blob: 65f937fd0fe8ca1c7315ef8520ef84d6b3c23842 [file] [log] [blame]
/*
* Copyright (C) 2018 Synopsys, Inc. All rights reserved.
* Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <config.h>
#include <linux/printk.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/arcregs.h>
#include <fdt_support.h>
#include <dwmmc.h>
#include <malloc.h>
#include <usb.h>
#include "clk-lib.h"
#include "env-lib.h"
DECLARE_GLOBAL_DATA_PTR;
#define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0)
#define MASTER_CPU_ID 0
#define APERTURE_SHIFT 28
#define NO_CCM 0x10
#define SLAVE_CPU_READY 0x12345678
#define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */
#define BOOTSTAGE_2 2 /* after HW init, before self halt */
#define BOOTSTAGE_3 3 /* after self halt */
#define BOOTSTAGE_4 4 /* before app launch */
#define BOOTSTAGE_5 5 /* after app launch, unreachable */
#define RESET_VECTOR_ADDR 0x0
#define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000)
#define CREG_CPU_START (CREG_BASE + 0x400)
#define CREG_CPU_START_MASK 0xF
#define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000)
#define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108)
#define SDIO_UHS_REG_EXT_DIV_2 (2 << 30)
/* Uncached access macros */
#define arc_read_uncached_32(ptr) \
({ \
unsigned int __ret; \
__asm__ __volatile__( \
" ld.di %0, [%1] \n" \
: "=r"(__ret) \
: "r"(ptr)); \
__ret; \
})
#define arc_write_uncached_32(ptr, data)\
({ \
__asm__ __volatile__( \
" st.di %0, [%1] \n" \
: \
: "r"(data), "r"(ptr)); \
})
struct hsdk_env_core_ctl {
u32_env entry[NR_CPUS];
u32_env iccm[NR_CPUS];
u32_env dccm[NR_CPUS];
};
struct hsdk_env_common_ctl {
bool halt_on_boot;
u32_env core_mask;
u32_env cpu_freq;
u32_env axi_freq;
u32_env tun_freq;
u32_env nvlim;
u32_env icache;
u32_env dcache;
};
/*
* Uncached cross-cpu structure. All CPUs must access to this structure fields
* only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
* implement ld.di / st.di instructions). Simultaneous cached and uncached
* access to this area will lead to data loss.
* We flush all data caches in board_early_init_r() as we don't want to have
* any dirty line in L1d$ or SL$ in this area.
*/
struct hsdk_cross_cpu {
/* slave CPU ready flag */
u32 ready_flag;
/* address of the area, which can be used for stack by slave CPU */
u32 stack_ptr;
/* slave CPU status - bootstage number */
s32 status[NR_CPUS];
/*
* Slave CPU data - it is copy of corresponding fields in
* hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
* required for slave CPUs initialization.
* This fields can be populated by copying from hsdk_env_core_ctl
* and hsdk_env_common_ctl structures with sync_cross_cpu_data()
* function.
*/
u32 entry[NR_CPUS];
u32 iccm[NR_CPUS];
u32 dccm[NR_CPUS];
u32 core_mask;
u32 icache;
u32 dcache;
u8 cache_padding[ARCH_DMA_MINALIGN];
} __aligned(ARCH_DMA_MINALIGN);
/* Place for slave CPUs temporary stack */
static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
static struct hsdk_env_common_ctl env_common = {};
static struct hsdk_env_core_ctl env_core = {};
static struct hsdk_cross_cpu cross_cpu_data;
static const struct env_map_common env_map_common[] = {
{ "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask },
{ "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim },
{ "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache },
{ "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache },
{}
};
static const struct env_map_common env_map_clock[] = {
{ "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq },
{ "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq },
{ "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq },
{}
};
static const struct env_map_percpu env_map_core[] = {
{ "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
{ "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
{}
};
static const struct env_map_common env_map_mask[] = {
{ "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask },
{}
};
static const struct env_map_percpu env_map_go[] = {
{ "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
{}
};
static void sync_cross_cpu_data(void)
{
u32 value;
for (u32 i = 0; i < NR_CPUS; i++) {
value = env_core.entry[i].val;
arc_write_uncached_32(&cross_cpu_data.entry[i], value);
}
for (u32 i = 0; i < NR_CPUS; i++) {
value = env_core.iccm[i].val;
arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
}
for (u32 i = 0; i < NR_CPUS; i++) {
value = env_core.dccm[i].val;
arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
}
value = env_common.core_mask.val;
arc_write_uncached_32(&cross_cpu_data.core_mask, value);
value = env_common.icache.val;
arc_write_uncached_32(&cross_cpu_data.icache, value);
value = env_common.dcache.val;
arc_write_uncached_32(&cross_cpu_data.dcache, value);
}
/* Can be used only on master CPU */
static bool is_cpu_used(u32 cpu_id)
{
return !!(env_common.core_mask.val & BIT(cpu_id));
}
/* TODO: add ICCM BCR and DCCM BCR runtime check */
static void init_slave_cpu_func(u32 core)
{
u32 val;
/* Remap ICCM to another memory region if it exists */
val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
if (val != NO_CCM)
write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
/* Remap DCCM to another memory region if it exists */
val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
if (val != NO_CCM)
write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
if (arc_read_uncached_32(&cross_cpu_data.icache))
icache_enable();
else
icache_disable();
if (arc_read_uncached_32(&cross_cpu_data.dcache))
dcache_enable();
else
dcache_disable();
}
static void init_cluster_nvlim(void)
{
u32 val = env_common.nvlim.val << APERTURE_SHIFT;
flush_dcache_all();
write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
flush_n_invalidate_dcache_all();
}
static void init_master_icache(void)
{
if (icache_status()) {
/* I$ is enabled - we need to disable it */
if (!env_common.icache.val)
icache_disable();
} else {
/* I$ is disabled - we need to enable it */
if (env_common.icache.val) {
icache_enable();
/* invalidate I$ right after enable */
invalidate_icache_all();
}
}
}
static void init_master_dcache(void)
{
if (dcache_status()) {
/* D$ is enabled - we need to disable it */
if (!env_common.dcache.val)
dcache_disable();
} else {
/* D$ is disabled - we need to enable it */
if (env_common.dcache.val)
dcache_enable();
/* TODO: probably we need ti invalidate D$ right after enable */
}
}
static int cleanup_before_go(void)
{
disable_interrupts();
sync_n_cleanup_cache_all();
return 0;
}
void slave_cpu_set_boot_addr(u32 addr)
{
/* All cores have reset vector pointing to 0 */
writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
/* Make sure other cores see written value in memory */
sync_n_cleanup_cache_all();
}
static inline void halt_this_cpu(void)
{
__builtin_arc_flag(1);
}
static void smp_kick_cpu_x(u32 cpu_id)
{
int cmd = readl((void __iomem *)CREG_CPU_START);
if (cpu_id > NR_CPUS)
return;
cmd &= ~CREG_CPU_START_MASK;
cmd |= (1 << cpu_id);
writel(cmd, (void __iomem *)CREG_CPU_START);
}
static u32 prepare_cpu_ctart_reg(void)
{
int cmd = readl((void __iomem *)CREG_CPU_START);
cmd &= ~CREG_CPU_START_MASK;
return cmd | env_common.core_mask.val;
}
/* slave CPU entry for configuration */
__attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
{
__asm__ __volatile__(
"ld.di r8, [%0]\n"
"mov %%sp, r8\n"
"mov %%fp, %%sp\n"
: /* no output */
: "r" (&cross_cpu_data.stack_ptr));
invalidate_icache_all();
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
init_slave_cpu_func(CPU_ID_GET());
arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
/* Halt the processor until the master kick us again */
halt_this_cpu();
/*
* 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
* cores but we leave them for gebug purposes.
*/
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
/* get the updated entry - invalidate i$ */
invalidate_icache_all();
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
/* Run our program */
((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
/* This bootstage is unreachable as we don't return from app we launch */
arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
/* Something went terribly wrong */
while (true)
halt_this_cpu();
}
static void clear_cross_cpu_data(void)
{
arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
for (u32 i = 0; i < NR_CPUS; i++)
arc_write_uncached_32(&cross_cpu_data.status[i], 0);
}
static noinline void do_init_slave_cpu(u32 cpu_id)
{
/* attempts number for check clave CPU ready_flag */
u32 attempts = 100;
u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
if (cpu_id >= NR_CPUS)
return;
arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
/* Use global unique place for each slave cpu stack */
arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
smp_kick_cpu_x(cpu_id);
debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
arc_read_uncached_32(&cross_cpu_data.ready_flag));
while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
mdelay(10);
/* Just to be sure that slave cpu is halted after it set ready_flag */
mdelay(20);
/*
* Only print error here if we reach timeout as there is no option to
* halt slave cpu (or check that slave cpu is halted)
*/
if (!attempts)
pr_err("CPU %u is not responding after init!\n", cpu_id);
/* Check current stage of slave cpu */
if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
pr_err("CPU %u status is unexpected: %d\n", cpu_id,
arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
arc_read_uncached_32(&cross_cpu_data.ready_flag));
debug("CPU %u: status: %d [after timeout]\n", cpu_id,
arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
}
static void do_init_slave_cpus(void)
{
clear_cross_cpu_data();
sync_cross_cpu_data();
debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
if (is_cpu_used(i))
do_init_slave_cpu(i);
}
static void do_init_master_cpu(void)
{
/*
* Setup master caches even if master isn't used as we want to use
* same cache configuration on all running CPUs
*/
init_master_icache();
init_master_dcache();
}
enum hsdk_axi_masters {
M_HS_CORE = 0,
M_HS_RTT,
M_AXI_TUN,
M_HDMI_VIDEO,
M_HDMI_AUDIO,
M_USB_HOST,
M_ETHERNET,
M_SDIO,
M_GPU,
M_DMAC_0,
M_DMAC_1,
M_DVFS
};
#define UPDATE_VAL 1
/*
* m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
* 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210
* 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
* 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
* 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
* 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
* 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
* 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
*
* Please read ARC HS Development IC Specification, section 17.2 for more
* information about apertures configuration.
* NOTE: we intentionally modify default settings in U-boot. Default settings
* are specified in "Table 111 CREG Address Decoder register reset values".
*/
#define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m)))
#define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
#define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
#define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
#define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
#define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010))
#define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180))
#define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194))
void init_memory_bridge(void)
{
u32 reg;
/*
* M_HS_CORE has one unic register - BOOT.
* We need to clean boot mirror (BOOT[1:0]) bits in them.
*/
reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
writel(reg, CREG_AXI_M_HS_CORE_BOOT);
writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
writel(0x00000000, CREG_PAE);
writel(UPDATE_VAL, CREG_PAE_UPDT);
}
static void setup_clocks(void)
{
ulong rate;
/* Setup CPU clock */
if (env_common.cpu_freq.set) {
rate = env_common.cpu_freq.val;
soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
}
/* Setup TUN clock */
if (env_common.tun_freq.set) {
rate = env_common.tun_freq.val;
if (rate)
soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
else
soc_clk_ctl("tun-clk", NULL, CLK_OFF);
}
if (env_common.axi_freq.set) {
rate = env_common.axi_freq.val;
soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
}
}
static void do_init_cluster(void)
{
/*
* A multi-core ARC HS configuration always includes only one
* ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
* cores.
*/
init_cluster_nvlim();
}
static int check_master_cpu_id(void)
{
if (CPU_ID_GET() == MASTER_CPU_ID)
return 0;
pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
return -ENOENT;
}
static noinline int prepare_cpus(void)
{
int ret;
ret = check_master_cpu_id();
if (ret)
return ret;
ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
if (ret)
return ret;
printf("CPU start mask is %#x\n", env_common.core_mask.val);
do_init_slave_cpus();
do_init_master_cpu();
do_init_cluster();
return 0;
}
static int hsdk_go_run(u32 cpu_start_reg)
{
/* Cleanup caches, disable interrupts */
cleanup_before_go();
if (env_common.halt_on_boot)
halt_this_cpu();
/*
* 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
* cores but we leave them for gebug purposes.
*/
__builtin_arc_nop();
__builtin_arc_nop();
__builtin_arc_nop();
/* Kick chosen slave CPUs */
writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
if (is_cpu_used(MASTER_CPU_ID))
((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
else
halt_this_cpu();
pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
/*
* We will never return after executing our program if master cpu used
* otherwise halt master cpu manually.
*/
while (true)
halt_this_cpu();
return 0;
}
int board_prep_linux(bootm_headers_t *images)
{
int ret, ofst;
char mask[15];
ret = envs_read_validate_common(env_map_mask);
if (ret)
return ret;
/* Rollback to default values */
if (!env_common.core_mask.set) {
env_common.core_mask.val = ALL_CPU_MASK;
env_common.core_mask.set = true;
}
printf("CPU start mask is %#x\n", env_common.core_mask.val);
if (!is_cpu_used(MASTER_CPU_ID))
pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
/*
* If we want to launch linux on all CPUs we don't need to patch
* linux DTB as it is default configuration
*/
if (env_common.core_mask.val == ALL_CPU_MASK)
return 0;
if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
return 0;
}
/* patch '/possible-cpus' property according to cpu mask */
ofst = fdt_path_offset(images->ft_addr, "/");
sprintf(mask, "%s%s%s%s",
is_cpu_used(0) ? "0," : "",
is_cpu_used(1) ? "1," : "",
is_cpu_used(2) ? "2," : "",
is_cpu_used(3) ? "3," : "");
ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
/*
* If we failed to patch '/possible-cpus' property we don't need break
* linux loading process: kernel will handle it but linux will print
* warning like "Timeout: CPU1 FAILED to comeup !!!".
* So warn here about error, but return 0 like no error had occurred.
*/
if (ret)
pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
ret);
return 0;
}
void board_jump_and_run(ulong entry, int zero, int arch, uint params)
{
void (*kernel_entry)(int zero, int arch, uint params);
u32 cpu_start_reg;
kernel_entry = (void (*)(int, int, uint))entry;
/* Prepare CREG_CPU_START for kicking chosen CPUs */
cpu_start_reg = prepare_cpu_ctart_reg();
/* In case of run without hsdk_init */
slave_cpu_set_boot_addr(entry);
/* In case of run with hsdk_init */
for (u32 i = 0; i < NR_CPUS; i++) {
env_core.entry[i].val = entry;
env_core.entry[i].set = true;
}
/* sync cross_cpu struct as we updated core-entry variables */
sync_cross_cpu_data();
/* Kick chosen slave CPUs */
writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
if (is_cpu_used(0))
kernel_entry(zero, arch, params);
}
static int hsdk_go_prepare_and_run(void)
{
/* Prepare CREG_CPU_START for kicking chosen CPUs */
u32 reg = prepare_cpu_ctart_reg();
if (env_common.halt_on_boot)
printf("CPU will halt before application start, start application with debugger.\n");
return hsdk_go_run(reg);
}
static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
int ret;
/*
* Check for 'halt' parameter. 'halt' = enter halt-mode just before
* starting the application; can be used for debug.
*/
if (argc > 1) {
env_common.halt_on_boot = !strcmp(argv[1], "halt");
if (!env_common.halt_on_boot) {
pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
return CMD_RET_FAILURE;
}
}
ret = check_master_cpu_id();
if (ret)
return ret;
ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
if (ret)
return ret;
/* sync cross_cpu struct as we updated core-entry variables */
sync_cross_cpu_data();
ret = hsdk_go_prepare_and_run();
return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
}
U_BOOT_CMD(
hsdk_go, 3, 0, do_hsdk_go,
"Synopsys HSDK specific command",
" - Boot stand-alone application on HSDK\n"
"hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
);
static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
static bool done = false;
int ret;
/* hsdk_init can be run only once */
if (done) {
printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
return CMD_RET_FAILURE;
}
ret = prepare_cpus();
if (!ret)
done = true;
return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
}
U_BOOT_CMD(
hsdk_init, 1, 0, do_hsdk_init,
"Synopsys HSDK specific command",
"- Init HSDK HW\n"
);
static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
int ret = 0;
/* Strip off leading subcommand argument */
argc--;
argv++;
envs_cleanup_common(env_map_clock);
if (!argc) {
printf("Set clocks to values specified in environment\n");
ret = envs_read_common(env_map_clock);
} else {
printf("Set clocks to values specified in args\n");
ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
}
if (ret)
return CMD_RET_FAILURE;
ret = envs_validate_common(env_map_clock);
if (ret)
return CMD_RET_FAILURE;
/* Setup clock tree HW */
setup_clocks();
return CMD_RET_SUCCESS;
}
static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
ulong rate;
if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
return CMD_RET_FAILURE;
if (env_set_ulong("cpu_freq", rate))
return CMD_RET_FAILURE;
if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
return CMD_RET_FAILURE;
if (env_set_ulong("tun_freq", rate))
return CMD_RET_FAILURE;
if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
return CMD_RET_FAILURE;
if (env_set_ulong("axi_freq", rate))
return CMD_RET_FAILURE;
printf("Clock values are saved to environment\n");
return CMD_RET_SUCCESS;
}
static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
/* Main clocks */
soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
return CMD_RET_SUCCESS;
}
static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
/*
* NOTE: as of today we don't use some peripherals like HDMI / EBI
* so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
* "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
* functional and we can print their clocks if it is required
*/
/* CPU clock domain */
soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
printf("\n");
/* SYS clock domain */
soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
/* soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ); */
soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
/* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
printf("\n");
/* DDR clock domain */
soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
printf("\n");
/* HDMI clock domain */
/* soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ); */
/* soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ); */
/* printf("\n"); */
/* TUN clock domain */
soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
printf("\n");
return CMD_RET_SUCCESS;
}
cmd_tbl_t cmd_hsdk_clock[] = {
U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
};
static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
cmd_tbl_t *c;
if (argc < 2)
return CMD_RET_USAGE;
/* Strip off leading 'hsdk_clock' command argument */
argc--;
argv++;
c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
if (!c)
return CMD_RET_USAGE;
return c->cmd(cmdtp, flag, argc, argv);
}
U_BOOT_CMD(
hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
"Synopsys HSDK specific clock command",
"set - Set clock to values specified in environment / command line arguments\n"
"hsdk_clock get - Save clock values to environment\n"
"hsdk_clock print - Print main clock values to console\n"
"hsdk_clock print_all - Print all clock values to console\n"
);
/* init calls */
int board_early_init_f(void)
{
/*
* Setup AXI apertures unconditionally as we want to have DDR
* in 0x00000000 region when we are kicking slave cpus.
*/
init_memory_bridge();
return 0;
}
int board_early_init_r(void)
{
/*
* TODO: Init USB here to be able read environment from USB MSD.
* It can be done with usb_init() call. We can't do it right now
* due to brocken USB IP SW reset and lack of USB IP HW reset in
* linux kernel (if we init USB here we will break USB in linux)
*/
/*
* Flush all d$ as we want to use uncached area with st.di / ld.di
* instructions and we don't want to have any dirty line in L1d$ or SL$
* in this area. It is enough to flush all d$ once here as we access to
* uncached area with regular st (non .di) instruction only when we copy
* data during u-boot relocation.
*/
flush_dcache_all();
printf("Relocation Offset is: %08lx\n", gd->reloc_off);
return 0;
}
int board_late_init(void)
{
/*
* Populate environment with clock frequency values -
* run hsdk_clock get callback without uboot command run.
*/
do_hsdk_clock_get(NULL, 0, 0, NULL);
return 0;
}
int board_mmc_init(bd_t *bis)
{
struct dwmci_host *host = NULL;
host = malloc(sizeof(struct dwmci_host));
if (!host) {
printf("dwmci_host malloc fail!\n");
return 1;
}
/*
* Switch SDIO external ciu clock divider from default div-by-8 to
* minimum possible div-by-2.
*/
writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
memset(host, 0, sizeof(struct dwmci_host));
host->name = "Synopsys Mobile storage";
host->ioaddr = (void *)ARC_DWMMC_BASE;
host->buswidth = 4;
host->dev_index = 0;
host->bus_hz = 50000000;
add_dwmci(host, host->bus_hz / 2, 400000);
return 0;
}