| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * ECDSA signature verification for u-boot |
| * |
| * This implements the firmware-side wrapper for ECDSA verification. It bridges |
| * the struct crypto_algo API to the ECDSA uclass implementations. |
| * |
| * Copyright (c) 2020, Alexandru Gagniuc <mr.nuke.me@gmail.com> |
| */ |
| |
| #include <crypto/ecdsa-uclass.h> |
| #include <dm/uclass.h> |
| #include <u-boot/ecdsa.h> |
| |
| /* |
| * Derive size of an ECDSA key from the curve name |
| * |
| * While it's possible to extract the key size by using string manipulation, |
| * use a list of known curves for the time being. |
| */ |
| static int ecdsa_key_size(const char *curve_name) |
| { |
| if (!strcmp(curve_name, "prime256v1")) |
| return 256; |
| else if (!strcmp(curve_name, "secp384r1")) |
| return 384; |
| |
| return 0; |
| } |
| |
| static int fdt_get_key(struct ecdsa_public_key *key, const void *fdt, int node) |
| { |
| int x_len, y_len; |
| |
| key->curve_name = fdt_getprop(fdt, node, "ecdsa,curve", NULL); |
| if (!key->curve_name) { |
| debug("Error: ecdsa cannot get 'ecdsa,curve' property from key. Likely not an ecdsa key.\n"); |
| return -ENOMSG; |
| } |
| |
| key->size_bits = ecdsa_key_size(key->curve_name); |
| if (key->size_bits == 0) { |
| debug("Unknown ECDSA curve '%s'", key->curve_name); |
| return -EINVAL; |
| } |
| |
| key->x = fdt_getprop(fdt, node, "ecdsa,x-point", &x_len); |
| key->y = fdt_getprop(fdt, node, "ecdsa,y-point", &y_len); |
| |
| if (!key->x || !key->y) |
| return -EINVAL; |
| |
| if (x_len != (key->size_bits / 8) || y_len != (key->size_bits / 8)) { |
| printf("%s: node=%d, curve@%p x@%p+%i y@%p+%i\n", __func__, |
| node, key->curve_name, key->x, x_len, key->y, y_len); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int ecdsa_verify_hash(struct udevice *dev, |
| const struct image_sign_info *info, |
| const void *hash, const void *sig, uint sig_len) |
| { |
| const struct ecdsa_ops *ops = device_get_ops(dev); |
| const struct checksum_algo *algo = info->checksum; |
| struct ecdsa_public_key key; |
| int sig_node, key_node, ret; |
| |
| if (!ops || !ops->verify) |
| return -ENODEV; |
| |
| if (info->required_keynode > 0) { |
| ret = fdt_get_key(&key, info->fdt_blob, info->required_keynode); |
| if (ret < 0) |
| return ret; |
| |
| return ops->verify(dev, &key, hash, algo->checksum_len, |
| sig, sig_len); |
| } |
| |
| sig_node = fdt_subnode_offset(info->fdt_blob, 0, FIT_SIG_NODENAME); |
| if (sig_node < 0) |
| return -ENOENT; |
| |
| /* Try all possible keys under the "/signature" node */ |
| fdt_for_each_subnode(key_node, info->fdt_blob, sig_node) { |
| ret = fdt_get_key(&key, info->fdt_blob, key_node); |
| if (ret < 0) |
| continue; |
| |
| ret = ops->verify(dev, &key, hash, algo->checksum_len, |
| sig, sig_len); |
| |
| /* On success, don't worry about remaining keys */ |
| if (!ret) |
| return 0; |
| } |
| |
| return -EPERM; |
| } |
| |
| int ecdsa_verify(struct image_sign_info *info, |
| const struct image_region region[], int region_count, |
| uint8_t *sig, uint sig_len) |
| { |
| const struct checksum_algo *algo = info->checksum; |
| uint8_t hash[algo->checksum_len]; |
| struct udevice *dev; |
| int ret; |
| |
| ret = uclass_first_device_err(UCLASS_ECDSA, &dev); |
| if (ret) { |
| debug("ECDSA: Could not find ECDSA implementation: %d\n", ret); |
| return ret; |
| } |
| |
| ret = algo->calculate(algo->name, region, region_count, hash); |
| if (ret < 0) |
| return -EINVAL; |
| |
| return ecdsa_verify_hash(dev, info, hash, sig, sig_len); |
| } |
| |
| U_BOOT_CRYPTO_ALGO(ecdsa256) = { |
| .name = "ecdsa256", |
| .key_len = ECDSA256_BYTES, |
| .verify = ecdsa_verify, |
| }; |
| |
| U_BOOT_CRYPTO_ALGO(ecdsa384) = { |
| .name = "ecdsa384", |
| .key_len = ECDSA384_BYTES, |
| .verify = ecdsa_verify, |
| }; |
| |
| /* |
| * uclass definition for ECDSA API |
| * |
| * We don't implement any wrappers around ecdsa_ops->verify() because it's |
| * trivial to call ops->verify(). |
| */ |
| UCLASS_DRIVER(ecdsa) = { |
| .id = UCLASS_ECDSA, |
| .name = "ecdsa_verifier", |
| }; |