mtd: move NAND files into a raw/ subdirectory

NAND flavors, like serial and parallel, have a lot in common and would
benefit to share code. Let's move raw (parallel) NAND specific code in a
raw/ subdirectory, to ease the addition of a core file in nand/ and the
introduction of a spi/ subdirectory specific to SPI NANDs.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
diff --git a/drivers/mtd/nand/raw/pxa3xx_nand.c b/drivers/mtd/nand/raw/pxa3xx_nand.c
new file mode 100644
index 0000000..4c783f1
--- /dev/null
+++ b/drivers/mtd/nand/raw/pxa3xx_nand.c
@@ -0,0 +1,1828 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * drivers/mtd/nand/raw/pxa3xx_nand.c
+ *
+ * Copyright © 2005 Intel Corporation
+ * Copyright © 2006 Marvell International Ltd.
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <fdtdec.h>
+#include <nand.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+#include <asm/arch/cpu.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/types.h>
+
+#include "pxa3xx_nand.h"
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define TIMEOUT_DRAIN_FIFO	5	/* in ms */
+#define	CHIP_DELAY_TIMEOUT	200
+#define NAND_STOP_DELAY		40
+
+/*
+ * Define a buffer size for the initial command that detects the flash device:
+ * STATUS, READID and PARAM.
+ * ONFI param page is 256 bytes, and there are three redundant copies
+ * to be read. JEDEC param page is 512 bytes, and there are also three
+ * redundant copies to be read.
+ * Hence this buffer should be at least 512 x 3. Let's pick 2048.
+ */
+#define INIT_BUFFER_SIZE	2048
+
+/* registers and bit definitions */
+#define NDCR		(0x00) /* Control register */
+#define NDTR0CS0	(0x04) /* Timing Parameter 0 for CS0 */
+#define NDTR1CS0	(0x0C) /* Timing Parameter 1 for CS0 */
+#define NDSR		(0x14) /* Status Register */
+#define NDPCR		(0x18) /* Page Count Register */
+#define NDBDR0		(0x1C) /* Bad Block Register 0 */
+#define NDBDR1		(0x20) /* Bad Block Register 1 */
+#define NDECCCTRL	(0x28) /* ECC control */
+#define NDDB		(0x40) /* Data Buffer */
+#define NDCB0		(0x48) /* Command Buffer0 */
+#define NDCB1		(0x4C) /* Command Buffer1 */
+#define NDCB2		(0x50) /* Command Buffer2 */
+
+#define NDCR_SPARE_EN		(0x1 << 31)
+#define NDCR_ECC_EN		(0x1 << 30)
+#define NDCR_DMA_EN		(0x1 << 29)
+#define NDCR_ND_RUN		(0x1 << 28)
+#define NDCR_DWIDTH_C		(0x1 << 27)
+#define NDCR_DWIDTH_M		(0x1 << 26)
+#define NDCR_PAGE_SZ		(0x1 << 24)
+#define NDCR_NCSX		(0x1 << 23)
+#define NDCR_ND_MODE		(0x3 << 21)
+#define NDCR_NAND_MODE		(0x0)
+#define NDCR_CLR_PG_CNT		(0x1 << 20)
+#define NFCV1_NDCR_ARB_CNTL	(0x1 << 19)
+#define NDCR_RD_ID_CNT_MASK	(0x7 << 16)
+#define NDCR_RD_ID_CNT(x)	(((x) << 16) & NDCR_RD_ID_CNT_MASK)
+
+#define NDCR_RA_START		(0x1 << 15)
+#define NDCR_PG_PER_BLK		(0x1 << 14)
+#define NDCR_ND_ARB_EN		(0x1 << 12)
+#define NDCR_INT_MASK           (0xFFF)
+
+#define NDSR_MASK		(0xfff)
+#define NDSR_ERR_CNT_OFF	(16)
+#define NDSR_ERR_CNT_MASK       (0x1f)
+#define NDSR_ERR_CNT(sr)	((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
+#define NDSR_RDY                (0x1 << 12)
+#define NDSR_FLASH_RDY          (0x1 << 11)
+#define NDSR_CS0_PAGED		(0x1 << 10)
+#define NDSR_CS1_PAGED		(0x1 << 9)
+#define NDSR_CS0_CMDD		(0x1 << 8)
+#define NDSR_CS1_CMDD		(0x1 << 7)
+#define NDSR_CS0_BBD		(0x1 << 6)
+#define NDSR_CS1_BBD		(0x1 << 5)
+#define NDSR_UNCORERR		(0x1 << 4)
+#define NDSR_CORERR		(0x1 << 3)
+#define NDSR_WRDREQ		(0x1 << 2)
+#define NDSR_RDDREQ		(0x1 << 1)
+#define NDSR_WRCMDREQ		(0x1)
+
+#define NDCB0_LEN_OVRD		(0x1 << 28)
+#define NDCB0_ST_ROW_EN         (0x1 << 26)
+#define NDCB0_AUTO_RS		(0x1 << 25)
+#define NDCB0_CSEL		(0x1 << 24)
+#define NDCB0_EXT_CMD_TYPE_MASK	(0x7 << 29)
+#define NDCB0_EXT_CMD_TYPE(x)	(((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
+#define NDCB0_CMD_TYPE_MASK	(0x7 << 21)
+#define NDCB0_CMD_TYPE(x)	(((x) << 21) & NDCB0_CMD_TYPE_MASK)
+#define NDCB0_NC		(0x1 << 20)
+#define NDCB0_DBC		(0x1 << 19)
+#define NDCB0_ADDR_CYC_MASK	(0x7 << 16)
+#define NDCB0_ADDR_CYC(x)	(((x) << 16) & NDCB0_ADDR_CYC_MASK)
+#define NDCB0_CMD2_MASK		(0xff << 8)
+#define NDCB0_CMD1_MASK		(0xff)
+#define NDCB0_ADDR_CYC_SHIFT	(16)
+
+#define EXT_CMD_TYPE_DISPATCH	6 /* Command dispatch */
+#define EXT_CMD_TYPE_NAKED_RW	5 /* Naked read or Naked write */
+#define EXT_CMD_TYPE_READ	4 /* Read */
+#define EXT_CMD_TYPE_DISP_WR	4 /* Command dispatch with write */
+#define EXT_CMD_TYPE_FINAL	3 /* Final command */
+#define EXT_CMD_TYPE_LAST_RW	1 /* Last naked read/write */
+#define EXT_CMD_TYPE_MONO	0 /* Monolithic read/write */
+
+/*
+ * This should be large enough to read 'ONFI' and 'JEDEC'.
+ * Let's use 7 bytes, which is the maximum ID count supported
+ * by the controller (see NDCR_RD_ID_CNT_MASK).
+ */
+#define READ_ID_BYTES		7
+
+/* macros for registers read/write */
+#define nand_writel(info, off, val)	\
+	writel((val), (info)->mmio_base + (off))
+
+#define nand_readl(info, off)		\
+	readl((info)->mmio_base + (off))
+
+/* error code and state */
+enum {
+	ERR_NONE	= 0,
+	ERR_DMABUSERR	= -1,
+	ERR_SENDCMD	= -2,
+	ERR_UNCORERR	= -3,
+	ERR_BBERR	= -4,
+	ERR_CORERR	= -5,
+};
+
+enum {
+	STATE_IDLE = 0,
+	STATE_PREPARED,
+	STATE_CMD_HANDLE,
+	STATE_DMA_READING,
+	STATE_DMA_WRITING,
+	STATE_DMA_DONE,
+	STATE_PIO_READING,
+	STATE_PIO_WRITING,
+	STATE_CMD_DONE,
+	STATE_READY,
+};
+
+enum pxa3xx_nand_variant {
+	PXA3XX_NAND_VARIANT_PXA,
+	PXA3XX_NAND_VARIANT_ARMADA370,
+};
+
+struct pxa3xx_nand_host {
+	struct nand_chip	chip;
+	void			*info_data;
+
+	/* page size of attached chip */
+	int			use_ecc;
+	int			cs;
+
+	/* calculated from pxa3xx_nand_flash data */
+	unsigned int		col_addr_cycles;
+	unsigned int		row_addr_cycles;
+};
+
+struct pxa3xx_nand_info {
+	struct nand_hw_control	controller;
+	struct pxa3xx_nand_platform_data *pdata;
+
+	struct clk		*clk;
+	void __iomem		*mmio_base;
+	unsigned long		mmio_phys;
+	int			cmd_complete, dev_ready;
+
+	unsigned int		buf_start;
+	unsigned int		buf_count;
+	unsigned int		buf_size;
+	unsigned int		data_buff_pos;
+	unsigned int		oob_buff_pos;
+
+	unsigned char		*data_buff;
+	unsigned char		*oob_buff;
+
+	struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
+	unsigned int		state;
+
+	/*
+	 * This driver supports NFCv1 (as found in PXA SoC)
+	 * and NFCv2 (as found in Armada 370/XP SoC).
+	 */
+	enum pxa3xx_nand_variant variant;
+
+	int			cs;
+	int			use_ecc;	/* use HW ECC ? */
+	int			ecc_bch;	/* using BCH ECC? */
+	int			use_spare;	/* use spare ? */
+	int			need_wait;
+
+	/* Amount of real data per full chunk */
+	unsigned int		chunk_size;
+
+	/* Amount of spare data per full chunk */
+	unsigned int		spare_size;
+
+	/* Number of full chunks (i.e chunk_size + spare_size) */
+	unsigned int            nfullchunks;
+
+	/*
+	 * Total number of chunks. If equal to nfullchunks, then there
+	 * are only full chunks. Otherwise, there is one last chunk of
+	 * size (last_chunk_size + last_spare_size)
+	 */
+	unsigned int            ntotalchunks;
+
+	/* Amount of real data in the last chunk */
+	unsigned int		last_chunk_size;
+
+	/* Amount of spare data in the last chunk */
+	unsigned int		last_spare_size;
+
+	unsigned int		ecc_size;
+	unsigned int		ecc_err_cnt;
+	unsigned int		max_bitflips;
+	int			retcode;
+
+	/*
+	 * Variables only valid during command
+	 * execution. step_chunk_size and step_spare_size is the
+	 * amount of real data and spare data in the current
+	 * chunk. cur_chunk is the current chunk being
+	 * read/programmed.
+	 */
+	unsigned int		step_chunk_size;
+	unsigned int		step_spare_size;
+	unsigned int            cur_chunk;
+
+	/* cached register value */
+	uint32_t		reg_ndcr;
+	uint32_t		ndtr0cs0;
+	uint32_t		ndtr1cs0;
+
+	/* generated NDCBx register values */
+	uint32_t		ndcb0;
+	uint32_t		ndcb1;
+	uint32_t		ndcb2;
+	uint32_t		ndcb3;
+};
+
+static struct pxa3xx_nand_timing timing[] = {
+	/*
+	 * tCH	Enable signal hold time
+	 * tCS	Enable signal setup time
+	 * tWH	ND_nWE high duration
+	 * tWP	ND_nWE pulse time
+	 * tRH	ND_nRE high duration
+	 * tRP	ND_nRE pulse width
+	 * tR	ND_nWE high to ND_nRE low for read
+	 * tWHR	ND_nWE high to ND_nRE low for status read
+	 * tAR	ND_ALE low to ND_nRE low delay
+	 */
+	/*ch  cs  wh  wp   rh  rp   r      whr  ar */
+	{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
+	{ 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
+	{ 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
+	{ 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
+	{  5, 20, 10,  12, 10,  12, 25000,  60, 10, },
+};
+
+static struct pxa3xx_nand_flash builtin_flash_types[] = {
+	/*
+	 * chip_id
+	 * flash_width	Width of Flash memory (DWIDTH_M)
+	 * dfc_width	Width of flash controller(DWIDTH_C)
+	 * *timing
+	 * http://www.linux-mtd.infradead.org/nand-data/nanddata.html
+	 */
+	{ 0x46ec, 16, 16, &timing[1] },
+	{ 0xdaec,  8,  8, &timing[1] },
+	{ 0xd7ec,  8,  8, &timing[1] },
+	{ 0xa12c,  8,  8, &timing[2] },
+	{ 0xb12c, 16, 16, &timing[2] },
+	{ 0xdc2c,  8,  8, &timing[2] },
+	{ 0xcc2c, 16, 16, &timing[2] },
+	{ 0xba20, 16, 16, &timing[3] },
+	{ 0xda98,  8,  8, &timing[4] },
+};
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
+static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,		/* Last 8 blocks in each chip */
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,		/* Last 8 blocks in each chip */
+	.pattern = bbt_mirror_pattern
+};
+#endif
+
+static struct nand_ecclayout ecc_layout_2KB_bch4bit = {
+	.eccbytes = 32,
+	.eccpos = {
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = { {2, 30} }
+};
+
+static struct nand_ecclayout ecc_layout_2KB_bch8bit = {
+	.eccbytes = 64,
+	.eccpos = {
+		64,  65,  66,  67,  68,  69,  70,  71,
+		72,  73,  74,  75,  76,  77,  78,  79,
+		80,  81,  82,  83,  84,  85,  86,  87,
+		88,  89,  90,  91,  92,  93,  94,  95,
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127},
+	.oobfree = { {1, 4}, {6, 26} }
+};
+
+static struct nand_ecclayout ecc_layout_4KB_bch4bit = {
+	.eccbytes = 64,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63,
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127},
+	/* Bootrom looks in bytes 0 & 5 for bad blocks */
+	.oobfree = { {6, 26}, { 64, 32} }
+};
+
+static struct nand_ecclayout ecc_layout_8KB_bch4bit = {
+	.eccbytes = 128,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63,
+
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+
+		160, 161, 162, 163, 164, 165, 166, 167,
+		168, 169, 170, 171, 172, 173, 174, 175,
+		176, 177, 178, 179, 180, 181, 182, 183,
+		184, 185, 186, 187, 188, 189, 190, 191,
+
+		224, 225, 226, 227, 228, 229, 230, 231,
+		232, 233, 234, 235, 236, 237, 238, 239,
+		240, 241, 242, 243, 244, 245, 246, 247,
+		248, 249, 250, 251, 252, 253, 254, 255},
+
+	/* Bootrom looks in bytes 0 & 5 for bad blocks */
+	.oobfree = { {1, 4}, {6, 26}, { 64, 32}, {128, 32}, {192, 32} }
+};
+
+static struct nand_ecclayout ecc_layout_4KB_bch8bit = {
+	.eccbytes = 128,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63},
+	.oobfree = { }
+};
+
+static struct nand_ecclayout ecc_layout_8KB_bch8bit = {
+	.eccbytes = 256,
+	.eccpos = {},
+	/* HW ECC handles all ECC data and all spare area is free for OOB */
+	.oobfree = {{0, 160} }
+};
+
+#define NDTR0_tCH(c)	(min((c), 7) << 19)
+#define NDTR0_tCS(c)	(min((c), 7) << 16)
+#define NDTR0_tWH(c)	(min((c), 7) << 11)
+#define NDTR0_tWP(c)	(min((c), 7) << 8)
+#define NDTR0_tRH(c)	(min((c), 7) << 3)
+#define NDTR0_tRP(c)	(min((c), 7) << 0)
+
+#define NDTR1_tR(c)	(min((c), 65535) << 16)
+#define NDTR1_tWHR(c)	(min((c), 15) << 4)
+#define NDTR1_tAR(c)	(min((c), 15) << 0)
+
+/* convert nano-seconds to nand flash controller clock cycles */
+#define ns2cycle(ns, clk)	(int)((ns) * (clk / 1000000) / 1000)
+
+static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(void)
+{
+	/* We only support the Armada 370/XP/38x for now */
+	return PXA3XX_NAND_VARIANT_ARMADA370;
+}
+
+static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
+				   const struct pxa3xx_nand_timing *t)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	unsigned long nand_clk = mvebu_get_nand_clock();
+	uint32_t ndtr0, ndtr1;
+
+	ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
+		NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
+		NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
+		NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
+		NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
+		NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
+
+	ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
+		NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
+		NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
+
+	info->ndtr0cs0 = ndtr0;
+	info->ndtr1cs0 = ndtr1;
+	nand_writel(info, NDTR0CS0, ndtr0);
+	nand_writel(info, NDTR1CS0, ndtr1);
+}
+
+static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
+				       const struct nand_sdr_timings *t)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct nand_chip *chip = &host->chip;
+	unsigned long nand_clk = mvebu_get_nand_clock();
+	uint32_t ndtr0, ndtr1;
+
+	u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
+	u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
+	u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
+	u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
+	u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
+	u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
+	u32 tR = chip->chip_delay * 1000;
+	u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
+	u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
+
+	/* fallback to a default value if tR = 0 */
+	if (!tR)
+		tR = 20000;
+
+	ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
+		NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
+		NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
+		NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
+		NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
+		NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
+
+	ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
+		NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
+		NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
+
+	info->ndtr0cs0 = ndtr0;
+	info->ndtr1cs0 = ndtr1;
+	nand_writel(info, NDTR0CS0, ndtr0);
+	nand_writel(info, NDTR1CS0, ndtr1);
+}
+
+static int pxa3xx_nand_init_timings(struct pxa3xx_nand_host *host)
+{
+	const struct nand_sdr_timings *timings;
+	struct nand_chip *chip = &host->chip;
+	struct pxa3xx_nand_info *info = host->info_data;
+	const struct pxa3xx_nand_flash *f = NULL;
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+	int mode, id, ntypes, i;
+
+	mode = onfi_get_async_timing_mode(chip);
+	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
+		ntypes = ARRAY_SIZE(builtin_flash_types);
+
+		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+		id = chip->read_byte(mtd);
+		id |= chip->read_byte(mtd) << 0x8;
+
+		for (i = 0; i < ntypes; i++) {
+			f = &builtin_flash_types[i];
+
+			if (f->chip_id == id)
+				break;
+		}
+
+		if (i == ntypes) {
+			dev_err(&info->pdev->dev, "Error: timings not found\n");
+			return -EINVAL;
+		}
+
+		pxa3xx_nand_set_timing(host, f->timing);
+
+		if (f->flash_width == 16) {
+			info->reg_ndcr |= NDCR_DWIDTH_M;
+			chip->options |= NAND_BUSWIDTH_16;
+		}
+
+		info->reg_ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
+	} else {
+		mode = fls(mode) - 1;
+		if (mode < 0)
+			mode = 0;
+
+		timings = onfi_async_timing_mode_to_sdr_timings(mode);
+		if (IS_ERR(timings))
+			return PTR_ERR(timings);
+
+		pxa3xx_nand_set_sdr_timing(host, timings);
+	}
+
+	return 0;
+}
+
+/**
+ * NOTE: it is a must to set ND_RUN first, then write
+ * command buffer, otherwise, it does not work.
+ * We enable all the interrupt at the same time, and
+ * let pxa3xx_nand_irq to handle all logic.
+ */
+static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
+{
+	uint32_t ndcr;
+
+	ndcr = info->reg_ndcr;
+
+	if (info->use_ecc) {
+		ndcr |= NDCR_ECC_EN;
+		if (info->ecc_bch)
+			nand_writel(info, NDECCCTRL, 0x1);
+	} else {
+		ndcr &= ~NDCR_ECC_EN;
+		if (info->ecc_bch)
+			nand_writel(info, NDECCCTRL, 0x0);
+	}
+
+	ndcr &= ~NDCR_DMA_EN;
+
+	if (info->use_spare)
+		ndcr |= NDCR_SPARE_EN;
+	else
+		ndcr &= ~NDCR_SPARE_EN;
+
+	ndcr |= NDCR_ND_RUN;
+
+	/* clear status bits and run */
+	nand_writel(info, NDSR, NDSR_MASK);
+	nand_writel(info, NDCR, 0);
+	nand_writel(info, NDCR, ndcr);
+}
+
+static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
+{
+	uint32_t ndcr;
+
+	ndcr = nand_readl(info, NDCR);
+	nand_writel(info, NDCR, ndcr | int_mask);
+}
+
+static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
+{
+	if (info->ecc_bch) {
+		u32 ts;
+
+		/*
+		 * According to the datasheet, when reading from NDDB
+		 * with BCH enabled, after each 32 bytes reads, we
+		 * have to make sure that the NDSR.RDDREQ bit is set.
+		 *
+		 * Drain the FIFO 8 32 bits reads at a time, and skip
+		 * the polling on the last read.
+		 */
+		while (len > 8) {
+			readsl(info->mmio_base + NDDB, data, 8);
+
+			ts = get_timer(0);
+			while (!(nand_readl(info, NDSR) & NDSR_RDDREQ)) {
+				if (get_timer(ts) > TIMEOUT_DRAIN_FIFO) {
+					dev_err(&info->pdev->dev,
+						"Timeout on RDDREQ while draining the FIFO\n");
+					return;
+				}
+			}
+
+			data += 32;
+			len -= 8;
+		}
+	}
+
+	readsl(info->mmio_base + NDDB, data, len);
+}
+
+static void handle_data_pio(struct pxa3xx_nand_info *info)
+{
+	switch (info->state) {
+	case STATE_PIO_WRITING:
+		if (info->step_chunk_size)
+			writesl(info->mmio_base + NDDB,
+				info->data_buff + info->data_buff_pos,
+				DIV_ROUND_UP(info->step_chunk_size, 4));
+
+		if (info->step_spare_size)
+			writesl(info->mmio_base + NDDB,
+				info->oob_buff + info->oob_buff_pos,
+				DIV_ROUND_UP(info->step_spare_size, 4));
+		break;
+	case STATE_PIO_READING:
+		if (info->step_chunk_size)
+			drain_fifo(info,
+				   info->data_buff + info->data_buff_pos,
+				   DIV_ROUND_UP(info->step_chunk_size, 4));
+
+		if (info->step_spare_size)
+			drain_fifo(info,
+				   info->oob_buff + info->oob_buff_pos,
+				   DIV_ROUND_UP(info->step_spare_size, 4));
+		break;
+	default:
+		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
+				info->state);
+		BUG();
+	}
+
+	/* Update buffer pointers for multi-page read/write */
+	info->data_buff_pos += info->step_chunk_size;
+	info->oob_buff_pos += info->step_spare_size;
+}
+
+static void pxa3xx_nand_irq_thread(struct pxa3xx_nand_info *info)
+{
+	handle_data_pio(info);
+
+	info->state = STATE_CMD_DONE;
+	nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
+}
+
+static irqreturn_t pxa3xx_nand_irq(struct pxa3xx_nand_info *info)
+{
+	unsigned int status, is_completed = 0, is_ready = 0;
+	unsigned int ready, cmd_done;
+	irqreturn_t ret = IRQ_HANDLED;
+
+	if (info->cs == 0) {
+		ready           = NDSR_FLASH_RDY;
+		cmd_done        = NDSR_CS0_CMDD;
+	} else {
+		ready           = NDSR_RDY;
+		cmd_done        = NDSR_CS1_CMDD;
+	}
+
+	/* TODO - find out why we need the delay during write operation. */
+	ndelay(1);
+
+	status = nand_readl(info, NDSR);
+
+	if (status & NDSR_UNCORERR)
+		info->retcode = ERR_UNCORERR;
+	if (status & NDSR_CORERR) {
+		info->retcode = ERR_CORERR;
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
+		    info->ecc_bch)
+			info->ecc_err_cnt = NDSR_ERR_CNT(status);
+		else
+			info->ecc_err_cnt = 1;
+
+		/*
+		 * Each chunk composing a page is corrected independently,
+		 * and we need to store maximum number of corrected bitflips
+		 * to return it to the MTD layer in ecc.read_page().
+		 */
+		info->max_bitflips = max_t(unsigned int,
+					   info->max_bitflips,
+					   info->ecc_err_cnt);
+	}
+	if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
+		info->state = (status & NDSR_RDDREQ) ?
+			STATE_PIO_READING : STATE_PIO_WRITING;
+		/* Call the IRQ thread in U-Boot directly */
+		pxa3xx_nand_irq_thread(info);
+		return 0;
+	}
+	if (status & cmd_done) {
+		info->state = STATE_CMD_DONE;
+		is_completed = 1;
+	}
+	if (status & ready) {
+		info->state = STATE_READY;
+		is_ready = 1;
+	}
+
+	/*
+	 * Clear all status bit before issuing the next command, which
+	 * can and will alter the status bits and will deserve a new
+	 * interrupt on its own. This lets the controller exit the IRQ
+	 */
+	nand_writel(info, NDSR, status);
+
+	if (status & NDSR_WRCMDREQ) {
+		status &= ~NDSR_WRCMDREQ;
+		info->state = STATE_CMD_HANDLE;
+
+		/*
+		 * Command buffer registers NDCB{0-2} (and optionally NDCB3)
+		 * must be loaded by writing directly either 12 or 16
+		 * bytes directly to NDCB0, four bytes at a time.
+		 *
+		 * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
+		 * but each NDCBx register can be read.
+		 */
+		nand_writel(info, NDCB0, info->ndcb0);
+		nand_writel(info, NDCB0, info->ndcb1);
+		nand_writel(info, NDCB0, info->ndcb2);
+
+		/* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
+			nand_writel(info, NDCB0, info->ndcb3);
+	}
+
+	if (is_completed)
+		info->cmd_complete = 1;
+	if (is_ready)
+		info->dev_ready = 1;
+
+	return ret;
+}
+
+static inline int is_buf_blank(uint8_t *buf, size_t len)
+{
+	for (; len > 0; len--)
+		if (*buf++ != 0xff)
+			return 0;
+	return 1;
+}
+
+static void set_command_address(struct pxa3xx_nand_info *info,
+		unsigned int page_size, uint16_t column, int page_addr)
+{
+	/* small page addr setting */
+	if (page_size < info->chunk_size) {
+		info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
+				| (column & 0xFF);
+
+		info->ndcb2 = 0;
+	} else {
+		info->ndcb1 = ((page_addr & 0xFFFF) << 16)
+				| (column & 0xFFFF);
+
+		if (page_addr & 0xFF0000)
+			info->ndcb2 = (page_addr & 0xFF0000) >> 16;
+		else
+			info->ndcb2 = 0;
+	}
+}
+
+static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
+{
+	struct pxa3xx_nand_host *host = info->host[info->cs];
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+
+	/* reset data and oob column point to handle data */
+	info->buf_start		= 0;
+	info->buf_count		= 0;
+	info->data_buff_pos	= 0;
+	info->oob_buff_pos	= 0;
+	info->step_chunk_size   = 0;
+	info->step_spare_size   = 0;
+	info->cur_chunk         = 0;
+	info->use_ecc		= 0;
+	info->use_spare		= 1;
+	info->retcode		= ERR_NONE;
+	info->ecc_err_cnt	= 0;
+	info->ndcb3		= 0;
+	info->need_wait		= 0;
+
+	switch (command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+	case NAND_CMD_PAGEPROG:
+		info->use_ecc = 1;
+		break;
+	case NAND_CMD_PARAM:
+		info->use_spare = 0;
+		break;
+	default:
+		info->ndcb1 = 0;
+		info->ndcb2 = 0;
+		break;
+	}
+
+	/*
+	 * If we are about to issue a read command, or about to set
+	 * the write address, then clean the data buffer.
+	 */
+	if (command == NAND_CMD_READ0 ||
+	    command == NAND_CMD_READOOB ||
+	    command == NAND_CMD_SEQIN) {
+		info->buf_count = mtd->writesize + mtd->oobsize;
+		memset(info->data_buff, 0xFF, info->buf_count);
+	}
+}
+
+static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
+		int ext_cmd_type, uint16_t column, int page_addr)
+{
+	int addr_cycle, exec_cmd;
+	struct pxa3xx_nand_host *host;
+	struct mtd_info *mtd;
+
+	host = info->host[info->cs];
+	mtd = nand_to_mtd(&host->chip);
+	addr_cycle = 0;
+	exec_cmd = 1;
+
+	if (info->cs != 0)
+		info->ndcb0 = NDCB0_CSEL;
+	else
+		info->ndcb0 = 0;
+
+	if (command == NAND_CMD_SEQIN)
+		exec_cmd = 0;
+
+	addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
+				    + host->col_addr_cycles);
+
+	switch (command) {
+	case NAND_CMD_READOOB:
+	case NAND_CMD_READ0:
+		info->buf_start = column;
+		info->ndcb0 |= NDCB0_CMD_TYPE(0)
+				| addr_cycle
+				| NAND_CMD_READ0;
+
+		if (command == NAND_CMD_READOOB)
+			info->buf_start += mtd->writesize;
+
+		if (info->cur_chunk < info->nfullchunks) {
+			info->step_chunk_size = info->chunk_size;
+			info->step_spare_size = info->spare_size;
+		} else {
+			info->step_chunk_size = info->last_chunk_size;
+			info->step_spare_size = info->last_spare_size;
+		}
+
+		/*
+		 * Multiple page read needs an 'extended command type' field,
+		 * which is either naked-read or last-read according to the
+		 * state.
+		 */
+		if (mtd->writesize == info->chunk_size) {
+			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
+		} else if (mtd->writesize > info->chunk_size) {
+			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
+					| NDCB0_LEN_OVRD
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
+			info->ndcb3 = info->step_chunk_size +
+				info->step_spare_size;
+		}
+
+		set_command_address(info, mtd->writesize, column, page_addr);
+		break;
+
+	case NAND_CMD_SEQIN:
+
+		info->buf_start = column;
+		set_command_address(info, mtd->writesize, 0, page_addr);
+
+		/*
+		 * Multiple page programming needs to execute the initial
+		 * SEQIN command that sets the page address.
+		 */
+		if (mtd->writesize > info->chunk_size) {
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+				| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
+				| addr_cycle
+				| command;
+			exec_cmd = 1;
+		}
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		if (is_buf_blank(info->data_buff,
+				 (mtd->writesize + mtd->oobsize))) {
+			exec_cmd = 0;
+			break;
+		}
+
+		if (info->cur_chunk < info->nfullchunks) {
+			info->step_chunk_size = info->chunk_size;
+			info->step_spare_size = info->spare_size;
+		} else {
+			info->step_chunk_size = info->last_chunk_size;
+			info->step_spare_size = info->last_spare_size;
+		}
+
+		/* Second command setting for large pages */
+		if (mtd->writesize > info->chunk_size) {
+			/*
+			 * Multiple page write uses the 'extended command'
+			 * field. This can be used to issue a command dispatch
+			 * or a naked-write depending on the current stage.
+			 */
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+					| NDCB0_LEN_OVRD
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
+			info->ndcb3 = info->step_chunk_size +
+				      info->step_spare_size;
+
+			/*
+			 * This is the command dispatch that completes a chunked
+			 * page program operation.
+			 */
+			if (info->cur_chunk == info->ntotalchunks) {
+				info->ndcb0 = NDCB0_CMD_TYPE(0x1)
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
+					| command;
+				info->ndcb1 = 0;
+				info->ndcb2 = 0;
+				info->ndcb3 = 0;
+			}
+		} else {
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+					| NDCB0_AUTO_RS
+					| NDCB0_ST_ROW_EN
+					| NDCB0_DBC
+					| (NAND_CMD_PAGEPROG << 8)
+					| NAND_CMD_SEQIN
+					| addr_cycle;
+		}
+		break;
+
+	case NAND_CMD_PARAM:
+		info->buf_count = INIT_BUFFER_SIZE;
+		info->ndcb0 |= NDCB0_CMD_TYPE(0)
+				| NDCB0_ADDR_CYC(1)
+				| NDCB0_LEN_OVRD
+				| command;
+		info->ndcb1 = (column & 0xFF);
+		info->ndcb3 = INIT_BUFFER_SIZE;
+		info->step_chunk_size = INIT_BUFFER_SIZE;
+		break;
+
+	case NAND_CMD_READID:
+		info->buf_count = READ_ID_BYTES;
+		info->ndcb0 |= NDCB0_CMD_TYPE(3)
+				| NDCB0_ADDR_CYC(1)
+				| command;
+		info->ndcb1 = (column & 0xFF);
+
+		info->step_chunk_size = 8;
+		break;
+	case NAND_CMD_STATUS:
+		info->buf_count = 1;
+		info->ndcb0 |= NDCB0_CMD_TYPE(4)
+				| NDCB0_ADDR_CYC(1)
+				| command;
+
+		info->step_chunk_size = 8;
+		break;
+
+	case NAND_CMD_ERASE1:
+		info->ndcb0 |= NDCB0_CMD_TYPE(2)
+				| NDCB0_AUTO_RS
+				| NDCB0_ADDR_CYC(3)
+				| NDCB0_DBC
+				| (NAND_CMD_ERASE2 << 8)
+				| NAND_CMD_ERASE1;
+		info->ndcb1 = page_addr;
+		info->ndcb2 = 0;
+
+		break;
+	case NAND_CMD_RESET:
+		info->ndcb0 |= NDCB0_CMD_TYPE(5)
+				| command;
+
+		break;
+
+	case NAND_CMD_ERASE2:
+		exec_cmd = 0;
+		break;
+
+	default:
+		exec_cmd = 0;
+		dev_err(&info->pdev->dev, "non-supported command %x\n",
+			command);
+		break;
+	}
+
+	return exec_cmd;
+}
+
+static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
+			 int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int exec_cmd;
+
+	/*
+	 * if this is a x16 device ,then convert the input
+	 * "byte" address into a "word" address appropriate
+	 * for indexing a word-oriented device
+	 */
+	if (info->reg_ndcr & NDCR_DWIDTH_M)
+		column /= 2;
+
+	/*
+	 * There may be different NAND chip hooked to
+	 * different chip select, so check whether
+	 * chip select has been changed, if yes, reset the timing
+	 */
+	if (info->cs != host->cs) {
+		info->cs = host->cs;
+		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
+		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
+	}
+
+	prepare_start_command(info, command);
+
+	info->state = STATE_PREPARED;
+	exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
+
+	if (exec_cmd) {
+		u32 ts;
+
+		info->cmd_complete = 0;
+		info->dev_ready = 0;
+		info->need_wait = 1;
+		pxa3xx_nand_start(info);
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->cmd_complete)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
+				return;
+			}
+		}
+	}
+	info->state = STATE_IDLE;
+}
+
+static void nand_cmdfunc_extended(struct mtd_info *mtd,
+				  const unsigned command,
+				  int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int exec_cmd, ext_cmd_type;
+
+	/*
+	 * if this is a x16 device then convert the input
+	 * "byte" address into a "word" address appropriate
+	 * for indexing a word-oriented device
+	 */
+	if (info->reg_ndcr & NDCR_DWIDTH_M)
+		column /= 2;
+
+	/*
+	 * There may be different NAND chip hooked to
+	 * different chip select, so check whether
+	 * chip select has been changed, if yes, reset the timing
+	 */
+	if (info->cs != host->cs) {
+		info->cs = host->cs;
+		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
+		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
+	}
+
+	/* Select the extended command for the first command */
+	switch (command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+		ext_cmd_type = EXT_CMD_TYPE_MONO;
+		break;
+	case NAND_CMD_SEQIN:
+		ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
+		break;
+	case NAND_CMD_PAGEPROG:
+		ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
+		break;
+	default:
+		ext_cmd_type = 0;
+		break;
+	}
+
+	prepare_start_command(info, command);
+
+	/*
+	 * Prepare the "is ready" completion before starting a command
+	 * transaction sequence. If the command is not executed the
+	 * completion will be completed, see below.
+	 *
+	 * We can do that inside the loop because the command variable
+	 * is invariant and thus so is the exec_cmd.
+	 */
+	info->need_wait = 1;
+	info->dev_ready = 0;
+
+	do {
+		u32 ts;
+
+		info->state = STATE_PREPARED;
+		exec_cmd = prepare_set_command(info, command, ext_cmd_type,
+					       column, page_addr);
+		if (!exec_cmd) {
+			info->need_wait = 0;
+			info->dev_ready = 1;
+			break;
+		}
+
+		info->cmd_complete = 0;
+		pxa3xx_nand_start(info);
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->cmd_complete)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
+				return;
+			}
+		}
+
+		/* Only a few commands need several steps */
+		if (command != NAND_CMD_PAGEPROG &&
+		    command != NAND_CMD_READ0    &&
+		    command != NAND_CMD_READOOB)
+			break;
+
+		info->cur_chunk++;
+
+		/* Check if the sequence is complete */
+		if (info->cur_chunk == info->ntotalchunks &&
+		    command != NAND_CMD_PAGEPROG)
+			break;
+
+		/*
+		 * After a splitted program command sequence has issued
+		 * the command dispatch, the command sequence is complete.
+		 */
+		if (info->cur_chunk == (info->ntotalchunks + 1) &&
+		    command == NAND_CMD_PAGEPROG &&
+		    ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
+			break;
+
+		if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
+			/* Last read: issue a 'last naked read' */
+			if (info->cur_chunk == info->ntotalchunks - 1)
+				ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
+			else
+				ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
+
+		/*
+		 * If a splitted program command has no more data to transfer,
+		 * the command dispatch must be issued to complete.
+		 */
+		} else if (command == NAND_CMD_PAGEPROG &&
+			   info->cur_chunk == info->ntotalchunks) {
+				ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
+		}
+	} while (1);
+
+	info->state = STATE_IDLE;
+}
+
+static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, const uint8_t *buf, int oob_required,
+		int page)
+{
+	chip->write_buf(mtd, buf, mtd->writesize);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, uint8_t *buf, int oob_required,
+		int page)
+{
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (info->retcode == ERR_CORERR && info->use_ecc) {
+		mtd->ecc_stats.corrected += info->ecc_err_cnt;
+
+	} else if (info->retcode == ERR_UNCORERR) {
+		/*
+		 * for blank page (all 0xff), HW will calculate its ECC as
+		 * 0, which is different from the ECC information within
+		 * OOB, ignore such uncorrectable errors
+		 */
+		if (is_buf_blank(buf, mtd->writesize))
+			info->retcode = ERR_NONE;
+		else
+			mtd->ecc_stats.failed++;
+	}
+
+	return info->max_bitflips;
+}
+
+static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	char retval = 0xFF;
+
+	if (info->buf_start < info->buf_count)
+		/* Has just send a new command? */
+		retval = info->data_buff[info->buf_start++];
+
+	return retval;
+}
+
+static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	u16 retval = 0xFFFF;
+
+	if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
+		retval = *((u16 *)(info->data_buff+info->buf_start));
+		info->buf_start += 2;
+	}
+	return retval;
+}
+
+static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
+
+	memcpy(buf, info->data_buff + info->buf_start, real_len);
+	info->buf_start += real_len;
+}
+
+static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
+		const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
+
+	memcpy(info->data_buff + info->buf_start, buf, real_len);
+	info->buf_start += real_len;
+}
+
+static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	return;
+}
+
+static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+
+	if (info->need_wait) {
+		u32 ts;
+
+		info->need_wait = 0;
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->dev_ready)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Ready timeout!!!\n");
+				return NAND_STATUS_FAIL;
+			}
+		}
+	}
+
+	/* pxa3xx_nand_send_command has waited for command complete */
+	if (this->state == FL_WRITING || this->state == FL_ERASING) {
+		if (info->retcode == ERR_NONE)
+			return 0;
+		else
+			return NAND_STATUS_FAIL;
+	}
+
+	return NAND_STATUS_READY;
+}
+
+static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+
+	/* Configure default flash values */
+	info->reg_ndcr = 0x0; /* enable all interrupts */
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
+	info->reg_ndcr |= NDCR_SPARE_EN;
+
+	return 0;
+}
+
+static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_host *host = info->host[info->cs];
+	struct mtd_info *mtd = nand_to_mtd(&info->host[info->cs]->chip);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
+	info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
+	info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
+}
+
+static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	uint32_t ndcr = nand_readl(info, NDCR);
+
+	/* Set an initial chunk size */
+	info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
+	info->reg_ndcr = ndcr &
+		~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
+	info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
+}
+
+static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
+{
+	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
+	if (info->data_buff == NULL)
+		return -ENOMEM;
+	return 0;
+}
+
+static int pxa3xx_nand_sensing(struct pxa3xx_nand_host *host)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	const struct nand_sdr_timings *timings;
+	int ret;
+
+	mtd = nand_to_mtd(&info->host[info->cs]->chip);
+	chip = mtd_to_nand(mtd);
+
+	/* configure default flash values */
+	info->reg_ndcr = 0x0; /* enable all interrupts */
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
+	info->reg_ndcr |= NDCR_SPARE_EN; /* enable spare by default */
+
+	/* use the common timing to make a try */
+	timings = onfi_async_timing_mode_to_sdr_timings(0);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	pxa3xx_nand_set_sdr_timing(host, timings);
+
+	chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
+	ret = chip->waitfunc(mtd, chip);
+	if (ret & NAND_STATUS_FAIL)
+		return -ENODEV;
+
+	return 0;
+}
+
+static int pxa_ecc_init(struct pxa3xx_nand_info *info,
+			struct nand_ecc_ctrl *ecc,
+			int strength, int ecc_stepsize, int page_size)
+{
+	if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 2048;
+		info->spare_size = 40;
+		info->ecc_size = 24;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = 512;
+		ecc->strength = 1;
+
+	} else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 512;
+		info->spare_size = 8;
+		info->ecc_size = 8;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = 512;
+		ecc->strength = 1;
+
+	/*
+	 * Required ECC: 4-bit correction per 512 bytes
+	 * Select: 16-bit correction per 2048 bytes
+	 */
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_2KB_bch4bit;
+		ecc->strength = 16;
+
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 2;
+		info->ntotalchunks = 2;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_4KB_bch4bit;
+		ecc->strength = 16;
+
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 8192) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 4;
+		info->ntotalchunks = 4;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_8KB_bch4bit;
+		ecc->strength = 16;
+
+	/*
+	 * Required ECC: 8-bit correction per 512 bytes
+	 * Select: 16-bit correction per 1024 bytes
+	 */
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 2048) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 1;
+		info->ntotalchunks = 2;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 1024;
+		info->last_spare_size = 64;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_2KB_bch8bit;
+		ecc->strength = 16;
+
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 4;
+		info->ntotalchunks = 5;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 0;
+		info->last_spare_size = 64;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_4KB_bch8bit;
+		ecc->strength = 16;
+
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 8192) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 8;
+		info->ntotalchunks = 9;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 0;
+		info->last_spare_size = 160;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_8KB_bch8bit;
+		ecc->strength = 16;
+
+	} else {
+		dev_err(&info->pdev->dev,
+			"ECC strength %d at page size %d is not supported\n",
+			strength, page_size);
+		return -ENODEV;
+	}
+
+	return 0;
+}
+
+static int pxa3xx_nand_scan(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	int ret;
+	uint16_t ecc_strength, ecc_step;
+
+	if (pdata->keep_config) {
+		pxa3xx_nand_detect_config(info);
+	} else {
+		ret = pxa3xx_nand_config_ident(info);
+		if (ret)
+			return ret;
+		ret = pxa3xx_nand_sensing(host);
+		if (ret) {
+			dev_info(&info->pdev->dev,
+				 "There is no chip on cs %d!\n",
+				 info->cs);
+			return ret;
+		}
+	}
+
+	/* Device detection must be done with ECC disabled */
+	if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
+		nand_writel(info, NDECCCTRL, 0x0);
+
+	if (nand_scan_ident(mtd, 1, NULL))
+		return -ENODEV;
+
+	if (!pdata->keep_config) {
+		ret = pxa3xx_nand_init_timings(host);
+		if (ret) {
+			dev_err(&info->pdev->dev,
+				"Failed to set timings: %d\n", ret);
+			return ret;
+		}
+	}
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	/*
+	 * We'll use a bad block table stored in-flash and don't
+	 * allow writing the bad block marker to the flash.
+	 */
+	chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB_BBM;
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+#endif
+
+	if (pdata->ecc_strength && pdata->ecc_step_size) {
+		ecc_strength = pdata->ecc_strength;
+		ecc_step = pdata->ecc_step_size;
+	} else {
+		ecc_strength = chip->ecc_strength_ds;
+		ecc_step = chip->ecc_step_ds;
+	}
+
+	/* Set default ECC strength requirements on non-ONFI devices */
+	if (ecc_strength < 1 && ecc_step < 1) {
+		ecc_strength = 1;
+		ecc_step = 512;
+	}
+
+	ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
+			   ecc_step, mtd->writesize);
+	if (ret)
+		return ret;
+
+	/*
+	 * If the page size is bigger than the FIFO size, let's check
+	 * we are given the right variant and then switch to the extended
+	 * (aka split) command handling,
+	 */
+	if (mtd->writesize > info->chunk_size) {
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
+			chip->cmdfunc = nand_cmdfunc_extended;
+		} else {
+			dev_err(&info->pdev->dev,
+				"unsupported page size on this variant\n");
+			return -ENODEV;
+		}
+	}
+
+	/* calculate addressing information */
+	if (mtd->writesize >= 2048)
+		host->col_addr_cycles = 2;
+	else
+		host->col_addr_cycles = 1;
+
+	/* release the initial buffer */
+	kfree(info->data_buff);
+
+	/* allocate the real data + oob buffer */
+	info->buf_size = mtd->writesize + mtd->oobsize;
+	ret = pxa3xx_nand_init_buff(info);
+	if (ret)
+		return ret;
+	info->oob_buff = info->data_buff + mtd->writesize;
+
+	if ((mtd->size >> chip->page_shift) > 65536)
+		host->row_addr_cycles = 3;
+	else
+		host->row_addr_cycles = 2;
+
+	if (!pdata->keep_config)
+		pxa3xx_nand_config_tail(info);
+
+	return nand_scan_tail(mtd);
+}
+
+static int alloc_nand_resource(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	struct pxa3xx_nand_host *host;
+	struct nand_chip *chip = NULL;
+	struct mtd_info *mtd;
+	int ret, cs;
+
+	pdata = info->pdata;
+	if (pdata->num_cs <= 0)
+		return -ENODEV;
+
+	info->variant = pxa3xx_nand_get_variant();
+	for (cs = 0; cs < pdata->num_cs; cs++) {
+		chip = (struct nand_chip *)
+			((u8 *)&info[1] + sizeof(*host) * cs);
+		mtd = nand_to_mtd(chip);
+		host = (struct pxa3xx_nand_host *)chip;
+		info->host[cs] = host;
+		host->cs = cs;
+		host->info_data = info;
+		mtd->owner = THIS_MODULE;
+
+		nand_set_controller_data(chip, host);
+		chip->ecc.read_page	= pxa3xx_nand_read_page_hwecc;
+		chip->ecc.write_page	= pxa3xx_nand_write_page_hwecc;
+		chip->controller        = &info->controller;
+		chip->waitfunc		= pxa3xx_nand_waitfunc;
+		chip->select_chip	= pxa3xx_nand_select_chip;
+		chip->read_word		= pxa3xx_nand_read_word;
+		chip->read_byte		= pxa3xx_nand_read_byte;
+		chip->read_buf		= pxa3xx_nand_read_buf;
+		chip->write_buf		= pxa3xx_nand_write_buf;
+		chip->options		|= NAND_NO_SUBPAGE_WRITE;
+		chip->cmdfunc		= nand_cmdfunc;
+	}
+
+	/* Allocate a buffer to allow flash detection */
+	info->buf_size = INIT_BUFFER_SIZE;
+	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
+	if (info->data_buff == NULL) {
+		ret = -ENOMEM;
+		goto fail_disable_clk;
+	}
+
+	/* initialize all interrupts to be disabled */
+	disable_int(info, NDSR_MASK);
+
+	return 0;
+
+	kfree(info->data_buff);
+fail_disable_clk:
+	return ret;
+}
+
+static int pxa3xx_nand_probe_dt(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	const void *blob = gd->fdt_blob;
+	int node = -1;
+
+	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
+	if (!pdata)
+		return -ENOMEM;
+
+	/* Get address decoding nodes from the FDT blob */
+	do {
+		node = fdt_node_offset_by_compatible(blob, node,
+						     "marvell,mvebu-pxa3xx-nand");
+		if (node < 0)
+			break;
+
+		/* Bypass disabeld nodes */
+		if (!fdtdec_get_is_enabled(blob, node))
+			continue;
+
+		/* Get the first enabled NAND controler base address */
+		info->mmio_base =
+			(void __iomem *)fdtdec_get_addr_size_auto_noparent(
+					blob, node, "reg", 0, NULL, true);
+
+		pdata->num_cs = fdtdec_get_int(blob, node, "num-cs", 1);
+		if (pdata->num_cs != 1) {
+			pr_err("pxa3xx driver supports single CS only\n");
+			break;
+		}
+
+		if (fdtdec_get_bool(blob, node, "nand-enable-arbiter"))
+			pdata->enable_arbiter = 1;
+
+		if (fdtdec_get_bool(blob, node, "nand-keep-config"))
+			pdata->keep_config = 1;
+
+		/*
+		 * ECC parameters.
+		 * If these are not set, they will be selected according
+		 * to the detected flash type.
+		 */
+		/* ECC strength */
+		pdata->ecc_strength = fdtdec_get_int(blob, node,
+						     "nand-ecc-strength", 0);
+
+		/* ECC step size */
+		pdata->ecc_step_size = fdtdec_get_int(blob, node,
+						      "nand-ecc-step-size", 0);
+
+		info->pdata = pdata;
+
+		/* Currently support only a single NAND controller */
+		return 0;
+
+	} while (node >= 0);
+
+	return -EINVAL;
+}
+
+static int pxa3xx_nand_probe(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	int ret, cs, probe_success;
+
+	ret = pxa3xx_nand_probe_dt(info);
+	if (ret)
+		return ret;
+
+	pdata = info->pdata;
+
+	ret = alloc_nand_resource(info);
+	if (ret) {
+		dev_err(&pdev->dev, "alloc nand resource failed\n");
+		return ret;
+	}
+
+	probe_success = 0;
+	for (cs = 0; cs < pdata->num_cs; cs++) {
+		struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
+
+		/*
+		 * The mtd name matches the one used in 'mtdparts' kernel
+		 * parameter. This name cannot be changed or otherwise
+		 * user's mtd partitions configuration would get broken.
+		 */
+		mtd->name = "pxa3xx_nand-0";
+		info->cs = cs;
+		ret = pxa3xx_nand_scan(mtd);
+		if (ret) {
+			dev_info(&pdev->dev, "failed to scan nand at cs %d\n",
+				 cs);
+			continue;
+		}
+
+		if (nand_register(cs, mtd))
+			continue;
+
+		probe_success = 1;
+	}
+
+	if (!probe_success)
+		return -ENODEV;
+
+	return 0;
+}
+
+/*
+ * Main initialization routine
+ */
+void board_nand_init(void)
+{
+	struct pxa3xx_nand_info *info;
+	struct pxa3xx_nand_host *host;
+	int ret;
+
+	info = kzalloc(sizeof(*info) +
+		       sizeof(*host) * CONFIG_SYS_MAX_NAND_DEVICE,
+		       GFP_KERNEL);
+	if (!info)
+		return;
+
+	ret = pxa3xx_nand_probe(info);
+	if (ret)
+		return;
+}