union mio_emm_rsp_sts rsp_sts)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_dma emm_dma;
+ ulong start;
+ int retries = 3;
+
+ do {
+ debug("%s(%s): rsp_sts: 0x%llx, rsp_lo: 0x%llx, dma_int: 0x%llx\n",
+ __func__, mmc->dev->name, rsp_sts.u,
+ read_csr(mmc, MIO_EMM_RSP_LO()),
+ read_csr(mmc, MIO_EMM_DMA_INT()));
+ emm_dma.u = read_csr(mmc, MIO_EMM_DMA());
+ emm_dma.s.dma_val = 1;
+ emm_dma.s.dat_null = 1;
+ emm_dma.s.bus_id = slot->bus_id;
+ write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
+ start = get_timer(0);
+ do {
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ WATCHDOG_RESET();
+ } while (get_timer(start) < 100 &&
+ (rsp_sts.s.dma_val || rsp_sts.s.dma_pend));
+ } while (retries-- >= 0 && rsp_sts.s.dma_pend);
+ if (rsp_sts.s.dma_val)
+ pr_err("%s(%s): Error: could not clean up DMA. RSP_STS: 0x%llx, RSP_LO: 0x%llx\n",
+ __func__, mmc->dev->name, rsp_sts.u,
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+ debug(" rsp_sts after clearing up DMA: 0x%llx\n",
+ read_csr(mmc, MIO_EMM_RSP_STS()));
+}
+
+/**
+ * Waits for a DMA operation to complete
+ *
+ * @param mmc mmc device
+ * @param timeout timeout in ms
+ * @param verbose true to print out error information
+ *
+ * @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout
+ * or -EIO if IO error.
+ */
+static int octeontx_mmc_wait_dma(struct mmc *mmc, bool write, ulong timeout,
+ bool verbose)
+{
+ struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ ulong start_time = get_timer(0);
+ union mio_emm_dma_int emm_dma_int;
+ union mio_emm_rsp_sts rsp_sts;
+ union mio_emm_dma emm_dma;
+ bool timed_out = false;
+ bool err = false;
+
+ debug("%s(%s, %lu, %d), delay: %uus\n", __func__, mmc->dev->name,
+ timeout, verbose, host->dma_wait_delay);
+
+ udelay(host->dma_wait_delay);
+ do {
+ emm_dma_int.u = read_csr(mmc, MIO_EMM_DMA_INT());
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (write) {
+ if ((rsp_sts.s.dma_pend && !rsp_sts.s.dma_val) ||
+ rsp_sts.s.blk_timeout ||
+ rsp_sts.s.stp_timeout ||
+ rsp_sts.s.rsp_timeout) {
+ err = true;
+#ifdef DEBUG
+ debug("%s: f1\n", __func__);
+ octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
+#endif
+ break;
+ }
+ } else {
+ if (rsp_sts.s.blk_crc_err ||
+ (rsp_sts.s.dma_pend && !rsp_sts.s.dma_val)) {
+ err = true;
+#if defined(DEBUG)
+ octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
+#endif
+ break;
+ }
+ }
+ if (rsp_sts.s.dma_pend) {
+ /*
+ * If this is set then an error has occurred.
+ * Try and restart the DMA operation.
+ */
+ emm_dma.u = read_csr(mmc, MIO_EMM_DMA());
+ if (verbose) {
+ pr_err("%s(%s): DMA pending error: rsp_sts: 0x%llx, dma_int: 0x%llx, emm_dma: 0x%llx\n",
+ __func__, mmc->dev->name, rsp_sts.u,
+ emm_dma_int.u, emm_dma.u);
+ octeontx_print_rsp_sts(mmc);
+ debug(" MIO_EMM_DEBUG: 0x%llx\n",
+ read_csr(mmc, MIO_EMM_DEBUG()));
+ pr_err("%s: Trying DMA resume...\n", __func__);
+ }
+ emm_dma.s.dma_val = 1;
+ emm_dma.s.dat_null = 1;
+ write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
+ udelay(10);
+ } else if (!rsp_sts.s.dma_val && emm_dma_int.s.done) {
+ break;
+ }
+ WATCHDOG_RESET();
+ timed_out = (get_timer(start_time) > timeout);
+ } while (!timed_out);
+
+ if (timed_out || err) {
+ if (verbose) {
+ pr_err("%s(%s): MMC DMA %s after %lu ms, rsp_sts: 0x%llx, dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
+ __func__, mmc->dev->name,
+ timed_out ? "timed out" : "error",
+ get_timer(start_time), rsp_sts.u,
+ emm_dma_int.u,
+ read_csr(mmc, MIO_EMM_RSP_LO()),
+ read_csr(mmc, MIO_EMM_DMA()));
+ octeontx_print_rsp_sts(mmc);
+ }
+ if (rsp_sts.s.dma_pend)
+ octeontx_mmc_cleanup_dma(mmc, rsp_sts);
+ } else {
+ write_csr(mmc, MIO_EMM_DMA_INT(),
+ read_csr(mmc, MIO_EMM_DMA_INT()));
+ }
+
+ return timed_out ? -ETIMEDOUT : (err ? -EIO : 0);
+}
+
+/**
+ * Read blocks from the MMC/SD device
+ *
+ * @param mmc mmc device
+ * @param cmd command
+ * @param data data for read
+ * @param verbose true to print out error information
+ *
+ * @return number of blocks read or 0 if error
+ */
+static int octeontx_mmc_read_blocks(struct mmc *mmc, struct mmc_cmd *cmd,
+ struct mmc_data *data, bool verbose)
+{
+ struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ union mio_emm_rsp_sts rsp_sts;
+ dma_addr_t dma_addr = (dma_addr_t)dm_pci_virt_to_mem(host->dev,
+ data->dest);
+ ulong count;
+ ulong blkcnt = data->blocks;
+ ulong start = cmd->cmdarg;
+ int timeout = 1000 + blkcnt * 20;
+ bool timed_out = false;
+ bool multi_xfer = cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK;
+
+ debug("%s(%s): dest: %p, dma address: 0x%llx, blkcnt: %lu, start: %lu\n",
+ __func__, mmc->dev->name, data->dest, dma_addr, blkcnt, start);
+ debug("%s: rsp_sts: 0x%llx\n", __func__,
+ read_csr(mmc, MIO_EMM_RSP_STS()));
+ /* use max timeout for multi-block transfers */
+ /* timeout = 0; */
+
+ /*
+ * If we have a valid SD card in the slot, we set the response bit
+ * mask to check for CRC errors and timeouts only.
+ * Otherwise, use the default power on reset value.
+ */
+ write_csr(mmc, MIO_EMM_STS_MASK(),
+ IS_SD(mmc) ? 0x00b00000ull : 0xe4390080ull);
+ invalidate_dcache_range((u64)data->dest,
+ (u64)data->dest + blkcnt * data->blocksize);
+
+ if (multi_xfer) {
+ octeontx_mmc_start_dma(mmc, false, false, start, dma_addr,
+ blkcnt, timeout);
+ timed_out = !!octeontx_mmc_wait_dma(mmc, false, timeout,
+ verbose);
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) {
+ if (!verbose)
+ return 0;
+
+ pr_err("%s(%s): Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n",
+ __func__, mmc->dev->name, rsp_sts.u,
+ read_csr(mmc, MIO_EMM_INT()),
+ read_csr(mmc, MIO_EMM_DMA_INT()),
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+ pr_err("%s: block count: %lu, start: 0x%lx\n",
+ __func__, blkcnt, start);
+ octeontx_mmc_print_registers(mmc);
+ return 0;
+ }
+ } else {
+ count = blkcnt;
+ timeout = 1000;
+ do {
+ octeontx_mmc_start_dma(mmc, false, false, start,
+ dma_addr, 1, timeout);
+ dma_addr += mmc->read_bl_len;
+ start++;
+
+ timed_out = !!octeontx_mmc_wait_dma(mmc, false,
+ timeout, verbose);
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (timed_out || rsp_sts.s.dma_val ||
+ rsp_sts.s.dma_pend) {
+ if (verbose) {
+ pr_err("%s: Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n",
+ __func__, rsp_sts.u,
+ read_csr(mmc, MIO_EMM_INT()),
+ read_csr(mmc, MIO_EMM_DMA_INT()),
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+ pr_err("%s: block count: 1, start: 0x%lx\n",
+ __func__, start);
+ octeontx_mmc_print_registers(mmc);
+ }
+ return blkcnt - count;
+ }
+ WATCHDOG_RESET();
+ } while (--count);
+ }
+#ifdef DEBUG
+ debug("%s(%s): Read %lu (0x%lx) blocks starting at block %u (0x%x) to address %p (dma address 0x%llx)\n",
+ __func__, mmc->dev->name, blkcnt, blkcnt,
+ cmd->cmdarg, cmd->cmdarg, data->dest,
+ dm_pci_virt_to_mem(host->dev, data->dest));
+ print_buffer(0, data->dest, 1, 0x200, 0);
+#endif
+ return blkcnt;
+}
+
+static int octeontx_mmc_poll_ready(struct mmc *mmc, ulong timeout)
+{
+ ulong start;
+ struct mmc_cmd cmd;
+ int err;
+ bool not_ready = false;
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.cmdidx = MMC_CMD_SEND_STATUS;
+ cmd.cmdarg = mmc->rca << 16;
+ cmd.resp_type = MMC_RSP_R1;
+ start = get_timer(0);
+ do {
+ err = octeontx_mmc_send_cmd(mmc, &cmd, NULL);
+ if (err) {
+ pr_err("%s(%s): MMC command error: %d; Retry...\n",
+ __func__, mmc->dev->name, err);
+ not_ready = true;
+ } else if (cmd.response[0] & R1_READY_FOR_DATA) {
+ return 0;
+ }
+ WATCHDOG_RESET();
+ } while (get_timer(start) < timeout);
+
+ if (not_ready)
+ pr_err("%s(%s): MMC command error; Retry timeout\n",
+ __func__, mmc->dev->name);
+ return -ETIMEDOUT;
+}
+
+static ulong octeontx_mmc_write_blocks(struct mmc *mmc, struct mmc_cmd *cmd,
+ struct mmc_data *data)
+{
+ struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ ulong start = cmd->cmdarg;
+ ulong blkcnt = data->blocks;
+ dma_addr_t dma_addr;
+ union mio_emm_rsp_sts rsp_sts;
+ union mio_emm_sts_mask emm_sts_mask;
+ ulong timeout;
+ int count;
+ bool timed_out = false;
+ bool multi_xfer = (blkcnt > 1) &&
+ ((IS_SD(mmc) && mmc->scr[0] & 2) || !IS_SD(mmc));
+
+ octeontx_mmc_switch_to(mmc);
+ emm_sts_mask.u = 0;
+ emm_sts_mask.s.sts_msk = R1_BLOCK_WRITE_MASK;
+ write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
+
+ if (octeontx_mmc_poll_ready(mmc, 10000)) {
+ pr_err("%s(%s): Ready timed out\n", __func__, mmc->dev->name);
+ return 0;
+ }
+ flush_dcache_range((u64)data->src,
+ (u64)data->src + blkcnt * mmc->write_bl_len);
+ dma_addr = (u64)dm_pci_virt_to_mem(host->dev, (void *)data->src);
+ if (multi_xfer) {
+ timeout = 5000 + 100 * blkcnt;
+ octeontx_mmc_start_dma(mmc, true, false, start, dma_addr,
+ blkcnt, timeout);
+ timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout, true);
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) {
+ pr_err("%s(%s): Error: multi-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
+ __func__, mmc->dev->name, timeout,
+ rsp_sts.u,
+ read_csr(mmc, MIO_EMM_INT()),
+ read_csr(mmc, MIO_EMM_DMA_INT()),
+ read_csr(mmc, MIO_EMM_RSP_LO()),
+ read_csr(mmc, MIO_EMM_DMA()));
+ return 0;
+ }
+ } else {
+ timeout = 5000;
+ count = blkcnt;
+ do {
+ octeontx_mmc_start_dma(mmc, true, false, start,
+ dma_addr, 1, timeout);
+ dma_addr += mmc->read_bl_len;
+ start++;
+
+ timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout,
+ true);
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (timed_out || rsp_sts.s.dma_val ||
+ rsp_sts.s.dma_pend) {
+ pr_err("%s(%s): Error: single-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
+ __func__, mmc->dev->name, timeout,
+ rsp_sts.u,
+ read_csr(mmc, MIO_EMM_RSP_STS()),
+ read_csr(mmc, MIO_EMM_DMA_INT()),
+ read_csr(mmc, MIO_EMM_RSP_LO()),
+ read_csr(mmc, MIO_EMM_DMA()));
+ return blkcnt - count;
+ }
+ WATCHDOG_RESET();
+ } while (--count);
+ }
+
+ return blkcnt;
+}
+
+/**
+ * Send a command to the eMMC/SD device
+ *
+ * @param mmc mmc device
+ * @param cmd cmd to send and response
+ * @param data additional data
+ * @param flags
+ * @return 0 for success, otherwise error
+ */
+static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
+ struct mmc_data *data)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ const char *name = slot->dev->name;
+ struct octeontx_mmc_cr_mods mods = {0, 0};
+ union mio_emm_rsp_sts rsp_sts;
+ union mio_emm_cmd emm_cmd;
+ union mio_emm_rsp_lo rsp_lo;
+ union mio_emm_buf_idx emm_buf_idx;
+ union mio_emm_buf_dat emm_buf_dat;
+ ulong start;
+ int i;
+ ulong blkcnt;
+
+ /**
+ * This constant has a 1 bit for each command which should have a short
+ * timeout and a 0 for each bit with a long timeout. Currently the
+ * following commands have a long timeout:
+ * CMD6, CMD17, CMD18, CMD24, CMD25, CMD32, CMD33, CMD35, CMD36 and
+ * CMD38.
+ */
+ static const u64 timeout_short = 0xFFFFFFA4FCF9FFDFull;
+ uint timeout;
+
+ if (cmd->cmdidx == MMC_CMD_SEND_EXT_CSD) {
+ union mio_emm_rca emm_rca;
+
+ emm_rca.u = 0;
+ emm_rca.s.card_rca = mmc->rca;
+ write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
+ }
+
+ if (timeout_short & (1ull << cmd->cmdidx))
+ timeout = MMC_TIMEOUT_SHORT;
+ else if (cmd->cmdidx == MMC_CMD_SWITCH && IS_SD(mmc))
+ timeout = 2560;
+ else if (cmd->cmdidx == MMC_CMD_ERASE)
+ timeout = MMC_TIMEOUT_ERASE;
+ else
+ timeout = MMC_TIMEOUT_LONG;
+
+ debug("%s(%s): cmd idx: %u, arg: 0x%x, resp type: 0x%x, timeout: %u\n",
+ __func__, name, cmd->cmdidx, cmd->cmdarg, cmd->resp_type,
+ timeout);
+ if (data)
+ debug(" data: addr: %p, flags: 0x%x, blocks: %u, blocksize: %u\n",
+ data->dest, data->flags, data->blocks, data->blocksize);
+
+ octeontx_mmc_switch_to(mmc);
+
+ /* Clear any interrupts */
+ write_csr(mmc, MIO_EMM_INT(), read_csr(mmc, MIO_EMM_INT()));
+
+ /*
+ * We need to override the default command types and response types
+ * when dealing with SD cards.
+ */
+ mods = octeontx_mmc_get_cr_mods(mmc, cmd, data);
+
+ /* Handle block read/write/stop operations */
+ switch (cmd->cmdidx) {
+ case MMC_CMD_GO_IDLE_STATE:
+ slot->tuned = false;
+ slot->hs200_tuned = false;
+ slot->hs400_tuned = false;
+ break;
+ case MMC_CMD_STOP_TRANSMISSION:
+ return 0;
+ case MMC_CMD_READ_MULTIPLE_BLOCK:
+ case MMC_CMD_READ_SINGLE_BLOCK:
+ pr_debug("%s(%s): Reading blocks\n", __func__, name);
+ blkcnt = octeontx_mmc_read_blocks(mmc, cmd, data, true);
+ return (blkcnt > 0) ? 0 : -1;
+ case MMC_CMD_WRITE_MULTIPLE_BLOCK:
+ case MMC_CMD_WRITE_SINGLE_BLOCK:
+ blkcnt = octeontx_mmc_write_blocks(mmc, cmd, data);
+ return (blkcnt > 0) ? 0 : -1;
+ case MMC_CMD_SELECT_CARD:
+ /* Set the RCA register (is it set automatically?) */
+ if (IS_SD(mmc)) {
+ union mio_emm_rca emm_rca;
+
+ emm_rca.u = 0;
+ emm_rca.s.card_rca = (cmd->cmdarg >> 16);
+ write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
+ debug("%s: Set SD relative address (RCA) to 0x%x\n",
+ __func__, emm_rca.s.card_rca);
+ }
+ break;
+
+ case MMC_CMD_SWITCH:
+ if (!data && !slot->is_acmd)
+ octeontx_mmc_track_switch(mmc, cmd->cmdarg);
+ break;
+ }
+
+ emm_cmd.u = 0;
+ emm_cmd.s.cmd_val = 1;
+ emm_cmd.s.bus_id = slot->bus_id;
+ emm_cmd.s.cmd_idx = cmd->cmdidx;
+ emm_cmd.s.arg = cmd->cmdarg;
+ emm_cmd.s.ctype_xor = mods.ctype_xor;
+ emm_cmd.s.rtype_xor = mods.rtype_xor;
+ if (data && data->blocks == 1 && data->blocksize != 512) {
+ emm_cmd.s.offset =
+ 64 - ((data->blocks * data->blocksize) / 8);
+ debug("%s: offset set to %u\n", __func__, emm_cmd.s.offset);
+ }
+
+ if (data && data->flags & MMC_DATA_WRITE) {
+ u8 *src = (u8 *)data->src;
+
+ if (!src) {
+ pr_err("%s(%s): Error: data source for cmd 0x%x is NULL!\n",
+ __func__, name, cmd->cmdidx);
+ return -1;
+ }
+ if (data->blocksize > 512) {
+ pr_err("%s(%s): Error: data for cmd 0x%x exceeds 512 bytes\n",
+ __func__, name, cmd->cmdidx);
+ return -1;
+ }
+#ifdef DEBUG
+ debug("%s: Sending %d bytes data\n", __func__, data->blocksize);
+ print_buffer(0, src, 1, data->blocksize, 0);
+#endif
+ emm_buf_idx.u = 0;
+ emm_buf_idx.s.inc = 1;
+ write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u);
+ for (i = 0; i < (data->blocksize + 7) / 8; i++) {
+ memcpy(&emm_buf_dat.u, src, sizeof(emm_buf_dat.u));
+ write_csr(mmc, MIO_EMM_BUF_DAT(),
+ cpu_to_be64(emm_buf_dat.u));
+ src += sizeof(emm_buf_dat.u);
+ }
+ write_csr(mmc, MIO_EMM_BUF_IDX(), 0);
+ }
+ debug("%s(%s): Sending command %u (emm_cmd: 0x%llx)\n", __func__,
+ name, cmd->cmdidx, emm_cmd.u);
+ set_wdog(mmc, timeout * 1000);
+ write_csr(mmc, MIO_EMM_CMD(), emm_cmd.u);
+
+ /* Wait for command to finish or time out */
+ start = get_timer(0);
+ do {
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ WATCHDOG_RESET();
+ } while (!rsp_sts.s.cmd_done && !rsp_sts.s.rsp_timeout &&
+ (get_timer(start) < timeout + 10));
+ octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
+ if (rsp_sts.s.rsp_timeout || !rsp_sts.s.cmd_done) {
+ debug("%s(%s): Error: command %u(0x%x) timed out. rsp_sts: 0x%llx\n",
+ __func__, name, cmd->cmdidx, cmd->cmdarg, rsp_sts.u);
+ octeontx_mmc_print_registers(mmc);
+ return -ETIMEDOUT;
+ }
+ if (rsp_sts.s.rsp_crc_err) {
+ debug("%s(%s): RSP CRC error, rsp_sts: 0x%llx, cmdidx: %u, arg: 0x%08x\n",
+ __func__, name, rsp_sts.u, cmd->cmdidx, cmd->cmdarg);
+ octeontx_mmc_print_registers(mmc);
+ return -1;
+ }
+ if (slot->bus_id != rsp_sts.s.bus_id) {
+ pr_warn("%s(%s): bus id mismatch, got %d, expected %d for command 0x%x(0x%x)\n",
+ __func__, name,
+ rsp_sts.s.bus_id, slot->bus_id,
+ cmd->cmdidx, cmd->cmdarg);
+ goto error;
+ }
+ if (rsp_sts.s.rsp_bad_sts) {
+ rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO());
+ debug("%s: Bad response for bus id %d, cmd id %d:\n"
+ " rsp_timeout: %d\n"
+ " rsp_bad_sts: %d\n"
+ " rsp_crc_err: %d\n",
+ __func__, slot->bus_id, cmd->cmdidx,
+ rsp_sts.s.rsp_timeout,
+ rsp_sts.s.rsp_bad_sts,
+ rsp_sts.s.rsp_crc_err);
+ if (rsp_sts.s.rsp_type == 1 && rsp_sts.s.rsp_bad_sts) {
+ debug(" Response status: 0x%llx\n",
+ (rsp_lo.u >> 8) & 0xffffffff);
+#ifdef DEBUG
+ mmc_print_status((rsp_lo.u >> 8) & 0xffffffff);
+#endif
+ }
+ goto error;
+ }
+ if (rsp_sts.s.cmd_idx != cmd->cmdidx) {
+ debug("%s(%s): Command response index %d does not match command index %d\n",
+ __func__, name, rsp_sts.s.cmd_idx, cmd->cmdidx);
+ octeontx_print_rsp_sts(mmc);
+ debug("%s: rsp_lo: 0x%llx\n", __func__,
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+
+ goto error;
+ }
+
+ slot->is_acmd = (cmd->cmdidx == MMC_CMD_APP_CMD);
+
+ if (!cmd->resp_type & MMC_RSP_PRESENT)
+ debug(" Response type: 0x%x, no response expected\n",
+ cmd->resp_type);
+ /* Get the response if present */
+ if (rsp_sts.s.rsp_val && (cmd->resp_type & MMC_RSP_PRESENT)) {
+ union mio_emm_rsp_hi rsp_hi;
+
+ rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO());
+
+ switch (rsp_sts.s.rsp_type) {
+ case 1:
+ case 3:
+ case 4:
+ case 5:
+ cmd->response[0] = (rsp_lo.u >> 8) & 0xffffffffull;
+ debug(" response: 0x%08x\n",
+ cmd->response[0]);
+ cmd->response[1] = 0;
+ cmd->response[2] = 0;
+ cmd->response[3] = 0;
+ break;
+ case 2:
+ cmd->response[3] = rsp_lo.u & 0xffffffff;
+ cmd->response[2] = (rsp_lo.u >> 32) & 0xffffffff;
+ rsp_hi.u = read_csr(mmc, MIO_EMM_RSP_HI());
+ cmd->response[1] = rsp_hi.u & 0xffffffff;
+ cmd->response[0] = (rsp_hi.u >> 32) & 0xffffffff;
+ debug(" response: 0x%08x 0x%08x 0x%08x 0x%08x\n",
+ cmd->response[0], cmd->response[1],
+ cmd->response[2], cmd->response[3]);
+ break;
+ default:
+ pr_err("%s(%s): Unknown response type 0x%x for command %d, arg: 0x%x, rsp_sts: 0x%llx\n",
+ __func__, name, rsp_sts.s.rsp_type, cmd->cmdidx,
+ cmd->cmdarg, rsp_sts.u);
+ return -1;
+ }
+ } else {
+ debug(" Response not expected\n");
+ }
+
+ if (data && data->flags & MMC_DATA_READ) {
+ u8 *dest = (u8 *)data->dest;
+
+ if (!dest) {
+ pr_err("%s(%s): Error, destination buffer NULL!\n",
+ __func__, mmc->dev->name);
+ goto error;
+ }
+ if (data->blocksize > 512) {
+ printf("%s(%s): Error: data size %u exceeds 512\n",
+ __func__, mmc->dev->name,
+ data->blocksize);
+ goto error;
+ }
+ emm_buf_idx.u = 0;
+ emm_buf_idx.s.inc = 1;
+ write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u);
+ for (i = 0; i < (data->blocksize + 7) / 8; i++) {
+ emm_buf_dat.u = read_csr(mmc, MIO_EMM_BUF_DAT());
+ emm_buf_dat.u = be64_to_cpu(emm_buf_dat.u);
+ memcpy(dest, &emm_buf_dat.u, sizeof(emm_buf_dat.u));
+ dest += sizeof(emm_buf_dat.u);
+ }
+ write_csr(mmc, MIO_EMM_BUF_IDX(), 0);
+#ifdef DEBUG
+ debug("%s: Received %d bytes data\n", __func__,
+ data->blocksize);
+ print_buffer(0, data->dest, 1, data->blocksize, 0);
+#endif
+ }
+
+ return 0;
+error:
+#ifdef DEBUG
+ octeontx_mmc_print_registers(mmc);
+#endif
+ return -1;
+}
+
+static int octeontx_mmc_dev_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
+ struct mmc_data *data)
+{
+ return octeontx_mmc_send_cmd(dev_to_mmc(dev), cmd, data);
+}
+
+#ifdef MMC_SUPPORTS_TUNING
+static int octeontx_mmc_test_cmd(struct mmc *mmc, u32 opcode, int *statp)
+{
+ struct mmc_cmd cmd;
+ int err;
+
+ memset(&cmd, 0, sizeof(cmd));
+
+ debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp);
+ cmd.cmdidx = opcode;
+ cmd.resp_type = MMC_RSP_R1;
+ cmd.cmdarg = mmc->rca << 16;
+
+ err = octeontx_mmc_send_cmd(mmc, &cmd, NULL);
+ if (err)
+ debug("%s(%s, %u) returned %d\n", __func__,
+ mmc->dev->name, opcode, err);
+ if (statp)
+ *statp = cmd.response[0];
+ return err;
+}
+
+static int octeontx_mmc_test_get_ext_csd(struct mmc *mmc, u32 opcode,
+ int *statp)
+{
+ struct mmc_cmd cmd;
+ struct mmc_data data;
+ int err;
+ u8 ext_csd[MMC_MAX_BLOCK_LEN];
+
+ debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp);
+ memset(&cmd, 0, sizeof(cmd));
+
+ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
+ cmd.resp_type = MMC_RSP_R1;
+ cmd.cmdarg = 0;
+
+ data.dest = (char *)ext_csd;
+ data.blocks = 1;
+ data.blocksize = MMC_MAX_BLOCK_LEN;
+ data.flags = MMC_DATA_READ;
+
+ err = octeontx_mmc_send_cmd(mmc, &cmd, &data);
+ if (statp)
+ *statp = cmd.response[0];
+
+ return err;
+}
+
+/**
+ * Wrapper to set the MIO_EMM_TIMING register
+ *
+ * @param mmc pointer to mmc data structure
+ * @param emm_timing New emm_timing register value
+ *
+ * On some devices it is possible that changing the data out value can
+ * cause a glitch on an internal fifo. This works around this problem
+ * by performing a soft-reset immediately before setting the timing register.
+ *
+ * Note: this function should not be called from any function that
+ * performs DMA or block operations since not all registers are
+ * preserved.
+ */
+static void octeontx_mmc_set_emm_timing(struct mmc *mmc,
+ union mio_emm_timing emm_timing)
+{
+ union mio_emm_cfg emm_cfg;
+ struct octeontx_mmc_slot *slot = mmc->priv;
+ union mio_emm_debug emm_debug;
+
+ debug("%s(%s, 0x%llx) din: %u\n", __func__, mmc->dev->name,
+ emm_timing.u, emm_timing.s.data_in_tap);
+
+ udelay(1);
+ if (slot->host->tap_requires_noclk) {
+ /* Turn off the clock */
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_debug.s.emmc_clk_disable = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.s.rdsync_rst = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ }
+ emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
+ emm_cfg.s.bus_ena = 1 << 3;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+
+ udelay(1);
+ write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u);
+ udelay(1);
+
+ if (slot->host->tap_requires_noclk) {
+ /* Turn on the clock */
+ emm_debug.s.rdsync_rst = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.s.emmc_clk_disable = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ }
+ emm_cfg.s.bus_ena = 1 << mmc_to_slot(mmc)->bus_id;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+}
+
+static const u8 octeontx_hs400_tuning_block[512] = {
+ 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
+ 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
+ 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
+ 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
+ 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
+ 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
+ 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
+ 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
+ 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
+ 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
+ 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
+ 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
+ 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
+ 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
+ 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
+ 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
+ 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
+ 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
+ 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
+ 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
+ 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
+ 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
+ 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
+ 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
+ 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
+ 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
+ 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
+ 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
+ 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
+ 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
+ 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
+ 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
+ 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
+ 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
+ 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
+ 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
+ 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
+ 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
+ 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
+ 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
+ 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
+ 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
+ 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
+ 0x00, 0xff, 0x00, 0xff, 0x55, 0xaa, 0x55, 0xaa,
+ 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
+ 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
+ 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
+ 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
+ 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
+ 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
+ 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00,
+ 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
+ 0x01, 0xfe, 0x01, 0xfe, 0xcc, 0xcc, 0xcc, 0xff,
+ 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
+ 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
+ 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
+ 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
+ 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
+
+};
+
+/**
+ * Perform tuning in HS400 mode
+ *
+ * @param[in] mmc mmc data structure
+ *
+ * @ret 0 for success, otherwise error
+ */
+static int octeontx_tune_hs400(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct mmc_cmd cmd;
+ struct mmc_data data;
+ union mio_emm_timing emm_timing;
+ u8 buffer[mmc->read_bl_len];
+ int tap_adj;
+ int err = -1;
+ int tap;
+ int run = 0;
+ int start_run = -1;
+ int best_run = 0;
+ int best_start = -1;
+ bool prev_ok = false;
+ char env_name[64];
+ char how[MAX_NO_OF_TAPS + 1] = "";
+
+ if (slot->hs400_tuning_block == -1)
+ return 0;
+
+ /* The eMMC standard disables all tuning support when operating in
+ * DDR modes like HS400. The problem with this is that there are
+ * many cases where the HS200 tuning does not work for HS400 mode.
+ * In order to perform this tuning, while in HS200 a block is written
+ * to a block specified in the device tree (marvell,hs400-tuning-block)
+ * which is used for tuning in this function by repeatedly reading
+ * this block and comparing the data and return code. This function
+ * chooses the data input tap in the middle of the longest run of
+ * successful read operations.
+ */
+
+ emm_timing = slot->hs200_taps;
+ debug("%s(%s): Start ci: %d, co: %d, di: %d, do: %d\n",
+ __func__, mmc->dev->name, emm_timing.s.cmd_in_tap,
+ emm_timing.s.cmd_out_tap, emm_timing.s.data_in_tap,
+ emm_timing.s.data_out_tap);
+ memset(buffer, 0xdb, sizeof(buffer));
+
+ snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_hs400",
+ slot->bus_id);
+ tap = env_get_ulong(env_name, 10, -1L);
+ if (tap >= 0 && tap < MAX_NO_OF_TAPS) {
+ printf("Overriding data input tap for HS400 mode to %d\n", tap);
+ emm_timing.s.data_in_tap = tap;
+ octeontx_mmc_set_emm_timing(mmc, emm_timing);
+ return 0;
+ }
+
+ for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) {
+ if (tap < MAX_NO_OF_TAPS) {
+ debug("%s: Testing data in tap %d\n", __func__, tap);
+ emm_timing.s.data_in_tap = tap;
+ octeontx_mmc_set_emm_timing(mmc, emm_timing);
+
+ cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
+ cmd.cmdarg = slot->hs400_tuning_block;
+ cmd.resp_type = MMC_RSP_R1;
+ data.dest = (void *)buffer;
+ data.blocks = 1;
+ data.blocksize = mmc->read_bl_len;
+ data.flags = MMC_DATA_READ;
+ err = !octeontx_mmc_read_blocks(mmc, &cmd, &data,
+ false);
+ if (err || memcmp(buffer, octeontx_hs400_tuning_block,
+ sizeof(buffer))) {
+#ifdef DEBUG
+ if (!err) {
+ debug("%s: data mismatch. Read:\n",
+ __func__);
+ print_buffer(0, buffer, 1,
+ sizeof(buffer), 0);
+ debug("\nExpected:\n");
+ print_buffer(0,
+ octeontx_hs400_tuning_block, 1,
+ sizeof(octeontx_hs400_tuning_block),
+ 0);
+ } else {
+ debug("%s: Error %d reading block\n",
+ __func__, err);
+ }
+#endif
+ err = -EINVAL;
+ } else {
+ debug("%s: tap %d good\n", __func__, tap);
+ }
+ how[tap] = "-+"[!err];
+ } else {
+ err = -EINVAL;
+ }
+
+ if (!err) {
+ if (!prev_ok)
+ start_run = tap;
+ } else if (prev_ok) {
+ run = tap - 1 - start_run;
+ if (start_run >= 0 && run > best_run) {
+ best_start = start_run;
+ best_run = run;
+ }
+ }
+ }
+
+ how[tap - 1] = '\0';
+ if (best_start < 0) {
+ printf("%s(%s): %lldMHz tuning failed for HS400\n",
+ __func__, mmc->dev->name, slot->clock / 1000000);
+ return -EINVAL;
+ }
+ tap = best_start + best_run / 2;
+
+ snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_adj_hs400",
+ slot->bus_id);
+ tap_adj = env_get_ulong(env_name, 10, slot->hs400_tap_adj);
+ /*
+ * Keep it in range and if out of range force it back in with a small
+ * buffer.
+ */
+ if (best_run > 3) {
+ tap = tap + tap_adj;
+ if (tap >= best_start + best_run)
+ tap = best_start + best_run - 2;
+ if (tap <= best_start)
+ tap = best_start + 2;
+ }
+ how[tap] = '@';
+ debug("Tuning: %s\n", how);
+ debug("%s(%s): HS400 tap: best run start: %d, length: %d, tap: %d\n",
+ __func__, mmc->dev->name, best_start, best_run, tap);
+ slot->hs400_taps = slot->hs200_taps;
+ slot->hs400_taps.s.data_in_tap = tap;
+ slot->hs400_tuned = true;
+ if (env_get_yesno("emmc_export_hs400_taps") > 0) {
+ debug("%s(%s): Exporting HS400 taps\n",
+ __func__, mmc->dev->name);
+ env_set_ulong("emmc_timing_tap", slot->host->timing_taps);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_in_tap_debug",
+ slot->bus_id);
+ env_set(env_name, how);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_in_tap_val",
+ slot->bus_id);
+ env_set_ulong(env_name, tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_in_tap_start",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_in_tap_end",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start + best_run);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_cmd_in_tap",
+ slot->bus_id);
+ env_set_ulong(env_name, slot->hs400_taps.s.cmd_in_tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_cmd_out_tap",
+ slot->bus_id);
+ env_set_ulong(env_name, slot->hs400_taps.s.cmd_out_tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_cmd_out_delay",
+ slot->bus_id);
+ env_set_ulong(env_name, slot->cmd_out_hs400_delay);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_out_tap",
+ slot->bus_id);
+ env_set_ulong(env_name, slot->hs400_taps.s.data_out_tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs400_data_out_delay",
+ slot->bus_id);
+ env_set_ulong(env_name, slot->data_out_hs400_delay);
+ } else {
+ debug("%s(%s): HS400 environment export disabled\n",
+ __func__, mmc->dev->name);
+ }
+ octeontx_mmc_set_timing(mmc);
+
+ return 0;
+}
+
+struct adj {
+ const char *name;
+ u8 mask_shift;
+ int (*test)(struct mmc *mmc, u32 opcode, int *error);
+ u32 opcode;
+ bool ddr_only;
+ bool hs200_only;
+ bool not_hs200_only;
+ u8 num_runs;
+};
+
+struct adj adj[] = {
+ { "CMD_IN", 48, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS,
+ false, false, false, 2, },
+/* { "CMD_OUT", 32, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS, },*/
+ { "DATA_IN(HS200)", 16, mmc_send_tuning,
+ MMC_CMD_SEND_TUNING_BLOCK_HS200, false, true, false, 2, },
+ { "DATA_IN", 16, octeontx_mmc_test_get_ext_csd, 0, false, false,
+ true, 2, },
+/* { "DATA_OUT", 0, octeontx_mmc_test_cmd, 0, true, false},*/
+ { NULL, },
+};
+
+/**
+ * Perform tuning tests to find optimal timing
+ *
+ * @param mmc mmc device
+ * @param adj parameter to tune
+ * @param opcode command opcode to use
+ *
+ * @return 0 for success, -1 if tuning failed
+ */
+static int octeontx_mmc_adjust_tuning(struct mmc *mmc, struct adj *adj,
+ u32 opcode)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_timing timing;
+ union mio_emm_debug emm_debug;
+ int tap;
+ int err = -1;
+ int run = 0;
+ int count;
+ int start_run = -1;
+ int best_run = 0;
+ int best_start = -1;
+ bool prev_ok = false;
+ u64 tap_status = 0;
+ const int tap_adj = slot->hs200_tap_adj;
+ char how[MAX_NO_OF_TAPS + 1] = "";
+ bool is_hs200 = mmc->selected_mode == MMC_HS_200;
+
+ debug("%s(%s, %s, %d), hs200: %d\n", __func__, mmc->dev->name,
+ adj->name, opcode, is_hs200);
+ octeontx_mmc_set_emm_timing(mmc,
+ is_hs200 ? slot->hs200_taps : slot->taps);
+
+#ifdef DEBUG
+ if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
+ printf("%s(%s): Before tuning %s, opcode: %d\n",
+ __func__, mmc->dev->name, adj->name, opcode);
+ octeontx_mmc_print_registers2(mmc, NULL);
+ }
+#endif
+
+ /*
+ * The algorithm to find the optimal timing is to start
+ * at the end and work backwards and select the second
+ * value that passes. Each test is repeated twice.
+ */
+ for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) {
+ if (tap < MAX_NO_OF_TAPS) {
+ if (slot->host->tap_requires_noclk) {
+ /* Turn off the clock */
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_debug.s.emmc_clk_disable = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.s.rdsync_rst = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ }
+
+ timing.u = read_csr(mmc, MIO_EMM_TIMING());
+ timing.u &= ~(0x3full << adj->mask_shift);
+ timing.u |= (u64)tap << adj->mask_shift;
+ write_csr(mmc, MIO_EMM_TIMING(), timing.u);
+ debug("%s(%s): Testing ci: %d, co: %d, di: %d, do: %d\n",
+ __func__, mmc->dev->name, timing.s.cmd_in_tap,
+ timing.s.cmd_out_tap, timing.s.data_in_tap,
+ timing.s.data_out_tap);
+
+ if (slot->host->tap_requires_noclk) {
+ /* Turn off the clock */
+ emm_debug.s.rdsync_rst = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_debug.s.emmc_clk_disable = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ }
+ for (count = 0; count < 2; count++) {
+ err = adj->test(mmc, opcode, NULL);
+ if (err) {
+ debug("%s(%s, %s): tap %d failed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n",
+ __func__, mmc->dev->name,
+ adj->name, tap, count,
+ read_csr(mmc,
+ MIO_EMM_RSP_STS()),
+ read_csr(mmc,
+ MIO_EMM_RSP_LO()));
+ debug("%s(%s, %s): tap: %d, do: %d, di: %d, co: %d, ci: %d\n",
+ __func__, mmc->dev->name,
+ adj->name, tap,
+ timing.s.data_out_tap,
+ timing.s.data_in_tap,
+ timing.s.cmd_out_tap,
+ timing.s.cmd_in_tap);
+ break;
+ }
+ debug("%s(%s, %s): tap %d passed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n",
+ __func__, mmc->dev->name, adj->name, tap,
+ count,
+ read_csr(mmc, MIO_EMM_RSP_STS()),
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+ }
+ tap_status |= (u64)(!err) << tap;
+ how[tap] = "-+"[!err];
+ } else {
+ /*
+ * Putting the end+1 case in the loop simplifies
+ * logic, allowing 'prev_ok' to process a sweet
+ * spot in tuning which extends to the wall.
+ */
+ err = -EINVAL;
+ }
+ if (!err) {
+ /*
+ * If no CRC/etc errors in the response, but previous
+ * failed, note the start of a new run.
+ */
+ debug(" prev_ok: %d\n", prev_ok);
+ if (!prev_ok)
+ start_run = tap;
+ } else if (prev_ok) {
+ run = tap - 1 - start_run;
+ /* did we just exit a wider sweet spot? */
+ if (start_run >= 0 && run > best_run) {
+ best_start = start_run;
+ best_run = run;
+ }
+ }
+ }
+ how[tap - 1] = '\0';
+ if (best_start < 0) {
+ printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__,
+ mmc->dev->name, adj->name, slot->clock / 1000000,
+ adj->name);
+ return -EINVAL;
+ }
+
+ tap = best_start + best_run / 2;
+ debug(" tap %d is center, start: %d, run: %d\n", tap,
+ best_start, best_run);
+ if (is_hs200) {
+ slot->hs200_taps.u &= ~(0x3full << adj->mask_shift);
+ slot->hs200_taps.u |= (u64)tap << adj->mask_shift;
+ } else {
+ slot->taps.u &= ~(0x3full << adj->mask_shift);
+ slot->taps.u |= (u64)tap << adj->mask_shift;
+ }
+ if (best_start < 0) {
+ printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__,
+ mmc->dev->name, adj->name, slot->clock / 1000000,
+ adj->name);
+ return -EINVAL;
+ }
+
+ tap = best_start + best_run / 2;
+ if (is_hs200 && (tap + tap_adj >= 0) && (tap + tap_adj < 64) &&
+ tap_status & (1ULL << (tap + tap_adj))) {
+ debug("Adjusting tap from %d by %d to %d\n",
+ tap, tap_adj, tap + tap_adj);
+ tap += tap_adj;
+ }
+ how[tap] = '@';
+ debug("%s/%s %d/%d/%d %s\n", mmc->dev->name,
+ adj->name, best_start, tap, best_start + best_run, how);
+
+ if (is_hs200) {
+ slot->hs200_taps.u &= ~(0x3full << adj->mask_shift);
+ slot->hs200_taps.u |= (u64)tap << adj->mask_shift;
+ } else {
+ slot->taps.u &= ~(0x3full << adj->mask_shift);
+ slot->taps.u |= (u64)tap << adj->mask_shift;
+ }
+
+#ifdef DEBUG
+ if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
+ debug("%s(%s, %s): After successful tuning\n",
+ __func__, mmc->dev->name, adj->name);
+ debug("%s(%s, %s): tap: %d, new do: %d, di: %d, co: %d, ci: %d\n",
+ __func__, mmc->dev->name, adj->name, tap,
+ slot->taps.s.data_out_tap,
+ slot->taps.s.data_in_tap,
+ slot->taps.s.cmd_out_tap,
+ slot->taps.s.cmd_in_tap);
+ debug("%s(%s, %s): tap: %d, new do HS200: %d, di: %d, co: %d, ci: %d\n",
+ __func__, mmc->dev->name, adj->name, tap,
+ slot->hs200_taps.s.data_out_tap,
+ slot->hs200_taps.s.data_in_tap,
+ slot->hs200_taps.s.cmd_out_tap,
+ slot->hs200_taps.s.cmd_in_tap);
+ }
+#endif
+ octeontx_mmc_set_timing(mmc);
+
+ if (is_hs200 && env_get_yesno("emmc_export_hs200_taps")) {
+ char env_name[64];
+
+ env_set_ulong("emmc_timing_tap", slot->host->timing_taps);
+ switch (opcode) {
+ case MMC_CMD_SEND_TUNING_BLOCK:
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_data_in_tap_debug",
+ slot->bus_id);
+ env_set(env_name, how);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_data_in_tap_val", slot->bus_id);
+ env_set_ulong(env_name, tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_data_in_tap_start",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_data_in_tap_end",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start + best_run);
+ break;
+ case MMC_CMD_SEND_STATUS:
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_cmd_in_tap_debug",
+ slot->bus_id);
+ env_set(env_name, how);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_cmd_in_tap_val", slot->bus_id);
+ env_set_ulong(env_name, tap);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_cmd_in_tap_start",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_cmd_in_tap_end",
+ slot->bus_id);
+ env_set_ulong(env_name, best_start + best_run);
+ break;
+ default:
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_data_out_tap", slot->bus_id);
+ env_set_ulong(env_name, slot->data_out_hs200_delay);
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_hs200_cmd_out_tap", slot->bus_id);
+ env_set_ulong(env_name, slot->cmd_out_hs200_delay);
+ break;
+ }
+ }
+
+ return 0;
+}
+
+static int octeontx_mmc_execute_tuning(struct udevice *dev, u32 opcode)
+{
+ struct mmc *mmc = dev_to_mmc(dev);
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_timing emm_timing;
+ int err;
+ struct adj *a;
+ bool is_hs200;
+ char env_name[64];
+
+ pr_info("%s re-tuning, opcode 0x%x\n", dev->name, opcode);
+
+ if (slot->is_asim || slot->is_emul)
+ return 0;
+
+ is_hs200 = (mmc->selected_mode == MMC_HS_200);
+ if (is_hs200) {
+ slot->hs200_tuned = false;
+ slot->hs400_tuned = false;
+ } else {
+ slot->tuned = false;
+ }
+ octeontx_mmc_set_output_bus_timing(mmc);
+ octeontx_mmc_set_input_bus_timing(mmc);
+ emm_timing.u = read_csr(mmc, MIO_EMM_TIMING());
+ if (mmc->selected_mode == MMC_HS_200) {
+ slot->hs200_taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap;
+ slot->hs200_taps.s.data_out_tap = emm_timing.s.data_out_tap;
+ } else {
+ slot->taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap;
+ slot->taps.s.data_out_tap = emm_timing.s.data_out_tap;
+ }
+ octeontx_mmc_set_input_bus_timing(mmc);
+ octeontx_mmc_set_output_bus_timing(mmc);
+
+ for (a = adj; a->name; a++) {
+ ulong in_tap;
+
+ if (!strcmp(a->name, "CMD_IN")) {
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_cmd_in_tap", slot->bus_id);
+ in_tap = env_get_ulong(env_name, 10, (ulong)-1);
+ if (in_tap != (ulong)-1) {
+ if (mmc->selected_mode == MMC_HS_200 ||
+ a->hs200_only) {
+ slot->hs200_taps.s.cmd_in_tap = in_tap;
+ slot->hs400_taps.s.cmd_in_tap = in_tap;
+ } else {
+ slot->taps.s.cmd_in_tap = in_tap;
+ }
+ continue;
+ }
+ } else if (a->hs200_only &&
+ !strcmp(a->name, "DATA_IN(HS200)")) {
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_data_in_tap_hs200", slot->bus_id);
+ in_tap = env_get_ulong(env_name, 10, (ulong)-1);
+ if (in_tap != (ulong)-1) {
+ debug("%s(%s): Overriding HS200 data in tap to %d\n",
+ __func__, dev->name, (int)in_tap);
+ slot->hs200_taps.s.data_in_tap = in_tap;
+ continue;
+ }
+ } else if (!a->hs200_only && !strcmp(a->name, "DATA_IN")) {
+ snprintf(env_name, sizeof(env_name),
+ "emmc%d_data_in_tap", slot->bus_id);
+ in_tap = env_get_ulong(env_name, 10, (ulong)-1);
+ if (in_tap != (ulong)-1) {
+ debug("%s(%s): Overriding non-HS200 data in tap to %d\n",
+ __func__, dev->name, (int)in_tap);
+ slot->taps.s.data_in_tap = in_tap;
+ continue;
+ }
+ }
+
+ debug("%s(%s): Testing: %s, mode: %s, opcode: %u\n", __func__,
+ dev->name, a->name, mmc_mode_name(mmc->selected_mode),
+ opcode);
+
+ /* Skip DDR only test when not in DDR mode */
+ if (a->ddr_only && !mmc->ddr_mode) {
+ debug("%s(%s): Skipping %s due to non-DDR mode\n",
+ __func__, dev->name, a->name);
+ continue;
+ }
+ /* Skip hs200 tests in non-hs200 mode and
+ * non-hs200 tests in hs200 mode
+ */
+ if (is_hs200) {
+ if (a->not_hs200_only) {
+ debug("%s(%s): Skipping %s\n", __func__,
+ dev->name, a->name);
+ continue;
+ }
+ } else {
+ if (a->hs200_only) {
+ debug("%s(%s): Skipping %s\n", __func__,
+ dev->name, a->name);
+ continue;
+ }
+ }
+
+ err = octeontx_mmc_adjust_tuning(mmc, a, a->opcode ?
+ a->opcode : opcode);
+ if (err) {
+ pr_err("%s(%s, %u): tuning %s failed\n", __func__,
+ dev->name, opcode, a->name);
+ return err;
+ }
+ }
+
+ octeontx_mmc_set_timing(mmc);
+ if (is_hs200)
+ slot->hs200_tuned = true;
+ else
+ slot->tuned = true;
+
+ if (slot->hs400_tuning_block != -1) {
+ struct mmc_cmd cmd;
+ struct mmc_data data;
+ u8 buffer[mmc->read_bl_len];
+
+ cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
+ cmd.cmdarg = slot->hs400_tuning_block;
+ cmd.resp_type = MMC_RSP_R1;
+ data.dest = (void *)buffer;
+ data.blocks = 1;
+ data.blocksize = mmc->read_bl_len;
+ data.flags = MMC_DATA_READ;
+ err = octeontx_mmc_read_blocks(mmc, &cmd, &data, true) != 1;
+
+ if (err) {
+ printf("%s: Cannot read HS400 tuning block %u\n",
+ dev->name, slot->hs400_tuning_block);
+ return err;
+ }
+ if (memcmp(buffer, octeontx_hs400_tuning_block,
+ sizeof(buffer))) {
+ debug("%s(%s): Writing new HS400 tuning block to block %d\n",
+ __func__, dev->name, slot->hs400_tuning_block);
+ cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
+ data.src = (void *)octeontx_hs400_tuning_block;
+ data.flags = MMC_DATA_WRITE;
+ err = !octeontx_mmc_write_blocks(mmc, &cmd, &data);
+ if (err) {
+ printf("%s: Cannot write HS400 tuning block %u\n",
+ dev->name, slot->hs400_tuning_block);
+ return -EINVAL;
+ }
+ }
+ }
+
+ return 0;
+}
+#else /* MMC_SUPPORTS_TUNING */
+static void octeontx_mmc_set_emm_timing(struct mmc *mmc,
+ union mio_emm_timing emm_timing)
+{
+}
+#endif /* MMC_SUPPORTS_TUNING */
+
+/**
+ * Calculate the clock period with rounding up
+ *
+ * @param mmc mmc device
+ * @return clock period in system clocks for clk_lo + clk_hi
+ */
+static u32 octeontx_mmc_calc_clk_period(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_host *host = slot->host;
+
+ return DIV_ROUND_UP(host->sys_freq, mmc->clock);
+}
+
+static int octeontx_mmc_set_ios(struct udevice *dev)
+{
+ struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
+ struct mmc *mmc = &slot->mmc;
+ struct octeontx_mmc_host *host = slot->host;
+ union mio_emm_switch emm_switch;
+ union mio_emm_modex mode;
+ uint clock;
+ int bus_width = 0;
+ int clk_period = 0;
+ int power_class = 10;
+ int err = 0;
+ bool is_hs200 = false;
+ bool is_hs400 = false;
+
+ debug("%s(%s): Entry\n", __func__, dev->name);
+ debug(" clock: %u, bus width: %u, mode: %u\n", mmc->clock,
+ mmc->bus_width, mmc->selected_mode);
+ debug(" host caps: 0x%x, card caps: 0x%x\n", mmc->host_caps,
+ mmc->card_caps);
+ octeontx_mmc_switch_to(mmc);
+
+ clock = mmc->clock;
+ if (!clock)
+ clock = mmc->cfg->f_min;
+
+ switch (mmc->bus_width) {
+ case 8:
+ bus_width = 2;
+ break;
+ case 4:
+ bus_width = 1;
+ break;
+ case 1:
+ bus_width = 0;
+ break;
+ default:
+ pr_warn("%s(%s): Invalid bus width %d, defaulting to 1\n",
+ __func__, dev->name, mmc->bus_width);
+ bus_width = 0;
+ }
+
+ /* DDR is available for 4/8 bit bus width */
+ if (mmc->ddr_mode && bus_width)
+ bus_width |= 4;
+
+ debug("%s: sys_freq: %llu\n", __func__, host->sys_freq);
+ clk_period = octeontx_mmc_calc_clk_period(mmc);
+
+ emm_switch.u = 0;
+ emm_switch.s.bus_width = bus_width;
+ emm_switch.s.power_class = power_class;
+ emm_switch.s.clk_hi = clk_period / 2;
+ emm_switch.s.clk_lo = clk_period / 2;
+
+ debug("%s: last mode: %d, mode: %d, last clock: %u, clock: %u, ddr: %d\n",
+ __func__, slot->last_mode, mmc->selected_mode,
+ slot->last_clock, mmc->clock, mmc->ddr_mode);
+ switch (mmc->selected_mode) {
+ case MMC_LEGACY:
+ break;
+ case MMC_HS:
+ case SD_HS:
+ case MMC_HS_52:
+ emm_switch.s.hs_timing = 1;
+ break;
+ case MMC_HS_200:
+ is_hs200 = true;
+ fallthrough;
+ case UHS_SDR12:
+ case UHS_SDR25:
+ case UHS_SDR50:
+ case UHS_SDR104:
+ emm_switch.s.hs200_timing = 1;
+ break;
+ case MMC_HS_400:
+ is_hs400 = true;
+ fallthrough;
+ case UHS_DDR50:
+ case MMC_DDR_52:
+ emm_switch.s.hs400_timing = 1;
+ break;
+ default:
+ pr_err("%s(%s): Unsupported mode 0x%x\n", __func__, dev->name,
+ mmc->selected_mode);
+ return -1;
+ }
+ emm_switch.s.bus_id = slot->bus_id;
+
+ if (!is_hs200 && !is_hs400 &&
+ (mmc->selected_mode != slot->last_mode ||
+ mmc->clock != slot->last_clock) &&
+ !mmc->ddr_mode) {
+ slot->tuned = false;
+ slot->last_mode = mmc->selected_mode;
+ slot->last_clock = mmc->clock;
+ }
+
+ if (CONFIG_IS_ENABLED(MMC_VERBOSE)) {
+ debug("%s(%s): Setting bus mode to %s\n", __func__, dev->name,
+ mmc_mode_name(mmc->selected_mode));
+ } else {
+ debug("%s(%s): Setting bus mode to 0x%x\n", __func__, dev->name,
+ mmc->selected_mode);
+ }
+
+ debug(" Trying switch 0x%llx w%d hs:%d hs200:%d hs400:%d\n",
+ emm_switch.u, emm_switch.s.bus_width, emm_switch.s.hs_timing,
+ emm_switch.s.hs200_timing, emm_switch.s.hs400_timing);
+
+ set_wdog(mmc, 1000);
+ do_switch(mmc, emm_switch);
+ mdelay(100);
+ mode.u = read_csr(mmc, MIO_EMM_MODEX(slot->bus_id));
+ debug("%s(%s): mode: 0x%llx w:%d, hs:%d, hs200:%d, hs400:%d\n",
+ __func__, dev->name, mode.u, mode.s.bus_width,
+ mode.s.hs_timing, mode.s.hs200_timing, mode.s.hs400_timing);
+
+ err = octeontx_mmc_configure_delay(mmc);
+
+#ifdef MMC_SUPPORTS_TUNING
+ if (!err && mmc->selected_mode == MMC_HS_400 && !slot->hs400_tuned) {
+ debug("%s: Tuning HS400 mode\n", __func__);
+ err = octeontx_tune_hs400(mmc);
+ }
+#endif
+
+ return err;
+}
+
+/**
+ * Gets the status of the card detect pin
+ */
+static int octeontx_mmc_get_cd(struct udevice *dev)
+{
+ struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
+ int val = 1;
+
+ if (dm_gpio_is_valid(&slot->cd_gpio)) {
+ val = dm_gpio_get_value(&slot->cd_gpio);
+ val ^= slot->cd_inverted;
+ }
+ debug("%s(%s): cd: %d\n", __func__, dev->name, val);
+ return val;
+}
+
+/**
+ * Gets the status of the write protect pin
+ */
+static int octeontx_mmc_get_wp(struct udevice *dev)
+{
+ struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
+ int val = 0;
+
+ if (dm_gpio_is_valid(&slot->wp_gpio)) {
+ val = dm_gpio_get_value(&slot->wp_gpio);
+ val ^= slot->wp_inverted;
+ }
+ debug("%s(%s): wp: %d\n", __func__, dev->name, val);
+ return val;
+}
+
+static void octeontx_mmc_set_timing(struct mmc *mmc)
+{
+ union mio_emm_timing timing;
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+
+ switch (mmc->selected_mode) {
+ case MMC_HS_200:
+ timing = slot->hs200_taps;
+ break;
+ case MMC_HS_400:
+ timing = slot->hs400_tuned ?
+ slot->hs400_taps : slot->hs200_taps;
+ break;
+ default:
+ timing = slot->taps;
+ break;
+ }
+
+ debug("%s(%s):\n cmd_in_tap: %u\n cmd_out_tap: %u\n data_in_tap: %u\n data_out_tap: %u\n",
+ __func__, mmc->dev->name, timing.s.cmd_in_tap,
+ timing.s.cmd_out_tap, timing.s.data_in_tap,
+ timing.s.data_out_tap);
+
+ octeontx_mmc_set_emm_timing(mmc, timing);
+}
+
+static int octeontx_mmc_configure_delay(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_host *host __maybe_unused = slot->host;
+ bool __maybe_unused is_hs200;
+ bool __maybe_unused is_hs400;
+
+ debug("%s(%s)\n", __func__, mmc->dev->name);
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ union mio_emm_sample emm_sample;
+
+ emm_sample.u = 0;
+ emm_sample.s.cmd_cnt = slot->cmd_cnt;
+ emm_sample.s.dat_cnt = slot->dat_cnt;
+ write_csr(mmc, MIO_EMM_SAMPLE(), emm_sample.u);
+ } else {
+ is_hs200 = (mmc->selected_mode == MMC_HS_200);
+ is_hs400 = (mmc->selected_mode == MMC_HS_400);
+
+ if ((is_hs200 && slot->hs200_tuned) ||
+ (is_hs400 && slot->hs400_tuned) ||
+ (!is_hs200 && !is_hs400 && slot->tuned)) {
+ octeontx_mmc_set_output_bus_timing(mmc);
+ } else {
+ int half = MAX_NO_OF_TAPS / 2;
+ int dout, cout;
+
+ switch (mmc->selected_mode) {
+ case MMC_LEGACY:
+ if (IS_SD(mmc)) {
+ cout = MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP;
+ dout = MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP;
+ } else {
+ cout = MMC_LEGACY_DEFAULT_CMD_OUT_TAP;
+ dout = MMC_LEGACY_DEFAULT_DATA_OUT_TAP;
+ }
+ break;
+ case MMC_HS:
+ cout = MMC_HS_CMD_OUT_TAP;
+ dout = MMC_HS_DATA_OUT_TAP;
+ break;
+ case SD_HS:
+ case UHS_SDR12:
+ case UHS_SDR25:
+ case UHS_SDR50:
+ cout = MMC_SD_HS_CMD_OUT_TAP;
+ dout = MMC_SD_HS_DATA_OUT_TAP;
+ break;
+ case UHS_SDR104:
+ case UHS_DDR50:
+ case MMC_HS_52:
+ case MMC_DDR_52:
+ cout = MMC_DEFAULT_CMD_OUT_TAP;
+ dout = MMC_DEFAULT_DATA_OUT_TAP;
+ break;
+ case MMC_HS_200:
+ cout = -1;
+ dout = -1;
+ if (host->timing_calibrated) {
+ cout = octeontx2_mmc_calc_delay(
+ mmc, slot->cmd_out_hs200_delay);
+ dout = octeontx2_mmc_calc_delay(
+ mmc,
+ slot->data_out_hs200_delay);
+ debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n",
+ __func__, mmc->dev->name,
+ slot->cmd_out_hs200_delay, cout,
+ slot->data_out_hs200_delay, dout);
+ } else {
+ cout = MMC_DEFAULT_HS200_CMD_OUT_TAP;
+ dout = MMC_DEFAULT_HS200_DATA_OUT_TAP;
+ }
+ is_hs200 = true;
+ break;
+ case MMC_HS_400:
+ cout = -1;
+ dout = -1;
+ if (host->timing_calibrated) {
+ if (slot->cmd_out_hs400_delay)
+ cout = octeontx2_mmc_calc_delay(
+ mmc,
+ slot->cmd_out_hs400_delay);
+ if (slot->data_out_hs400_delay)
+ dout = octeontx2_mmc_calc_delay(
+ mmc,
+ slot->data_out_hs400_delay);
+ debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n",
+ __func__, mmc->dev->name,
+ slot->cmd_out_hs400_delay, cout,
+ slot->data_out_hs400_delay, dout);
+ } else {
+ cout = MMC_DEFAULT_HS400_CMD_OUT_TAP;
+ dout = MMC_DEFAULT_HS400_DATA_OUT_TAP;
+ }
+ is_hs400 = true;
+ break;
+ default:
+ pr_err("%s(%s): Invalid mode %d\n", __func__,
+ mmc->dev->name, mmc->selected_mode);
+ return -1;
+ }
+ debug("%s(%s): Not tuned, hs200: %d, hs200 tuned: %d, hs400: %d, hs400 tuned: %d, tuned: %d\n",
+ __func__, mmc->dev->name, is_hs200,
+ slot->hs200_tuned,
+ is_hs400, slot->hs400_tuned, slot->tuned);
+ /* Set some defaults */
+ if (is_hs200) {
+ slot->hs200_taps.u = 0;
+ slot->hs200_taps.s.cmd_out_tap = cout;
+ slot->hs200_taps.s.data_out_tap = dout;
+ slot->hs200_taps.s.cmd_in_tap = half;
+ slot->hs200_taps.s.data_in_tap = half;
+ } else if (is_hs400) {
+ slot->hs400_taps.u = 0;
+ slot->hs400_taps.s.cmd_out_tap = cout;
+ slot->hs400_taps.s.data_out_tap = dout;
+ slot->hs400_taps.s.cmd_in_tap = half;
+ slot->hs400_taps.s.data_in_tap = half;
+ } else {
+ slot->taps.u = 0;
+ slot->taps.s.cmd_out_tap = cout;
+ slot->taps.s.data_out_tap = dout;
+ slot->taps.s.cmd_in_tap = half;
+ slot->taps.s.data_in_tap = half;
+ }
+ }
+
+ if (is_hs200)
+ debug("%s(%s): hs200 taps: ci: %u, co: %u, di: %u, do: %u\n",
+ __func__, mmc->dev->name,
+ slot->hs200_taps.s.cmd_in_tap,
+ slot->hs200_taps.s.cmd_out_tap,
+ slot->hs200_taps.s.data_in_tap,
+ slot->hs200_taps.s.data_out_tap);
+ else if (is_hs400)
+ debug("%s(%s): hs400 taps: ci: %u, co: %u, di: %u, do: %u\n",
+ __func__, mmc->dev->name,
+ slot->hs400_taps.s.cmd_in_tap,
+ slot->hs400_taps.s.cmd_out_tap,
+ slot->hs400_taps.s.data_in_tap,
+ slot->hs400_taps.s.data_out_tap);
+ else
+ debug("%s(%s): taps: ci: %u, co: %u, di: %u, do: %u\n",
+ __func__, mmc->dev->name, slot->taps.s.cmd_in_tap,
+ slot->taps.s.cmd_out_tap,
+ slot->taps.s.data_in_tap,
+ slot->taps.s.data_out_tap);
+ octeontx_mmc_set_timing(mmc);
+ debug("%s: Done\n", __func__);
+ }
+
+ return 0;
+}
+
+/**
+ * Sets the MMC watchdog timer in microseconds
+ *
+ * @param mmc mmc device
+ * @param us timeout in microseconds, 0 for maximum timeout
+ */
+static void set_wdog(struct mmc *mmc, u64 us)
+{
+ union mio_emm_wdog wdog;
+ u64 val;
+
+ val = (us * mmc->clock) / 1000000;
+ if (val >= (1 << 26) || !us) {
+ if (us)
+ pr_debug("%s: warning: timeout %llu exceeds max value %llu, truncating\n",
+ __func__, us,
+ (u64)(((1ULL << 26) - 1) * 1000000ULL) /
+ mmc->clock);
+ val = (1 << 26) - 1;
+ }
+ wdog.u = 0;
+ wdog.s.clk_cnt = val;
+ write_csr(mmc, MIO_EMM_WDOG(), wdog.u);
+}
+
+/**
+ * Set the IO drive strength and slew
+ *
+ * @param mmc mmc device
+ */
+static void octeontx_mmc_io_drive_setup(struct mmc *mmc)
+{
+ if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_io_ctl io_ctl;
+
+ if (slot->drive < 0 || slot->slew < 0)
+ return;
+
+ io_ctl.u = 0;
+ io_ctl.s.drive = slot->drive;
+ io_ctl.s.slew = slot->slew;
+ write_csr(mmc, MIO_EMM_IO_CTL(), io_ctl.u);
+ }
+}
+
+/**
+ * Print switch errors
+ *
+ * @param mmc mmc device
+ */
+static void check_switch_errors(struct mmc *mmc)
+{
+ union mio_emm_switch emm_switch;
+
+ emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
+ if (emm_switch.s.switch_err0)
+ pr_err("%s: Switch power class error\n", mmc->cfg->name);
+ if (emm_switch.s.switch_err1)
+ pr_err("%s: Switch HS timing error\n", mmc->cfg->name);
+ if (emm_switch.s.switch_err2)
+ pr_err("%s: Switch bus width error\n", mmc->cfg->name);
+}
+
+static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch)
+{
+ union mio_emm_rsp_sts rsp_sts;
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ int bus_id = emm_switch.s.bus_id;
+ ulong start;
+
+ if (emm_switch.s.bus_id != 0) {
+ emm_switch.s.bus_id = 0;
+ write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
+ udelay(100);
+ emm_switch.s.bus_id = bus_id;
+ }
+ debug("%s(%s, 0x%llx)\n", __func__, mmc->dev->name, emm_switch.u);
+ write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
+
+ start = get_timer(0);
+ do {
+ rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
+ if (!rsp_sts.s.switch_val)
+ break;
+ udelay(100);
+ } while (get_timer(start) < 10);
+ if (rsp_sts.s.switch_val) {
+ pr_warn("%s(%s): Warning: writing 0x%llx to emm_switch timed out, status: 0x%llx\n",
+ __func__, mmc->dev->name, emm_switch.u, rsp_sts.u);
+ }
+ slot->cached_switch = emm_switch;
+ check_switch_errors(mmc);
+ slot->cached_switch.u = emm_switch.u;
+ debug("%s: emm_switch: 0x%llx, rsp_lo: 0x%llx\n",
+ __func__, read_csr(mmc, MIO_EMM_SWITCH()),
+ read_csr(mmc, MIO_EMM_RSP_LO()));
+}
+
+/**
+ * Given a delay in ps, return the tap delay count
+ *
+ * @param mmc mmc data structure
+ * @param delay delay in picoseconds
+ *
+ * @return Number of tap cycles or error if -1
+ */
+static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay)
+{
+ struct octeontx_mmc_host *host = mmc_to_host(mmc);
+
+ if (host->is_asim || host->is_emul)
+ return 63;
+
+ if (!host->timing_taps) {
+ pr_err("%s(%s): Error: host timing not calibrated\n",
+ __func__, mmc->dev->name);
+ return -1;
+ }
+ debug("%s(%s, %d) timing taps: %llu\n", __func__, mmc->dev->name,
+ delay, host->timing_taps);
+ return min_t(int, DIV_ROUND_UP(delay, host->timing_taps), 63);
+}
+
+/**
+ * Calibrates the delay based on the internal clock
+ *
+ * @param mmc Pointer to mmc data structure
+ *
+ * @return 0 for success or -ETIMEDOUT on error
+ *
+ * NOTE: On error a default value will be calculated.
+ */
+static int octeontx_mmc_calibrate_delay(struct mmc *mmc)
+{
+ union mio_emm_calb emm_calb;
+ union mio_emm_tap emm_tap;
+ union mio_emm_cfg emm_cfg;
+ union mio_emm_io_ctl emm_io_ctl;
+ union mio_emm_switch emm_switch;
+ union mio_emm_wdog emm_wdog;
+ union mio_emm_sts_mask emm_sts_mask;
+ union mio_emm_debug emm_debug;
+ union mio_emm_timing emm_timing;
+ struct octeontx_mmc_host *host = mmc_to_host(mmc);
+ ulong start;
+ u8 bus_id, bus_ena;
+
+ debug("%s: Calibrating delay\n", __func__);
+ if (host->is_asim || host->is_emul) {
+ debug(" No calibration for ASIM\n");
+ return 0;
+ }
+ emm_tap.u = 0;
+ if (host->calibrate_glitch) {
+ emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY;
+ } else {
+ /* Save registers */
+ emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
+ emm_io_ctl.u = read_csr(mmc, MIO_EMM_IO_CTL());
+ emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
+ emm_wdog.u = read_csr(mmc, MIO_EMM_WDOG());
+ emm_sts_mask.u = read_csr(mmc, MIO_EMM_STS_MASK());
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_timing.u = read_csr(mmc, MIO_EMM_TIMING());
+ bus_ena = emm_cfg.s.bus_ena;
+ bus_id = emm_switch.s.bus_id;
+ emm_cfg.s.bus_ena = 0;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+ udelay(1);
+ emm_cfg.s.bus_ena = 1ULL << 3;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+ mdelay(1);
+ emm_calb.u = 0;
+ write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
+ emm_calb.s.start = 1;
+ write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
+ start = get_timer(0);
+ /* This should only take 3 microseconds */
+ do {
+ udelay(5);
+ emm_tap.u = read_csr(mmc, MIO_EMM_TAP());
+ } while (!emm_tap.s.delay && get_timer(start) < 10);
+
+ emm_calb.s.start = 0;
+ write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
+
+ emm_cfg.s.bus_ena = 0;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+ udelay(1);
+ /* Restore registers */
+ emm_cfg.s.bus_ena = bus_ena;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+ if (host->tap_requires_noclk) {
+ /* Turn off the clock */
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_debug.s.emmc_clk_disable = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.s.rdsync_rst = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ }
+
+ write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u);
+ if (host->tap_requires_noclk) {
+ /* Turn the clock back on */
+ udelay(1);
+ emm_debug.s.rdsync_rst = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ udelay(1);
+ emm_debug.s.emmc_clk_disable = 0;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ }
+ udelay(1);
+ write_csr(mmc, MIO_EMM_IO_CTL(), emm_io_ctl.u);
+ bus_id = emm_switch.s.bus_id;
+ emm_switch.s.bus_id = 0;
+ write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
+ emm_switch.s.bus_id = bus_id;
+ write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
+ write_csr(mmc, MIO_EMM_WDOG(), emm_wdog.u);
+ write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
+ write_csr(mmc, MIO_EMM_RCA(), mmc->rca);
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+
+ if (!emm_tap.s.delay) {
+ pr_err("%s: Error: delay calibration failed, timed out.\n",
+ __func__);
+ /* Set to default value if timed out */
+ emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY;
+ return -ETIMEDOUT;
+ }
+ }
+ /* Round up */
+ host->timing_taps = (10 * 1000 * emm_tap.s.delay) / TOTAL_NO_OF_TAPS;
+ debug("%s(%s): timing taps: %llu, delay: %u\n",
+ __func__, mmc->dev->name, host->timing_taps, emm_tap.s.delay);
+ host->timing_calibrated = true;
+ return 0;
+}
+
+static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
+ union mio_emm_sample sample;
+
+ sample.u = 0;
+ sample.s.cmd_cnt = slot->cmd_clk_skew;
+ sample.s.dat_cnt = slot->dat_clk_skew;
+ write_csr(mmc, MIO_EMM_SAMPLE(), sample.u);
+ } else {
+ union mio_emm_timing timing;
+
+ timing.u = read_csr(mmc, MIO_EMM_TIMING());
+ if (mmc->selected_mode == MMC_HS_200) {
+ if (slot->hs200_tuned) {
+ timing.s.cmd_in_tap =
+ slot->hs200_taps.s.cmd_in_tap;
+ timing.s.data_in_tap =
+ slot->hs200_taps.s.data_in_tap;
+ } else {
+ pr_warn("%s(%s): Warning: hs200 timing not tuned\n",
+ __func__, mmc->dev->name);
+ timing.s.cmd_in_tap =
+ MMC_DEFAULT_HS200_CMD_IN_TAP;
+ timing.s.data_in_tap =
+ MMC_DEFAULT_HS200_DATA_IN_TAP;
+ }
+ } else if (mmc->selected_mode == MMC_HS_400) {
+ if (slot->hs400_tuned) {
+ timing.s.cmd_in_tap =
+ slot->hs400_taps.s.cmd_in_tap;
+ timing.s.data_in_tap =
+ slot->hs400_taps.s.data_in_tap;
+ } else if (slot->hs200_tuned) {
+ timing.s.cmd_in_tap =
+ slot->hs200_taps.s.cmd_in_tap;
+ timing.s.data_in_tap =
+ slot->hs200_taps.s.data_in_tap;
+ } else {
+ pr_warn("%s(%s): Warning: hs400 timing not tuned\n",
+ __func__, mmc->dev->name);
+ timing.s.cmd_in_tap =
+ MMC_DEFAULT_HS200_CMD_IN_TAP;
+ timing.s.data_in_tap =
+ MMC_DEFAULT_HS200_DATA_IN_TAP;
+ }
+ } else if (slot->tuned) {
+ timing.s.cmd_in_tap = slot->taps.s.cmd_in_tap;
+ timing.s.data_in_tap = slot->taps.s.data_in_tap;
+ } else {
+ timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP;
+ timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP;
+ }
+ octeontx_mmc_set_emm_timing(mmc, timing);
+ }
+
+ return 0;
+}
+
+/**
+ * Sets the default bus timing for the current mode.
+ *
+ * @param mmc mmc data structure
+ *
+ * @return 0 for success, error otherwise
+ */
+static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ union mio_emm_timing timing;
+ int cout_bdelay, dout_bdelay;
+ unsigned int cout_delay, dout_delay;
+ char env_name[32];
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX))
+ return 0;
+
+ debug("%s(%s)\n", __func__, mmc->dev->name);
+ if (slot->is_asim || slot->is_emul)
+ return 0;
+
+ octeontx_mmc_calibrate_delay(mmc);
+
+ if (mmc->clock < 26000000) {
+ cout_delay = 5000;
+ dout_delay = 5000;
+ } else if (mmc->clock <= 52000000) {
+ cout_delay = 2500;
+ dout_delay = 2500;
+ } else if (!mmc_is_mode_ddr(mmc->selected_mode)) {
+ cout_delay = slot->cmd_out_hs200_delay;
+ dout_delay = slot->data_out_hs200_delay;
+ } else {
+ cout_delay = slot->cmd_out_hs400_delay;
+ dout_delay = slot->data_out_hs400_delay;
+ }
+
+ snprintf(env_name, sizeof(env_name), "mmc%d_hs200_dout_delay_ps",
+ slot->bus_id);
+ dout_delay = env_get_ulong(env_name, 10, dout_delay);
+ debug("%s: dout_delay: %u\n", __func__, dout_delay);
+
+ cout_bdelay = octeontx2_mmc_calc_delay(mmc, cout_delay);
+ dout_bdelay = octeontx2_mmc_calc_delay(mmc, dout_delay);
+
+ debug("%s: cmd output delay: %u, data output delay: %u, cmd bdelay: %d, data bdelay: %d, clock: %d\n",
+ __func__, cout_delay, dout_delay, cout_bdelay, dout_bdelay,
+ mmc->clock);
+ if (cout_bdelay < 0 || dout_bdelay < 0) {
+ pr_err("%s: Error: could not calculate command and/or data clock skew\n",
+ __func__);
+ return -1;
+ }
+ timing.u = read_csr(mmc, MIO_EMM_TIMING());
+ timing.s.cmd_out_tap = cout_bdelay;
+ timing.s.data_out_tap = dout_bdelay;
+ if (mmc->selected_mode == MMC_HS_200) {
+ slot->hs200_taps.s.cmd_out_tap = cout_bdelay;
+ slot->hs200_taps.s.data_out_tap = dout_bdelay;
+ } else if (mmc->selected_mode == MMC_HS_400) {
+ slot->hs400_taps.s.cmd_out_tap = cout_bdelay;
+ slot->hs400_taps.s.data_out_tap = dout_bdelay;
+ } else {
+ slot->taps.s.cmd_out_tap = cout_bdelay;
+ slot->taps.s.data_out_tap = dout_bdelay;
+ }
+ octeontx_mmc_set_emm_timing(mmc, timing);
+ debug("%s(%s): bdelay: %d/%d, clock: %d, ddr: %s, timing taps: %llu, do: %d, di: %d, co: %d, ci: %d\n",
+ __func__, mmc->dev->name, cout_bdelay, dout_bdelay, mmc->clock,
+ mmc->ddr_mode ? "yes" : "no",
+ mmc_to_host(mmc)->timing_taps,
+ timing.s.data_out_tap,
+ timing.s.data_in_tap,
+ timing.s.cmd_out_tap,
+ timing.s.cmd_in_tap);
+
+ return 0;
+}
+
+static void octeontx_mmc_set_clock(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ uint clock;
+
+ clock = min(mmc->cfg->f_max, (uint)slot->clock);
+ clock = max(mmc->cfg->f_min, clock);
+ debug("%s(%s): f_min: %u, f_max: %u, clock: %u\n", __func__,
+ mmc->dev->name, mmc->cfg->f_min, mmc->cfg->f_max, clock);
+ slot->clock = clock;
+ mmc->clock = clock;
+}
+
+/**
+ * This switches I/O power as needed when switching between slots.
+ *
+ * @param mmc mmc data structure
+ */
+static void octeontx_mmc_switch_io(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_host *host = slot->host;
+ struct mmc *last_mmc = host->last_mmc;
+ static struct udevice *last_reg;
+ union mio_emm_cfg emm_cfg;
+ int bus;
+ static bool initialized;
+
+ /* First time? */
+ if (!initialized || mmc != host->last_mmc) {
+ struct mmc *ommc;
+
+ /* Switch to bus 3 which is unused */
+ emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
+ emm_cfg.s.bus_ena = 1 << 3;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+
+ /* Turn off all other I/O interfaces with first initialization
+ * if at least one supply was found.
+ */
+ for (bus = 0; bus <= OCTEONTX_MAX_MMC_SLOT; bus++) {
+ ommc = &host->slots[bus].mmc;
+
+ /* Handle self case later */
+ if (ommc == mmc || !ommc->vqmmc_supply)
+ continue;
+
+ /* Skip if we're not switching regulators */
+ if (last_reg == mmc->vqmmc_supply)
+ continue;
+
+ /* Turn off other regulators */
+ if (ommc->vqmmc_supply != mmc->vqmmc_supply)
+ regulator_set_enable(ommc->vqmmc_supply, false);
+ }
+ /* Turn ourself on */
+ if (mmc->vqmmc_supply && last_reg != mmc->vqmmc_supply)
+ regulator_set_enable(mmc->vqmmc_supply, true);
+ mdelay(1); /* Settle time */
+ /* Switch to new bus */
+ emm_cfg.s.bus_ena = 1 << slot->bus_id;
+ write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
+ last_reg = mmc->vqmmc_supply;
+ initialized = true;
+ return;
+ }
+
+ /* No change in device */
+ if (last_mmc == mmc)
+ return;
+
+ if (!last_mmc) {
+ pr_warn("%s(%s): No previous slot detected in IO slot switch!\n",
+ __func__, mmc->dev->name);
+ return;
+ }
+
+ debug("%s(%s): last: %s, supply: %p\n", __func__, mmc->dev->name,
+ last_mmc->dev->name, mmc->vqmmc_supply);
+
+ /* The supply is the same so we do nothing */
+ if (last_mmc->vqmmc_supply == mmc->vqmmc_supply)
+ return;
+
+ /* Turn off the old slot I/O supply */
+ if (last_mmc->vqmmc_supply) {
+ debug("%s(%s): Turning off IO to %s, supply: %s\n",
+ __func__, mmc->dev->name, last_mmc->dev->name,
+ last_mmc->vqmmc_supply->name);
+ regulator_set_enable(last_mmc->vqmmc_supply, false);
+ }
+ /* Turn on the new slot I/O supply */
+ if (mmc->vqmmc_supply) {
+ debug("%s(%s): Turning on IO to slot %d, supply: %s\n",
+ __func__, mmc->dev->name, slot->bus_id,
+ mmc->vqmmc_supply->name);
+ regulator_set_enable(mmc->vqmmc_supply, true);
+ }
+ /* Allow power to settle */
+ mdelay(1);
+}
+
+/**
+ * Called to switch between mmc devices
+ *
+ * @param mmc new mmc device
+ */
+static void octeontx_mmc_switch_to(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_slot *old_slot;
+ struct octeontx_mmc_host *host = slot->host;
+ union mio_emm_switch emm_switch;
+ union mio_emm_sts_mask emm_sts_mask;
+ union mio_emm_rca emm_rca;
+
+ if (slot->bus_id == host->last_slotid)
+ return;
+
+ debug("%s(%s) switching from slot %d to slot %d\n", __func__,
+ mmc->dev->name, host->last_slotid, slot->bus_id);
+ octeontx_mmc_switch_io(mmc);
+
+ if (host->last_slotid >= 0 && slot->valid) {
+ old_slot = &host->slots[host->last_slotid];
+ old_slot->cached_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
+ old_slot->cached_rca.u = read_csr(mmc, MIO_EMM_RCA());
+ }
+ if (mmc->rca)
+ write_csr(mmc, MIO_EMM_RCA(), mmc->rca);
+ emm_switch = slot->cached_switch;
+ do_switch(mmc, emm_switch);
+ emm_rca.u = 0;
+ emm_rca.s.card_rca = mmc->rca;
+ write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
+ mdelay(100);
+
+ set_wdog(mmc, 100000);
+ if (octeontx_mmc_set_output_bus_timing(mmc) ||
+ octeontx_mmc_set_input_bus_timing(mmc))
+ pr_err("%s(%s): Error setting bus timing\n", __func__,
+ mmc->dev->name);
+ octeontx_mmc_io_drive_setup(mmc);
+
+ emm_sts_mask.u = 0;
+ emm_sts_mask.s.sts_msk = 1 << 7 | 1 << 22 | 1 << 23 | 1 << 19;
+ write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
+ host->last_slotid = slot->bus_id;
+ host->last_mmc = mmc;
+ mdelay(10);
+}
+
+/**
+ * Perform initial timing configuration
+ *
+ * @param mmc mmc device
+ *
+ * @return 0 for success
+ *
+ * NOTE: This will need to be updated when new silicon comes out
+ */
+static int octeontx_mmc_init_timing(struct mmc *mmc)
+{
+ union mio_emm_timing timing;
+
+ if (mmc_to_slot(mmc)->is_asim || mmc_to_slot(mmc)->is_emul)
+ return 0;
+
+ debug("%s(%s)\n", __func__, mmc->dev->name);
+ timing.u = 0;
+ timing.s.cmd_out_tap = MMC_DEFAULT_CMD_OUT_TAP;
+ timing.s.data_out_tap = MMC_DEFAULT_DATA_OUT_TAP;
+ timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP;
+ timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP;
+ octeontx_mmc_set_emm_timing(mmc, timing);
+ return 0;
+}
+
+/**
+ * Perform low-level initialization
+ *
+ * @param mmc mmc device
+ *
+ * @return 0 for success, error otherwise
+ */
+static int octeontx_mmc_init_lowlevel(struct mmc *mmc)
+{
+ struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
+ struct octeontx_mmc_host *host = slot->host;
+ union mio_emm_switch emm_switch;
+ u32 clk_period;
+
+ debug("%s(%s): lowlevel init for slot %d\n", __func__,
+ mmc->dev->name, slot->bus_id);
+ host->emm_cfg.s.bus_ena &= ~(1 << slot->bus_id);
+ write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u);
+ udelay(100);
+ host->emm_cfg.s.bus_ena |= 1 << slot->bus_id;
+ write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u);
+ udelay(10);
+ slot->clock = mmc->cfg->f_min;
+ octeontx_mmc_set_clock(&slot->mmc);
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
+ if (host->cond_clock_glitch) {
+ union mio_emm_debug emm_debug;
+
+ emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
+ emm_debug.s.clk_on = 1;
+ write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
+ }
+ octeontx_mmc_calibrate_delay(&slot->mmc);
+ }
+
+ clk_period = octeontx_mmc_calc_clk_period(mmc);
+ emm_switch.u = 0;
+ emm_switch.s.power_class = 10;
+ emm_switch.s.clk_lo = clk_period / 2;
+ emm_switch.s.clk_hi = clk_period / 2;
+
+ emm_switch.s.bus_id = slot->bus_id;
+ debug("%s: Performing switch\n", __func__);
+ do_switch(mmc, emm_switch);
+ slot->cached_switch.u = emm_switch.u;
+
+ if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX))
+ octeontx_mmc_init_timing(mmc);
+
+ set_wdog(mmc, 1000000); /* Set to 1 second */
+ write_csr(mmc, MIO_EMM_STS_MASK(), 0xe4390080ull);
+ write_csr(mmc, MIO_EMM_RCA(), 1);
+ mdelay(10);
+ debug("%s: done\n", __func__);
+ return 0;
+}
+
+/**
+ * Translates a voltage number to bits in MMC register
+ *
+ * @param voltage voltage in microvolts
+ *
+ * @return MMC register value for voltage
+ */
+static u32 xlate_voltage(u32 voltage)
+{
+ u32 volt = 0;
+
+ /* Convert to millivolts */
+ voltage /= 1000;
+ if (voltage >= 1650 && voltage <= 1950)
+ volt |= MMC_VDD_165_195;
+ if (voltage >= 2000 && voltage <= 2100)
+ volt |= MMC_VDD_20_21;
+ if (voltage >= 2100 && voltage <= 2200)
+ volt |= MMC_VDD_21_22;
+ if (voltage >= 2200 && voltage <= 2300)
+ volt |= MMC_VDD_22_23;
+ if (voltage >= 2300 && voltage <= 2400)
+ volt |= MMC_VDD_23_24;
+ if (voltage >= 2400 && voltage <= 2500)
+ volt |= MMC_VDD_24_25;
+ if (voltage >= 2500 && voltage <= 2600)
+ volt |= MMC_VDD_25_26;
+ if (voltage >= 2600 && voltage <= 2700)
+ volt |= MMC_VDD_26_27;
+ if (voltage >= 2700 && voltage <= 2800)
+ volt |= MMC_VDD_27_28;
+ if (voltage >= 2800 && voltage <= 2900)
+ volt |= MMC_VDD_28_29;
+ if (voltage >= 2900 && voltage <= 3000)
+ volt |= MMC_VDD_29_30;
+ if (voltage >= 3000 && voltage <= 3100)
+ volt |= MMC_VDD_30_31;
+ if (voltage >= 3100 && voltage <= 3200)
+ volt |= MMC_VDD_31_32;
+ if (voltage >= 3200 && voltage <= 3300)
+ volt |= MMC_VDD_32_33;
+ if (voltage >= 3300 && voltage <= 3400)
+ volt |= MMC_VDD_33_34;
+ if (voltage >= 3400 && voltage <= 3500)
+ volt |= MMC_VDD_34_35;
+ if (voltage >= 3500 && voltage <= 3600)
+ volt |= MMC_VDD_35_36;
+
+ return volt;
+}
+
+/**
+ * Check if a slot is valid in the device tree
+ *
+ * @param dev slot device to check
+ *
+ * @return true if status reports "ok" or "okay" or if no status,
+ * false otherwise.
+ */
+static bool octeontx_mmc_get_valid(struct udevice *dev)
+{
+ const char *stat = ofnode_read_string(dev->node, "status");
+
+ if (!stat || !strncmp(stat, "ok", 2))
+ return true;
+ else
+ return false;
+}
+
+/**
+ * Reads slot configuration from the device tree
+ *
+ * @param dev slot device
+ *
+ * @return 0 on success, otherwise error
+ */
+static int octeontx_mmc_get_config(struct udevice *dev)
+{
+ struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
+ uint voltages[2];
+ uint low, high;
+ char env_name[32];
+ int err;
+ ofnode node = dev->node;
+ int bus_width = 1;
+ ulong new_max_freq;
+
+ debug("%s(%s)", __func__, dev->name);
+ slot->cfg.name = dev->name;
+
+ slot->cfg.f_max = ofnode_read_s32_default(dev->node, "max-frequency",
+ 26000000);
+ snprintf(env_name, sizeof(env_name), "mmc_max_frequency%d",
+ slot->bus_id);
+
+ new_max_freq = env_get_ulong(env_name, 10, slot->cfg.f_max);
+ debug("Reading %s, got %lu\n", env_name, new_max_freq);
+
+ if (new_max_freq != slot->cfg.f_max) {
+ printf("Overriding device tree MMC maximum frequency %u to %lu\n",
+ slot->cfg.f_max, new_max_freq);
+ slot->cfg.f_max = new_max_freq;
+ }
+ slot->cfg.f_min = 400000;
+ slot->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
+ slot->hs400_tuning_block =
+ ofnode_read_s32_default(dev->node,
+ "marvell,hs400-tuning-block",
+ -1);
+ debug("%s(%s): mmc HS400 tuning block: %d\n", __func__,
+ dev->name, slot->hs400_tuning_block);
+
+ slot->hs200_tap_adj =
+ ofnode_read_s32_default(dev->node,
+ "marvell,hs200-tap-adjust", 0);
+ debug("%s(%s): hs200-tap-adjust: %d\n", __func__, dev->name,
+ slot->hs200_tap_adj);
+ slot->hs400_tap_adj =
+ ofnode_read_s32_default(dev->node,
+ "marvell,hs400-tap-adjust", 0);
+ debug("%s(%s): hs400-tap-adjust: %d\n", __func__, dev->name,
+ slot->hs400_tap_adj);
+ }
+
+ err = ofnode_read_u32_array(dev->node, "voltage-ranges", voltages, 2);
+ if (err) {
+ slot->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
+ } else {
+ low = xlate_voltage(voltages[0]);
+ high = xlate_voltage(voltages[1]);
+ debug(" low voltage: 0x%x (%u), high: 0x%x (%u)\n",
+ low, voltages[0], high, voltages[1]);
+ if (low > high || !low || !high) {
+ pr_err("Invalid MMC voltage range [%u-%u] specified for %s\n",
+ low, high, dev->name);
+ return -1;
+ }
+ slot->cfg.voltages = 0;
+ do {
+ slot->cfg.voltages |= low;
+ low <<= 1;
+ } while (low <= high);
+ }
+ debug("%s: config voltages: 0x%x\n", __func__, slot->cfg.voltages);
+ slot->slew = ofnode_read_s32_default(node, "cavium,clk-slew", -1);
+ slot->drive = ofnode_read_s32_default(node, "cavium,drv-strength", -1);
+ gpio_request_by_name(dev, "cd-gpios", 0, &slot->cd_gpio, GPIOD_IS_IN);
+ slot->cd_inverted = ofnode_read_bool(node, "cd-inverted");
+ gpio_request_by_name(dev, "wp-gpios", 0, &slot->wp_gpio, GPIOD_IS_IN);
+ slot->wp_inverted = ofnode_read_bool(node, "wp-inverted");
+ if (slot->cfg.voltages & MMC_VDD_165_195) {
+ slot->is_1_8v = true;
+ slot->is_3_3v = false;
+ } else if (slot->cfg.voltages & (MMC_VDD_30_31 | MMC_VDD_31_32 |
+ MMC_VDD_33_34 | MMC_VDD_34_35 |
+ MMC_VDD_35_36)) {
+ slot->is_1_8v = false;
+ slot->is_3_3v = true;
+ }
+
+ bus_width = ofnode_read_u32_default(node, "bus-width", 1);
+ /* Note fall-through */
+ switch (bus_width) {
+ case 8:
+ slot->cfg.host_caps |= MMC_MODE_8BIT;
+ case 4:
+ slot->cfg.host_caps |= MMC_MODE_4BIT;
+ case 1:
+ slot->cfg.host_caps |= MMC_MODE_1BIT;
+ break;
+ }
+ if (ofnode_read_bool(node, "no-1-8-v")) {
+ slot->is_3_3v = true;
+ slot->is_1_8v = false;
+ if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34)))
+ pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n",
+ __func__, dev->name);
+ }
+ if (ofnode_read_bool(node, "mmc-ddr-3-3v")) {
+ slot->is_3_3v = true;
+ slot->is_1_8v = false;
+ if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34)))
+ pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n",
+ __func__, dev->name);
+ }
+ if (ofnode_read_bool(node, "cap-sd-highspeed") ||
+ ofnode_read_bool(node, "cap-mmc-highspeed") ||
+ ofnode_read_bool(node, "sd-uhs-sdr25"))
+ slot->cfg.host_caps |= MMC_MODE_HS;
+ if (slot->cfg.f_max >= 50000000 &&
+ slot->cfg.host_caps & MMC_MODE_HS)
+ slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
+ if (ofnode_read_bool(node, "sd-uhs-sdr50"))
+ slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
+ if (ofnode_read_bool(node, "sd-uhs-ddr50"))
+ slot->cfg.host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz |
+ MMC_MODE_DDR_52MHz;
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
+ if (!slot->is_asim && !slot->is_emul) {
+ if (ofnode_read_bool(node, "mmc-hs200-1_8v"))
+ slot->cfg.host_caps |= MMC_MODE_HS200 |
+ MMC_MODE_HS_52MHz;
+ if (ofnode_read_bool(node, "mmc-hs400-1_8v"))
+ slot->cfg.host_caps |= MMC_MODE_HS400 |
+ MMC_MODE_HS_52MHz |
+ MMC_MODE_HS200 |
+ MMC_MODE_DDR_52MHz;
+ slot->cmd_out_hs200_delay =
+ ofnode_read_u32_default(node,
+ "marvell,cmd-out-hs200-dly",
+ MMC_DEFAULT_HS200_CMD_OUT_DLY);
+ debug("%s(%s): HS200 cmd out delay: %d\n",
+ __func__, dev->name, slot->cmd_out_hs200_delay);
+ slot->data_out_hs200_delay =
+ ofnode_read_u32_default(node,
+ "marvell,data-out-hs200-dly",
+ MMC_DEFAULT_HS200_DATA_OUT_DLY);
+ debug("%s(%s): HS200 data out delay: %d\n",
+ __func__, dev->name, slot->data_out_hs200_delay);
+ slot->cmd_out_hs400_delay =
+ ofnode_read_u32_default(node,
+ "marvell,cmd-out-hs400-dly",
+ MMC_DEFAULT_HS400_CMD_OUT_DLY);
+ debug("%s(%s): HS400 cmd out delay: %d\n",
+ __func__, dev->name, slot->cmd_out_hs400_delay);
+ slot->data_out_hs400_delay =
+ ofnode_read_u32_default(node,
+ "marvell,data-out-hs400-dly",
+ MMC_DEFAULT_HS400_DATA_OUT_DLY);
+ debug("%s(%s): HS400 data out delay: %d\n",
+ __func__, dev->name, slot->data_out_hs400_delay);
+ }
+ }
+
+ slot->disable_ddr = ofnode_read_bool(node, "marvell,disable-ddr");
+ slot->non_removable = ofnode_read_bool(node, "non-removable");
+ slot->cmd_clk_skew = ofnode_read_u32_default(node,
+ "cavium,cmd-clk-skew", 0);
+ slot->dat_clk_skew = ofnode_read_u32_default(node,
+ "cavium,dat-clk-skew", 0);
+ debug("%s(%s): host caps: 0x%x\n", __func__,
+ dev->name, slot->cfg.host_caps);
+ return 0;
+}
+
+/**
+ * Probes a MMC slot
+ *
+ * @param dev mmc device
+ *
+ * @return 0 for success, error otherwise
+ */
+static int octeontx_mmc_slot_probe(struct udevice *dev)
+{
+ struct octeontx_mmc_slot *slot;
+ struct mmc *mmc;
+ int err;
+
+ printk("%s (%d)\n", __func__, __LINE__); // test-only
+ debug("%s(%s)\n", __func__, dev->name);
+ if (!host_probed) {
+ pr_err("%s(%s): Error: host not probed yet\n",
+ __func__, dev->name);
+ }
+ slot = dev_to_mmc_slot(dev);
+ mmc = &slot->mmc;
+ mmc->dev = dev;
+
+ slot->valid = false;
+ if (!octeontx_mmc_get_valid(dev)) {
+ debug("%s(%s): slot is invalid\n", __func__, dev->name);
+ return -ENODEV;
+ }
+
+ debug("%s(%s): Getting config\n", __func__, dev->name);
+ err = octeontx_mmc_get_config(dev);
+ if (err) {
+ pr_err("probe(%s): Error getting config\n", dev->name);
+ return err;
+ }
+
+ debug("%s(%s): mmc bind, mmc: %p\n", __func__, dev->name, &slot->mmc);
+ err = mmc_bind(dev, &slot->mmc, &slot->cfg);
+ if (err) {
+ pr_err("%s(%s): Error binding mmc\n", __func__, dev->name);
+ return -1;
+ }
+
+ /* For some reason, mmc_bind always assigns priv to the device */
+ slot->mmc.priv = slot;
+
+ debug("%s(%s): lowlevel init\n", __func__, dev->name);
+ err = octeontx_mmc_init_lowlevel(mmc);
+ if (err) {
+ pr_err("probe(%s): Low-level init failed\n", dev->name);
+ return err;
+ }
+
+ slot->valid = true;
+
+ debug("%s(%s):\n"
+ " base address : %p\n"
+ " bus id : %d\n", __func__, dev->name,
+ slot->base_addr, slot->bus_id);
+
+ return err;
+}
+
+/**
+ * MMC slot driver operations
+ */
+static const struct dm_mmc_ops octeontx_hsmmc_ops = {
+ .send_cmd = octeontx_mmc_dev_send_cmd,
+ .set_ios = octeontx_mmc_set_ios,
+ .get_cd = octeontx_mmc_get_cd,
+ .get_wp = octeontx_mmc_get_wp,
+#ifdef MMC_SUPPORTS_TUNING
+ .execute_tuning = octeontx_mmc_execute_tuning,
+#endif
+};
+
+static const struct udevice_id octeontx_hsmmc_ids[] = {
+ { .compatible = "mmc-slot" },
+ { }
+};
+
+U_BOOT_DRIVER(octeontx_hsmmc_slot) = {
+ .name = "octeontx_hsmmc_slot",
+ .id = UCLASS_MMC,
+ .of_match = of_match_ptr(octeontx_hsmmc_ids),
+ .probe = octeontx_mmc_slot_probe,
+ .ops = &octeontx_hsmmc_ops,
+};
+
+/*****************************************************************
+ * PCI host driver
+ *
+ * The PCI host driver contains the resources used by all of the
+ * slot drivers.
+ *
+ * The slot drivers are pseudo drivers.
+ */
+
+/**
+ * Probe the MMC host controller
+ *
+ * @param dev mmc host controller device
+ *
+ * @return 0 for success, -1 on error
+ */
+static int octeontx_mmc_host_probe(struct udevice *dev)
+{
+ pci_dev_t bdf = dm_pci_get_bdf(dev);
+ struct octeontx_mmc_host *host = dev_get_priv(dev);
+ union mio_emm_int emm_int;
+ u8 rev;
+
+ debug("%s(%s): Entry host: %p\n", __func__, dev->name, host);
+
+ if (!octeontx_mmc_get_valid(dev)) {
+ debug("%s(%s): mmc host not valid\n", __func__, dev->name);
+ return -ENODEV;
+ }
+ memset(host, 0, sizeof(*host));
+ host->base_addr = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0,
+ PCI_REGION_MEM);
+ if (!host->base_addr) {
+ pr_err("%s: Error: MMC base address not found\n", __func__);
+ return -1;
+ }
+ host->dev = dev;
+ debug("%s(%s): Base address: %p\n", __func__, dev->name,
+ host->base_addr);
+ if (!dev_has_of_node(dev)) {
+ pr_err("%s: No device tree information found\n", __func__);
+ return -1;
+ }
+ host->node = dev->node;
+ dev->req_seq = PCI_FUNC(bdf);
+ host->last_slotid = -1;
+ if (otx_is_platform(PLATFORM_ASIM))
+ host->is_asim = true;
+ if (otx_is_platform(PLATFORM_EMULATOR))
+ host->is_emul = true;
+ host->dma_wait_delay =
+ ofnode_read_u32_default(dev->node, "marvell,dma-wait-delay", 1);
+ /* Force reset of eMMC */
+ writeq(0, host->base_addr + MIO_EMM_CFG());
+ debug("%s: Clearing MIO_EMM_CFG\n", __func__);
+ udelay(100);
+ emm_int.u = readq(host->base_addr + MIO_EMM_INT());
+ debug("%s: Writing 0x%llx to MIO_EMM_INT\n", __func__, emm_int.u);
+ writeq(emm_int.u, host->base_addr + MIO_EMM_INT());
+
+ debug("%s(%s): Getting I/O clock\n", __func__, dev->name);
+ host->sys_freq = octeontx_get_io_clock();
+ debug("%s(%s): I/O clock %llu\n", __func__, dev->name, host->sys_freq);
+
+ if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
+ /* Flags for issues to work around */
+ dm_pci_read_config8(dev, PCI_REVISION_ID, &rev);
+ if (otx_is_soc(CN96XX)) {
+ debug("%s: CN96XX revision %d\n", __func__, rev);
+ switch (rev) {
+ case 0:
+ host->calibrate_glitch = true;
+ host->cond_clock_glitch = true;
+ break;
+ case 1:
+ break;
+ case 2:
+ break;
+ case 0x10: /* C0 */
+ host->hs400_skew_needed = true;
+ debug("HS400 skew support enabled\n");
+ fallthrough;
+ default:
+ debug("CN96XX rev C0+ detected\n");
+ host->tap_requires_noclk = true;
+ break;
+ }
+ } else if (otx_is_soc(CN95XX)) {
+ if (!rev)
+ host->cond_clock_glitch = true;
+ }
+ }
+
+ host_probed = true;
+
+ return 0;
+}
+
+/**
+ * This performs some initial setup before a probe occurs.
+ *
+ * @param dev: MMC slot device
+ *
+ * @return 0 for success, -1 on failure
+ *
+ * Do some pre-initialization before probing a slot.
+ */
+static int octeontx_mmc_host_child_pre_probe(struct udevice *dev)
+{
+ struct octeontx_mmc_host *host = dev_get_priv(dev_get_parent(dev));
+ struct octeontx_mmc_slot *slot;
+ struct mmc_uclass_priv *upriv;
+ ofnode node = dev->node;
+ u32 bus_id;
+ char name[16];
+ int err;
+
+ debug("%s(%s) Pre-Probe\n", __func__, dev->name);
+ if (ofnode_read_u32(node, "reg", &bus_id)) {
+ pr_err("%s(%s): Error: \"reg\" not found in device tree\n",
+ __func__, dev->name);
+ return -1;
+ }
+ if (bus_id > OCTEONTX_MAX_MMC_SLOT) {
+ pr_err("%s(%s): Error: \"reg\" out of range of 0..%d\n",
+ __func__, dev->name, OCTEONTX_MAX_MMC_SLOT);
+ return -1;
+ }
+
+ slot = &host->slots[bus_id];
+ dev->priv = slot;
+ slot->host = host;
+ slot->bus_id = bus_id;
+ slot->dev = dev;
+ slot->base_addr = host->base_addr;
+ slot->is_asim = host->is_asim;
+ slot->is_emul = host->is_emul;
+
+ snprintf(name, sizeof(name), "octeontx-mmc%d", bus_id);
+ err = device_set_name(dev, name);
+
+ if (!dev->uclass_priv) {
+ debug("%s(%s): Allocating uclass priv\n", __func__,
+ dev->name);
+ upriv = calloc(1, sizeof(struct mmc_uclass_priv));
+ if (!upriv)
+ return -ENOMEM;
+ dev->uclass_priv = upriv;
+ dev->uclass->priv = upriv;
+ } else {
+ upriv = dev->uclass_priv;
+ }
+
+ upriv->mmc = &slot->mmc;
+ debug("%s: uclass priv: %p, mmc: %p\n", dev->name, upriv, upriv->mmc);
+
+ debug("%s: ret: %d\n", __func__, err);
+ return err;
+}
+
+static const struct udevice_id octeontx_hsmmc_host_ids[] = {
+ { .compatible = "cavium,thunder-8890-mmc" },
+ { }
+};
+
+U_BOOT_DRIVER(octeontx_hsmmc_host) = {
+ .name = "octeontx_hsmmc_host",
+ .id = UCLASS_MISC,
+ .of_match = of_match_ptr(octeontx_hsmmc_host_ids),
+ .probe = octeontx_mmc_host_probe,
+ .priv_auto_alloc_size = sizeof(struct octeontx_mmc_host),
+ .child_pre_probe = octeontx_mmc_host_child_pre_probe,
+ .flags = DM_FLAG_PRE_RELOC,
+};
+
+static struct pci_device_id octeontx_mmc_supported[] = {
+ { PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_EMMC) },
+ { },
+};
+
+U_BOOT_PCI_DEVICE(octeontx_hsmmc_host, octeontx_mmc_supported);