blob: 33920a2b676a9126902aa0fe8598e5de5e8ba5c1 [file] [log] [blame]
/*
* Allwinner DW HDMI bridge
*
* (C) Copyright 2017 Jernej Skrabec <jernej.skrabec@siol.net>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <display.h>
#include <dm.h>
#include <dw_hdmi.h>
#include <edid.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/lcdc.h>
struct sunxi_dw_hdmi_priv {
struct dw_hdmi hdmi;
int mux;
};
struct sunxi_hdmi_phy {
u32 pol;
u32 res1[3];
u32 read_en;
u32 unscramble;
u32 res2[2];
u32 ctrl;
u32 unk1;
u32 unk2;
u32 pll;
u32 clk;
u32 unk3;
u32 status;
};
#define HDMI_PHY_OFFS 0x10000
static int sunxi_dw_hdmi_get_divider(uint clock)
{
/*
* Due to missing documentaion of HDMI PHY, we know correct
* settings only for following four PHY dividers. Select one
* based on clock speed.
*/
if (clock <= 27000000)
return 11;
else if (clock <= 74250000)
return 4;
else if (clock <= 148500000)
return 2;
else
return 1;
}
static void sunxi_dw_hdmi_phy_init(void)
{
struct sunxi_hdmi_phy * const phy =
(struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS);
unsigned long tmo;
u32 tmp;
/*
* HDMI PHY settings are taken as-is from Allwinner BSP code.
* There is no documentation.
*/
writel(0, &phy->ctrl);
setbits_le32(&phy->ctrl, BIT(0));
udelay(5);
setbits_le32(&phy->ctrl, BIT(16));
setbits_le32(&phy->ctrl, BIT(1));
udelay(10);
setbits_le32(&phy->ctrl, BIT(2));
udelay(5);
setbits_le32(&phy->ctrl, BIT(3));
udelay(40);
setbits_le32(&phy->ctrl, BIT(19));
udelay(100);
setbits_le32(&phy->ctrl, BIT(18));
setbits_le32(&phy->ctrl, 7 << 4);
/* Note that Allwinner code doesn't fail in case of timeout */
tmo = timer_get_us() + 2000;
while ((readl(&phy->status) & 0x80) == 0) {
if (timer_get_us() > tmo) {
printf("Warning: HDMI PHY init timeout!\n");
break;
}
}
setbits_le32(&phy->ctrl, 0xf << 8);
setbits_le32(&phy->ctrl, BIT(7));
writel(0x39dc5040, &phy->pll);
writel(0x80084343, &phy->clk);
udelay(10000);
writel(1, &phy->unk3);
setbits_le32(&phy->pll, BIT(25));
udelay(100000);
tmp = (readl(&phy->status) & 0x1f800) >> 11;
setbits_le32(&phy->pll, BIT(31) | BIT(30));
setbits_le32(&phy->pll, tmp);
writel(0x01FF0F7F, &phy->ctrl);
writel(0x80639000, &phy->unk1);
writel(0x0F81C405, &phy->unk2);
/* enable read access to HDMI controller */
writel(0x54524545, &phy->read_en);
/* descramble register offsets */
writel(0x42494E47, &phy->unscramble);
}
static int sunxi_dw_hdmi_get_plug_in_status(void)
{
struct sunxi_hdmi_phy * const phy =
(struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS);
return !!(readl(&phy->status) & (1 << 19));
}
static int sunxi_dw_hdmi_wait_for_hpd(void)
{
ulong start;
start = get_timer(0);
do {
if (sunxi_dw_hdmi_get_plug_in_status())
return 0;
udelay(100);
} while (get_timer(start) < 300);
return -1;
}
static void sunxi_dw_hdmi_phy_set(uint clock)
{
struct sunxi_hdmi_phy * const phy =
(struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS);
int div = sunxi_dw_hdmi_get_divider(clock);
u32 tmp;
/*
* Unfortunately, we don't know much about those magic
* numbers. They are taken from Allwinner BSP driver.
*/
switch (div) {
case 1:
writel(0x30dc5fc0, &phy->pll);
writel(0x800863C0, &phy->clk);
mdelay(10);
writel(0x00000001, &phy->unk3);
setbits_le32(&phy->pll, BIT(25));
mdelay(200);
tmp = (readl(&phy->status) & 0x1f800) >> 11;
setbits_le32(&phy->pll, BIT(31) | BIT(30));
if (tmp < 0x3d)
setbits_le32(&phy->pll, tmp + 2);
else
setbits_le32(&phy->pll, 0x3f);
mdelay(100);
writel(0x01FFFF7F, &phy->ctrl);
writel(0x8063b000, &phy->unk1);
writel(0x0F8246B5, &phy->unk2);
break;
case 2:
writel(0x39dc5040, &phy->pll);
writel(0x80084381, &phy->clk);
mdelay(10);
writel(0x00000001, &phy->unk3);
setbits_le32(&phy->pll, BIT(25));
mdelay(100);
tmp = (readl(&phy->status) & 0x1f800) >> 11;
setbits_le32(&phy->pll, BIT(31) | BIT(30));
setbits_le32(&phy->pll, tmp);
writel(0x01FFFF7F, &phy->ctrl);
writel(0x8063a800, &phy->unk1);
writel(0x0F81C485, &phy->unk2);
break;
case 4:
writel(0x39dc5040, &phy->pll);
writel(0x80084343, &phy->clk);
mdelay(10);
writel(0x00000001, &phy->unk3);
setbits_le32(&phy->pll, BIT(25));
mdelay(100);
tmp = (readl(&phy->status) & 0x1f800) >> 11;
setbits_le32(&phy->pll, BIT(31) | BIT(30));
setbits_le32(&phy->pll, tmp);
writel(0x01FFFF7F, &phy->ctrl);
writel(0x8063b000, &phy->unk1);
writel(0x0F81C405, &phy->unk2);
break;
case 11:
writel(0x39dc5040, &phy->pll);
writel(0x8008430a, &phy->clk);
mdelay(10);
writel(0x00000001, &phy->unk3);
setbits_le32(&phy->pll, BIT(25));
mdelay(100);
tmp = (readl(&phy->status) & 0x1f800) >> 11;
setbits_le32(&phy->pll, BIT(31) | BIT(30));
setbits_le32(&phy->pll, tmp);
writel(0x01FFFF7F, &phy->ctrl);
writel(0x8063b000, &phy->unk1);
writel(0x0F81C405, &phy->unk2);
break;
}
}
static void sunxi_dw_hdmi_pll_set(uint clk_khz)
{
int value, n, m, div = 0, diff;
int best_n = 0, best_m = 0, best_diff = 0x0FFFFFFF;
div = sunxi_dw_hdmi_get_divider(clk_khz * 1000);
/*
* Find the lowest divider resulting in a matching clock. If there
* is no match, pick the closest lower clock, as monitors tend to
* not sync to higher frequencies.
*/
for (m = 1; m <= 16; m++) {
n = (m * div * clk_khz) / 24000;
if ((n >= 1) && (n <= 128)) {
value = (24000 * n) / m / div;
diff = clk_khz - value;
if (diff < best_diff) {
best_diff = diff;
best_m = m;
best_n = n;
}
}
}
clock_set_pll3_factors(best_m, best_n);
debug("dotclock: %dkHz = %dkHz: (24MHz * %d) / %d / %d\n",
clk_khz, (clock_get_pll3() / 1000) / div,
best_n, best_m, div);
}
static void sunxi_dw_hdmi_lcdc_init(int mux, const struct display_timing *edid,
int bpp)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
int div = sunxi_dw_hdmi_get_divider(edid->pixelclock.typ);
struct sunxi_lcdc_reg *lcdc;
if (mux == 0) {
lcdc = (struct sunxi_lcdc_reg *)SUNXI_LCD0_BASE;
/* Reset off */
setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_LCD0);
/* Clock on */
setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_LCD0);
writel(CCM_LCD0_CTRL_GATE | CCM_LCD0_CTRL_M(div),
&ccm->lcd0_clk_cfg);
} else {
lcdc = (struct sunxi_lcdc_reg *)SUNXI_LCD1_BASE;
/* Reset off */
setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_LCD1);
/* Clock on */
setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_LCD1);
writel(CCM_LCD1_CTRL_GATE | CCM_LCD1_CTRL_M(div),
&ccm->lcd1_clk_cfg);
}
lcdc_init(lcdc);
lcdc_tcon1_mode_set(lcdc, edid, false, false);
lcdc_enable(lcdc, bpp);
}
static int sunxi_dw_hdmi_phy_cfg(struct dw_hdmi *hdmi, uint mpixelclock)
{
sunxi_dw_hdmi_pll_set(mpixelclock/1000);
sunxi_dw_hdmi_phy_set(mpixelclock);
return 0;
}
static int sunxi_dw_hdmi_read_edid(struct udevice *dev, u8 *buf, int buf_size)
{
struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev);
return dw_hdmi_read_edid(&priv->hdmi, buf, buf_size);
}
static int sunxi_dw_hdmi_enable(struct udevice *dev, int panel_bpp,
const struct display_timing *edid)
{
struct sunxi_hdmi_phy * const phy =
(struct sunxi_hdmi_phy *)(SUNXI_HDMI_BASE + HDMI_PHY_OFFS);
struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev);
int ret;
ret = dw_hdmi_enable(&priv->hdmi, edid);
if (ret)
return ret;
sunxi_dw_hdmi_lcdc_init(priv->mux, edid, panel_bpp);
/*
* Condition in original code is a bit weird. This is attempt
* to make it more reasonable and it works. It could be that
* bits and conditions are related and should be separated.
*/
if (!((edid->flags & DISPLAY_FLAGS_HSYNC_HIGH) &&
(edid->flags & DISPLAY_FLAGS_VSYNC_HIGH))) {
setbits_le32(&phy->pol, 0x300);
}
setbits_le32(&phy->ctrl, 0xf << 12);
/*
* This is last hdmi access before boot, so scramble addresses
* again or othwerwise BSP driver won't work. Dummy read is
* needed or otherwise last write doesn't get written correctly.
*/
(void)readb(SUNXI_HDMI_BASE);
writel(0, &phy->unscramble);
return 0;
}
static int sunxi_dw_hdmi_probe(struct udevice *dev)
{
struct display_plat *uc_plat = dev_get_uclass_platdata(dev);
struct sunxi_dw_hdmi_priv *priv = dev_get_priv(dev);
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
int ret;
/* Set pll3 to 297 MHz */
clock_set_pll3(297000000);
/* Set hdmi parent to pll3 */
clrsetbits_le32(&ccm->hdmi_clk_cfg, CCM_HDMI_CTRL_PLL_MASK,
CCM_HDMI_CTRL_PLL3);
/* Set ahb gating to pass */
setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_HDMI);
setbits_le32(&ccm->ahb_reset1_cfg, 1 << AHB_RESET_OFFSET_HDMI2);
setbits_le32(&ccm->ahb_gate1, 1 << AHB_GATE_OFFSET_HDMI);
setbits_le32(&ccm->hdmi_slow_clk_cfg, CCM_HDMI_SLOW_CTRL_DDC_GATE);
/* Clock on */
setbits_le32(&ccm->hdmi_clk_cfg, CCM_HDMI_CTRL_GATE);
sunxi_dw_hdmi_phy_init();
ret = sunxi_dw_hdmi_wait_for_hpd();
if (ret < 0) {
debug("hdmi can not get hpd signal\n");
return -1;
}
priv->hdmi.ioaddr = SUNXI_HDMI_BASE;
priv->hdmi.i2c_clk_high = 0xd8;
priv->hdmi.i2c_clk_low = 0xfe;
priv->hdmi.reg_io_width = 1;
priv->hdmi.phy_set = sunxi_dw_hdmi_phy_cfg;
priv->mux = uc_plat->source_id;
dw_hdmi_init(&priv->hdmi);
return 0;
}
static const struct dm_display_ops sunxi_dw_hdmi_ops = {
.read_edid = sunxi_dw_hdmi_read_edid,
.enable = sunxi_dw_hdmi_enable,
};
U_BOOT_DRIVER(sunxi_dw_hdmi) = {
.name = "sunxi_dw_hdmi",
.id = UCLASS_DISPLAY,
.ops = &sunxi_dw_hdmi_ops,
.probe = sunxi_dw_hdmi_probe,
.priv_auto_alloc_size = sizeof(struct sunxi_dw_hdmi_priv),
};
U_BOOT_DEVICE(sunxi_dw_hdmi) = {
.name = "sunxi_dw_hdmi"
};