blob: e87a628c7f3b6006f8cf808f73143a48c314ea28 [file] [log] [blame]
/*
* (C) Copyright 2004
* Texas Instruments
* Richard Woodruff <r-woodruff2@ti.com>
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
* Alex Zuepke <azu@sysgo.de>
*
* (C) Copyright 2002
* Gary Jennejohn, DENX Software Engineering, <gj@denx.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/bits.h>
#include <asm/arch/omap2420.h>
#include <asm/proc-armv/ptrace.h>
extern void reset_cpu(ulong addr);
#define TIMER_LOAD_VAL 0
/* macro to read the 32 bit timer */
#define READ_TIMER (*(volatile ulong *)(CFG_TIMERBASE+TCRR))
#ifdef CONFIG_USE_IRQ
/* enable IRQ interrupts */
void enable_interrupts (void)
{
unsigned long temp;
__asm__ __volatile__("mrs %0, cpsr\n"
"bic %0, %0, #0x80\n"
"msr cpsr_c, %0"
: "=r" (temp)
:
: "memory");
}
/*
* disable IRQ/FIQ interrupts
* returns true if interrupts had been enabled before we disabled them
*/
int disable_interrupts (void)
{
unsigned long old,temp;
__asm__ __volatile__("mrs %0, cpsr\n"
"orr %1, %0, #0xc0\n"
"msr cpsr_c, %1"
: "=r" (old), "=r" (temp)
:
: "memory");
return(old & 0x80) == 0;
}
#else
void enable_interrupts (void)
{
return;
}
int disable_interrupts (void)
{
return 0;
}
#endif
void bad_mode (void)
{
panic ("Resetting CPU ...\n");
reset_cpu (0);
}
void show_regs (struct pt_regs *regs)
{
unsigned long flags;
const char *processor_modes[] = {
"USER_26", "FIQ_26", "IRQ_26", "SVC_26",
"UK4_26", "UK5_26", "UK6_26", "UK7_26",
"UK8_26", "UK9_26", "UK10_26", "UK11_26",
"UK12_26", "UK13_26", "UK14_26", "UK15_26",
"USER_32", "FIQ_32", "IRQ_32", "SVC_32",
"UK4_32", "UK5_32", "UK6_32", "ABT_32",
"UK8_32", "UK9_32", "UK10_32", "UND_32",
"UK12_32", "UK13_32", "UK14_32", "SYS_32",
};
flags = condition_codes (regs);
printf ("pc : [<%08lx>] lr : [<%08lx>]\n"
"sp : %08lx ip : %08lx fp : %08lx\n",
instruction_pointer (regs),
regs->ARM_lr, regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
printf ("r10: %08lx r9 : %08lx r8 : %08lx\n",
regs->ARM_r10, regs->ARM_r9, regs->ARM_r8);
printf ("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
regs->ARM_r7, regs->ARM_r6, regs->ARM_r5, regs->ARM_r4);
printf ("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
regs->ARM_r3, regs->ARM_r2, regs->ARM_r1, regs->ARM_r0);
printf ("Flags: %c%c%c%c",
flags & CC_N_BIT ? 'N' : 'n',
flags & CC_Z_BIT ? 'Z' : 'z',
flags & CC_C_BIT ? 'C' : 'c', flags & CC_V_BIT ? 'V' : 'v');
printf (" IRQs %s FIQs %s Mode %s%s\n",
interrupts_enabled (regs) ? "on" : "off",
fast_interrupts_enabled (regs) ? "on" : "off",
processor_modes[processor_mode (regs)],
thumb_mode (regs) ? " (T)" : "");
}
void do_undefined_instruction (struct pt_regs *pt_regs)
{
printf ("undefined instruction\n");
show_regs (pt_regs);
bad_mode ();
}
void do_software_interrupt (struct pt_regs *pt_regs)
{
printf ("software interrupt\n");
show_regs (pt_regs);
bad_mode ();
}
void do_prefetch_abort (struct pt_regs *pt_regs)
{
printf ("prefetch abort\n");
show_regs (pt_regs);
bad_mode ();
}
void do_data_abort (struct pt_regs *pt_regs)
{
printf ("data abort\n");
show_regs (pt_regs);
bad_mode ();
}
void do_not_used (struct pt_regs *pt_regs)
{
printf ("not used\n");
show_regs (pt_regs);
bad_mode ();
}
void do_fiq (struct pt_regs *pt_regs)
{
printf ("fast interrupt request\n");
show_regs (pt_regs);
bad_mode ();
}
void do_irq (struct pt_regs *pt_regs)
{
printf ("interrupt request\n");
show_regs (pt_regs);
bad_mode ();
}
static ulong timestamp;
static ulong lastinc;
/* nothing really to do with interrupts, just starts up a counter. */
int interrupt_init (void)
{
int32_t val;
/* Start the counter ticking up */
*((int32_t *) (CFG_TIMERBASE + TLDR)) = TIMER_LOAD_VAL; /* reload value on overflow*/
val = (CFG_PVT << 2) | BIT5 | BIT1 | BIT0; /* mask to enable timer*/
*((int32_t *) (CFG_TIMERBASE + TCLR)) = val; /* start timer */
reset_timer_masked(); /* init the timestamp and lastinc value */
return(0);
}
/*
* timer without interrupts
*/
void reset_timer (void)
{
reset_timer_masked ();
}
ulong get_timer (ulong base)
{
return get_timer_masked () - base;
}
void set_timer (ulong t)
{
timestamp = t;
}
/* delay x useconds AND perserve advance timstamp value */
void udelay (unsigned long usec)
{
ulong tmo, tmp;
if (usec >= 1000) { /* if "big" number, spread normalization to seconds */
tmo = usec / 1000; /* start to normalize for usec to ticks per sec */
tmo *= CFG_HZ; /* find number of "ticks" to wait to achieve target */
tmo /= 1000; /* finish normalize. */
} else { /* else small number, don't kill it prior to HZ multiply */
tmo = usec * CFG_HZ;
tmo /= (1000*1000);
}
tmp = get_timer (0); /* get current timestamp */
if ( (tmo + tmp + 1) < tmp )/* if setting this forward will roll time stamp */
reset_timer_masked (); /* reset "advancing" timestamp to 0, set lastinc value */
else
tmo += tmp; /* else, set advancing stamp wake up time */
while (get_timer_masked () < tmo)/* loop till event */
/*NOP*/;
}
void reset_timer_masked (void)
{
/* reset time */
lastinc = READ_TIMER; /* capture current incrementer value time */
timestamp = 0; /* start "advancing" time stamp from 0 */
}
ulong get_timer_masked (void)
{
ulong now = READ_TIMER; /* current tick value */
if (now >= lastinc) /* normal mode (non roll) */
timestamp += (now - lastinc); /* move stamp fordward with absoulte diff ticks */
else /* we have rollover of incrementer */
timestamp += (0xFFFFFFFF - lastinc) + now;
lastinc = now;
return timestamp;
}
/* waits specified delay value and resets timestamp */
void udelay_masked (unsigned long usec)
{
ulong tmo;
if (usec >= 1000) { /* if "big" number, spread normalization to seconds */
tmo = usec / 1000; /* start to normalize for usec to ticks per sec */
tmo *= CFG_HZ; /* find number of "ticks" to wait to achieve target */
tmo /= 1000; /* finish normalize. */
} else { /* else small number, don't kill it prior to HZ multiply */
tmo = usec * CFG_HZ;
tmo /= (1000*1000);
}
reset_timer_masked (); /* set "advancing" timestamp to 0, set lastinc vaule */
while (get_timer_masked () < tmo) /* wait for time stamp to overtake tick number.*/
/* NOP */;
}
/*
* This function is derived from PowerPC code (read timebase as long long).
* On ARM it just returns the timer value.
*/
unsigned long long get_ticks(void)
{
return get_timer(0);
}
/*
* This function is derived from PowerPC code (timebase clock frequency).
* On ARM it returns the number of timer ticks per second.
*/
ulong get_tbclk (void)
{
ulong tbclk;
tbclk = CFG_HZ;
return tbclk;
}