| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Tests for the core driver model code |
| * |
| * Copyright (c) 2013 Google, Inc |
| */ |
| |
| #include <common.h> |
| #include <errno.h> |
| #include <dm.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <asm/global_data.h> |
| #include <dm/device-internal.h> |
| #include <dm/root.h> |
| #include <dm/util.h> |
| #include <dm/test.h> |
| #include <dm/uclass-internal.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| enum { |
| TEST_INTVAL1 = 0, |
| TEST_INTVAL2 = 3, |
| TEST_INTVAL3 = 6, |
| TEST_INTVAL_MANUAL = 101112, |
| TEST_INTVAL_PRE_RELOC = 7, |
| }; |
| |
| static const struct dm_test_pdata test_pdata[] = { |
| { .ping_add = TEST_INTVAL1, }, |
| { .ping_add = TEST_INTVAL2, }, |
| { .ping_add = TEST_INTVAL3, }, |
| }; |
| |
| static const struct dm_test_pdata test_pdata_manual = { |
| .ping_add = TEST_INTVAL_MANUAL, |
| }; |
| |
| static const struct dm_test_pdata test_pdata_pre_reloc = { |
| .ping_add = TEST_INTVAL_PRE_RELOC, |
| }; |
| |
| U_BOOT_DRVINFO(dm_test_info1) = { |
| .name = "test_drv", |
| .plat = &test_pdata[0], |
| }; |
| |
| U_BOOT_DRVINFO(dm_test_info2) = { |
| .name = "test_drv", |
| .plat = &test_pdata[1], |
| }; |
| |
| U_BOOT_DRVINFO(dm_test_info3) = { |
| .name = "test_drv", |
| .plat = &test_pdata[2], |
| }; |
| |
| static struct driver_info driver_info_manual = { |
| .name = "test_manual_drv", |
| .plat = &test_pdata_manual, |
| }; |
| |
| static struct driver_info driver_info_pre_reloc = { |
| .name = "test_pre_reloc_drv", |
| .plat = &test_pdata_pre_reloc, |
| }; |
| |
| static struct driver_info driver_info_act_dma = { |
| .name = "test_act_dma_drv", |
| }; |
| |
| static struct driver_info driver_info_vital_clk = { |
| .name = "test_vital_clk_drv", |
| }; |
| |
| static struct driver_info driver_info_act_dma_vital_clk = { |
| .name = "test_act_dma_vital_clk_drv", |
| }; |
| |
| void dm_leak_check_start(struct unit_test_state *uts) |
| { |
| uts->start = mallinfo(); |
| if (!uts->start.uordblks) |
| puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n"); |
| } |
| |
| int dm_leak_check_end(struct unit_test_state *uts) |
| { |
| struct mallinfo end; |
| int id, diff; |
| |
| /* Don't delete the root class, since we started with that */ |
| for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) { |
| struct uclass *uc; |
| |
| uc = uclass_find(id); |
| if (!uc) |
| continue; |
| ut_assertok(uclass_destroy(uc)); |
| } |
| |
| end = mallinfo(); |
| diff = end.uordblks - uts->start.uordblks; |
| if (diff > 0) |
| printf("Leak: lost %#xd bytes\n", diff); |
| else if (diff < 0) |
| printf("Leak: gained %#xd bytes\n", -diff); |
| ut_asserteq(uts->start.uordblks, end.uordblks); |
| |
| return 0; |
| } |
| |
| /* Test that binding with plat occurs correctly */ |
| static int dm_test_autobind(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| /* |
| * We should have a single class (UCLASS_ROOT) and a single root |
| * device with no children. |
| */ |
| ut_assert(uts->root); |
| ut_asserteq(1, list_count_items(gd->uclass_root)); |
| ut_asserteq(0, list_count_items(&gd->dm_root->child_head)); |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); |
| |
| ut_assertok(dm_scan_plat(false)); |
| |
| /* We should have our test class now at least, plus more children */ |
| ut_assert(1 < list_count_items(gd->uclass_root)); |
| ut_assert(0 < list_count_items(&gd->dm_root->child_head)); |
| |
| /* Our 3 dm_test_infox children should be bound to the test uclass */ |
| ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); |
| |
| /* No devices should be probed */ |
| list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node) |
| ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); |
| |
| /* Our test driver should have been bound 3 times */ |
| ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_autobind, 0); |
| |
| /* Test that binding with uclass plat allocation occurs correctly */ |
| static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts) |
| { |
| struct dm_test_perdev_uc_pdata *uc_pdata; |
| struct udevice *dev; |
| struct uclass *uc; |
| |
| ut_assertok(uclass_get(UCLASS_TEST, &uc)); |
| ut_assert(uc); |
| |
| /** |
| * Test if test uclass driver requires allocation for the uclass |
| * platform data and then check the dev->uclass_plat pointer. |
| */ |
| ut_assert(uc->uc_drv->per_device_plat_auto); |
| |
| for (uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| uclass_find_next_device(&dev)) { |
| ut_assertnonnull(dev); |
| |
| uc_pdata = dev_get_uclass_plat(dev); |
| ut_assert(uc_pdata); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA); |
| |
| /* compare node names ignoring the unit address */ |
| static int dm_test_compare_node_name(struct unit_test_state *uts) |
| { |
| ofnode node; |
| |
| node = ofnode_path("/mmio-bus@0"); |
| ut_assert(ofnode_valid(node)); |
| ut_assert(ofnode_name_eq(node, "mmio-bus")); |
| |
| return 0; |
| } |
| |
| DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA); |
| |
| /* Test that binding with uclass plat setting occurs correctly */ |
| static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts) |
| { |
| struct dm_test_perdev_uc_pdata *uc_pdata; |
| struct udevice *dev; |
| |
| /** |
| * In the test_postbind() method of test uclass driver, the uclass |
| * platform data should be set to three test int values - test it. |
| */ |
| for (uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| uclass_find_next_device(&dev)) { |
| ut_assertnonnull(dev); |
| |
| uc_pdata = dev_get_uclass_plat(dev); |
| ut_assert(uc_pdata); |
| ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1); |
| ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2); |
| ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA); |
| |
| /* Test that autoprobe finds all the expected devices */ |
| static int dm_test_autoprobe(struct unit_test_state *uts) |
| { |
| int expected_base_add; |
| struct udevice *dev; |
| struct uclass *uc; |
| int i; |
| |
| ut_assertok(uclass_get(UCLASS_TEST, &uc)); |
| ut_assert(uc); |
| |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); |
| |
| /* The root device should not be activated until needed */ |
| ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED); |
| |
| /* |
| * We should be able to find the three test devices, and they should |
| * all be activated as they are used (lazy activation, required by |
| * U-Boot) |
| */ |
| for (i = 0; i < 3; i++) { |
| ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); |
| ut_assert(dev); |
| ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED), |
| "Driver %d/%s already activated", i, dev->name); |
| |
| /* This should activate it */ |
| ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); |
| ut_assert(dev); |
| ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED); |
| |
| /* Activating a device should activate the root device */ |
| if (!i) |
| ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED); |
| } |
| |
| /* |
| * Our 3 dm_test_info children should be passed to pre_probe and |
| * post_probe |
| */ |
| ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); |
| ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); |
| |
| /* Also we can check the per-device data */ |
| expected_base_add = 0; |
| for (i = 0; i < 3; i++) { |
| struct dm_test_uclass_perdev_priv *priv; |
| struct dm_test_pdata *pdata; |
| |
| ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); |
| ut_assert(dev); |
| |
| priv = dev_get_uclass_priv(dev); |
| ut_assert(priv); |
| ut_asserteq(expected_base_add, priv->base_add); |
| |
| pdata = dev_get_plat(dev); |
| expected_base_add += pdata->ping_add; |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA); |
| |
| /* Check that we see the correct plat in each device */ |
| static int dm_test_plat(struct unit_test_state *uts) |
| { |
| const struct dm_test_pdata *pdata; |
| struct udevice *dev; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); |
| ut_assert(dev); |
| pdata = dev_get_plat(dev); |
| ut_assert(pdata->ping_add == test_pdata[i].ping_add); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA); |
| |
| /* Test that we can bind, probe, remove, unbind a driver */ |
| static int dm_test_lifecycle(struct unit_test_state *uts) |
| { |
| int op_count[DM_TEST_OP_COUNT]; |
| struct udevice *dev, *test_dev; |
| int start_dev_count, start_uc_count; |
| int dev_count, uc_count; |
| int pingret; |
| int ret; |
| |
| memcpy(op_count, dm_testdrv_op_count, sizeof(op_count)); |
| |
| dm_get_stats(&start_dev_count, &start_uc_count); |
| |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev)); |
| ut_assert(dev); |
| ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] |
| == op_count[DM_TEST_OP_BIND] + 1); |
| ut_assert(!dev_get_priv(dev)); |
| |
| /* We should have one more device */ |
| dm_get_stats(&dev_count, &uc_count); |
| ut_asserteq(start_dev_count + 1, dev_count); |
| ut_asserteq(start_uc_count, uc_count); |
| |
| /* Probe the device - it should fail allocating private data */ |
| uts->force_fail_alloc = 1; |
| ret = device_probe(dev); |
| ut_assert(ret == -ENOMEM); |
| ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] |
| == op_count[DM_TEST_OP_PROBE] + 1); |
| ut_assert(!dev_get_priv(dev)); |
| |
| /* Try again without the alloc failure */ |
| uts->force_fail_alloc = 0; |
| ut_assertok(device_probe(dev)); |
| ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] |
| == op_count[DM_TEST_OP_PROBE] + 2); |
| ut_assert(dev_get_priv(dev)); |
| |
| /* This should be device 3 in the uclass */ |
| ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); |
| ut_assert(dev == test_dev); |
| |
| /* Try ping */ |
| ut_assertok(test_ping(dev, 100, &pingret)); |
| ut_assert(pingret == 102); |
| |
| /* Now remove device 3 */ |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); |
| |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); |
| ut_assertok(device_unbind(dev)); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); |
| |
| /* We should have one less device */ |
| dm_get_stats(&dev_count, &uc_count); |
| ut_asserteq(start_dev_count, dev_count); |
| ut_asserteq(start_uc_count, uc_count); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST); |
| |
| /* Test that we can bind/unbind and the lists update correctly */ |
| static int dm_test_ordering(struct unit_test_state *uts) |
| { |
| struct udevice *dev, *dev_penultimate, *dev_last, *test_dev; |
| int pingret; |
| |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev)); |
| ut_assert(dev); |
| |
| /* Bind two new devices (numbers 4 and 5) */ |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev_penultimate)); |
| ut_assert(dev_penultimate); |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev_last)); |
| ut_assert(dev_last); |
| |
| /* Now remove device 3 */ |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| ut_assertok(device_unbind(dev)); |
| |
| /* The device numbering should have shifted down one */ |
| ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); |
| ut_assert(dev_penultimate == test_dev); |
| ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev)); |
| ut_assert(dev_last == test_dev); |
| |
| /* Add back the original device 3, now in position 5 */ |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev)); |
| ut_assert(dev); |
| |
| /* Try ping */ |
| ut_assertok(test_ping(dev, 100, &pingret)); |
| ut_assert(pingret == 102); |
| |
| /* Remove 3 and 4 */ |
| ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL)); |
| ut_assertok(device_unbind(dev_penultimate)); |
| ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL)); |
| ut_assertok(device_unbind(dev_last)); |
| |
| /* Our device should now be in position 3 */ |
| ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); |
| ut_assert(dev == test_dev); |
| |
| /* Now remove device 3 */ |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| ut_assertok(device_unbind(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA); |
| |
| /* Check that we can perform operations on a device (do a ping) */ |
| int dm_check_operations(struct unit_test_state *uts, struct udevice *dev, |
| uint32_t base, struct dm_test_priv *priv) |
| { |
| int expected; |
| int pingret; |
| |
| /* Getting the child device should allocate plat / priv */ |
| ut_assertok(testfdt_ping(dev, 10, &pingret)); |
| ut_assert(dev_get_priv(dev)); |
| ut_assert(dev_get_plat(dev)); |
| |
| expected = 10 + base; |
| ut_asserteq(expected, pingret); |
| |
| /* Do another ping */ |
| ut_assertok(testfdt_ping(dev, 20, &pingret)); |
| expected = 20 + base; |
| ut_asserteq(expected, pingret); |
| |
| /* Now check the ping_total */ |
| priv = dev_get_priv(dev); |
| ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2, |
| priv->ping_total); |
| |
| return 0; |
| } |
| |
| /* Check that we can perform operations on devices */ |
| static int dm_test_operations(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| int i; |
| |
| /* |
| * Now check that the ping adds are what we expect. This is using the |
| * ping-add property in each node. |
| */ |
| for (i = 0; i < ARRAY_SIZE(test_pdata); i++) { |
| uint32_t base; |
| |
| ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); |
| |
| /* |
| * Get the 'reg' property, which tells us what the ping add |
| * should be. We don't use the plat because we want |
| * to test the code that sets that up (testfdt_drv_probe()). |
| */ |
| base = test_pdata[i].ping_add; |
| debug("dev=%d, base=%d\n", i, base); |
| |
| ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev))); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA); |
| |
| /* Remove all drivers and check that things work */ |
| static int dm_test_remove(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); |
| ut_assert(dev); |
| ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED, |
| "Driver %d/%s not activated", i, dev->name); |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED), |
| "Driver %d/%s should have deactivated", i, |
| dev->name); |
| ut_assert(!dev_get_priv(dev)); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST); |
| |
| /* Remove and recreate everything, check for memory leaks */ |
| static int dm_test_leak(struct unit_test_state *uts) |
| { |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| struct udevice *dev; |
| int ret; |
| int id; |
| |
| dm_leak_check_start(uts); |
| |
| ut_assertok(dm_scan_plat(false)); |
| ut_assertok(dm_scan_fdt(false)); |
| |
| /* Scanning the uclass is enough to probe all the devices */ |
| for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) { |
| for (ret = uclass_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_next_device(&dev)) |
| ; |
| ut_assertok(ret); |
| } |
| |
| ut_assertok(dm_leak_check_end(uts)); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_leak, 0); |
| |
| /* Test uclass init/destroy methods */ |
| static int dm_test_uclass(struct unit_test_state *uts) |
| { |
| int dev_count, uc_count; |
| struct uclass *uc; |
| |
| /* We should have just the root device and uclass */ |
| dm_get_stats(&dev_count, &uc_count); |
| ut_asserteq(1, dev_count); |
| ut_asserteq(1, uc_count); |
| |
| ut_assertok(uclass_get(UCLASS_TEST, &uc)); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); |
| ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); |
| ut_assert(uclass_get_priv(uc)); |
| |
| dm_get_stats(&dev_count, &uc_count); |
| ut_asserteq(1, dev_count); |
| ut_asserteq(2, uc_count); |
| |
| ut_assertok(uclass_destroy(uc)); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); |
| ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); |
| |
| dm_get_stats(&dev_count, &uc_count); |
| ut_asserteq(1, dev_count); |
| ut_asserteq(1, uc_count); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass, 0); |
| |
| /** |
| * create_children() - Create children of a parent node |
| * |
| * @dms: Test system state |
| * @parent: Parent device |
| * @count: Number of children to create |
| * @key: Key value to put in first child. Subsequence children |
| * receive an incrementing value |
| * @child: If not NULL, then the child device pointers are written into |
| * this array. |
| * Return: 0 if OK, -ve on error |
| */ |
| static int create_children(struct unit_test_state *uts, struct udevice *parent, |
| int count, int key, struct udevice *child[]) |
| { |
| struct udevice *dev; |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| struct dm_test_pdata *pdata; |
| |
| ut_assertok(device_bind_by_name(parent, false, |
| &driver_info_manual, &dev)); |
| pdata = calloc(1, sizeof(*pdata)); |
| pdata->ping_add = key + i; |
| dev_set_plat(dev, pdata); |
| if (child) |
| child[i] = dev; |
| } |
| |
| return 0; |
| } |
| |
| #define NODE_COUNT 10 |
| |
| static int dm_test_children(struct unit_test_state *uts) |
| { |
| struct udevice *top[NODE_COUNT]; |
| struct udevice *child[NODE_COUNT]; |
| struct udevice *grandchild[NODE_COUNT]; |
| struct udevice *dev; |
| int total; |
| int ret; |
| int i; |
| |
| /* We don't care about the numbering for this test */ |
| uts->skip_post_probe = 1; |
| |
| ut_assert(NODE_COUNT > 5); |
| |
| /* First create 10 top-level children */ |
| ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top)); |
| |
| /* Now a few have their own children */ |
| ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); |
| ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); |
| |
| /* And grandchildren */ |
| for (i = 0; i < NODE_COUNT; i++) |
| ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, |
| i == 2 ? grandchild : NULL)); |
| |
| /* Check total number of devices */ |
| total = NODE_COUNT * (3 + NODE_COUNT); |
| ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); |
| |
| /* Try probing one of the grandchildren */ |
| ut_assertok(uclass_get_device(UCLASS_TEST, |
| NODE_COUNT * 3 + 2 * NODE_COUNT, &dev)); |
| ut_asserteq_ptr(grandchild[0], dev); |
| |
| /* |
| * This should have probed the child and top node also, for a total |
| * of 3 nodes. |
| */ |
| ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]); |
| |
| /* Probe the other grandchildren */ |
| for (i = 1; i < NODE_COUNT; i++) |
| ut_assertok(device_probe(grandchild[i])); |
| |
| ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]); |
| |
| /* Probe everything */ |
| for (ret = uclass_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_next_device(&dev)) |
| ; |
| ut_assertok(ret); |
| |
| ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]); |
| |
| /* Remove a top-level child and check that the children are removed */ |
| ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL)); |
| ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]); |
| dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0; |
| |
| /* Try one with grandchildren */ |
| ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); |
| ut_asserteq_ptr(dev, top[5]); |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), |
| dm_testdrv_op_count[DM_TEST_OP_REMOVE]); |
| |
| /* Try the same with unbind */ |
| ut_assertok(device_unbind(top[2])); |
| ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); |
| dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0; |
| |
| /* Try one with grandchildren */ |
| ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); |
| ut_asserteq_ptr(dev, top[6]); |
| ut_assertok(device_unbind(top[5])); |
| ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), |
| dm_testdrv_op_count[DM_TEST_OP_UNBIND]); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_children, 0); |
| |
| static int dm_test_device_reparent(struct unit_test_state *uts) |
| { |
| struct udevice *top[NODE_COUNT]; |
| struct udevice *child[NODE_COUNT]; |
| struct udevice *grandchild[NODE_COUNT]; |
| struct udevice *dev; |
| int total; |
| int ret; |
| int i; |
| |
| /* We don't care about the numbering for this test */ |
| uts->skip_post_probe = 1; |
| |
| ut_assert(NODE_COUNT > 5); |
| |
| /* First create 10 top-level children */ |
| ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top)); |
| |
| /* Now a few have their own children */ |
| ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); |
| ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); |
| |
| /* And grandchildren */ |
| for (i = 0; i < NODE_COUNT; i++) |
| ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, |
| i == 2 ? grandchild : NULL)); |
| |
| /* Check total number of devices */ |
| total = NODE_COUNT * (3 + NODE_COUNT); |
| ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); |
| |
| /* Probe everything */ |
| for (i = 0; i < total; i++) |
| ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); |
| |
| /* Re-parent top-level children with no grandchildren. */ |
| ut_assertok(device_reparent(top[3], top[0])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_reparent(top[4], top[0])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| /* Re-parent top-level children with grandchildren. */ |
| ut_assertok(device_reparent(top[2], top[0])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_reparent(top[5], top[2])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| /* Re-parent grandchildren. */ |
| ut_assertok(device_reparent(grandchild[0], top[1])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_reparent(grandchild[1], top[1])); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| /* Remove re-pareneted devices. */ |
| ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL)); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL)); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL)); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL)); |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL)); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL)); |
| /* try to get devices */ |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| /* Try the same with unbind */ |
| ut_assertok(device_unbind(top[3])); |
| ut_assertok(device_unbind(top[4])); |
| ut_assertok(device_unbind(top[5])); |
| ut_assertok(device_unbind(top[2])); |
| |
| ut_assertok(device_unbind(grandchild[0])); |
| ut_assertok(device_unbind(grandchild[1])); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_device_reparent, 0); |
| |
| /* Test that pre-relocation devices work as expected */ |
| static int dm_test_pre_reloc(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| /* The normal driver should refuse to bind before relocation */ |
| ut_asserteq(-EPERM, device_bind_by_name(uts->root, true, |
| &driver_info_manual, &dev)); |
| |
| /* But this one is marked pre-reloc */ |
| ut_assertok(device_bind_by_name(uts->root, true, |
| &driver_info_pre_reloc, &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_pre_reloc, 0); |
| |
| /* |
| * Test that removal of devices, either via the "normal" device_remove() |
| * API or via the device driver selective flag works as expected |
| */ |
| static int dm_test_remove_active_dma(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma, |
| &dev)); |
| ut_assert(dev); |
| |
| /* Probe the device */ |
| ut_assertok(device_probe(dev)); |
| |
| /* Test if device is active right now */ |
| ut_asserteq(true, device_active(dev)); |
| |
| /* Remove the device via selective remove flag */ |
| dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); |
| |
| /* Test if device is inactive right now */ |
| ut_asserteq(false, device_active(dev)); |
| |
| /* Probe the device again */ |
| ut_assertok(device_probe(dev)); |
| |
| /* Test if device is active right now */ |
| ut_asserteq(true, device_active(dev)); |
| |
| /* Remove the device via "normal" remove API */ |
| ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); |
| |
| /* Test if device is inactive right now */ |
| ut_asserteq(false, device_active(dev)); |
| |
| /* |
| * Test if a device without the active DMA flags is not removed upon |
| * the active DMA remove call |
| */ |
| ut_assertok(device_unbind(dev)); |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &dev)); |
| ut_assert(dev); |
| |
| /* Probe the device */ |
| ut_assertok(device_probe(dev)); |
| |
| /* Test if device is active right now */ |
| ut_asserteq(true, device_active(dev)); |
| |
| /* Remove the device via selective remove flag */ |
| dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); |
| |
| /* Test if device is still active right now */ |
| ut_asserteq(true, device_active(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_remove_active_dma, 0); |
| |
| /* Test removal of 'vital' devices */ |
| static int dm_test_remove_vital(struct unit_test_state *uts) |
| { |
| struct udevice *normal, *dma, *vital, *dma_vital; |
| |
| /* Skip the behaviour in test_post_probe() */ |
| uts->skip_post_probe = 1; |
| |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, |
| &normal)); |
| ut_assertnonnull(normal); |
| |
| ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma, |
| &dma)); |
| ut_assertnonnull(dma); |
| |
| ut_assertok(device_bind_by_name(uts->root, false, |
| &driver_info_vital_clk, &vital)); |
| ut_assertnonnull(vital); |
| |
| ut_assertok(device_bind_by_name(uts->root, false, |
| &driver_info_act_dma_vital_clk, |
| &dma_vital)); |
| ut_assertnonnull(dma_vital); |
| |
| /* Probe the devices */ |
| ut_assertok(device_probe(normal)); |
| ut_assertok(device_probe(dma)); |
| ut_assertok(device_probe(vital)); |
| ut_assertok(device_probe(dma_vital)); |
| |
| /* Check that devices are active right now */ |
| ut_asserteq(true, device_active(normal)); |
| ut_asserteq(true, device_active(dma)); |
| ut_asserteq(true, device_active(vital)); |
| ut_asserteq(true, device_active(dma_vital)); |
| |
| /* Remove active devices via selective remove flag */ |
| dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL); |
| |
| /* |
| * Check that this only has an effect on the dma device, since two |
| * devices are vital and the third does not have active DMA |
| */ |
| ut_asserteq(true, device_active(normal)); |
| ut_asserteq(false, device_active(dma)); |
| ut_asserteq(true, device_active(vital)); |
| ut_asserteq(true, device_active(dma_vital)); |
| |
| /* Remove active devices via selective remove flag */ |
| ut_assertok(device_probe(dma)); |
| dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); |
| |
| /* This should have affected both active-dma devices */ |
| ut_asserteq(true, device_active(normal)); |
| ut_asserteq(false, device_active(dma)); |
| ut_asserteq(true, device_active(vital)); |
| ut_asserteq(false, device_active(dma_vital)); |
| |
| /* Remove non-vital devices */ |
| ut_assertok(device_probe(dma)); |
| ut_assertok(device_probe(dma_vital)); |
| dm_remove_devices_flags(DM_REMOVE_NON_VITAL); |
| |
| /* This should have affected only non-vital devices */ |
| ut_asserteq(false, device_active(normal)); |
| ut_asserteq(false, device_active(dma)); |
| ut_asserteq(true, device_active(vital)); |
| ut_asserteq(true, device_active(dma_vital)); |
| |
| /* Remove vital devices via normal remove flag */ |
| ut_assertok(device_probe(normal)); |
| ut_assertok(device_probe(dma)); |
| dm_remove_devices_flags(DM_REMOVE_NORMAL); |
| |
| /* Check that all devices are inactive right now */ |
| ut_asserteq(false, device_active(normal)); |
| ut_asserteq(false, device_active(dma)); |
| ut_asserteq(false, device_active(vital)); |
| ut_asserteq(false, device_active(dma_vital)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_remove_vital, 0); |
| |
| static int dm_test_uclass_before_ready(struct unit_test_state *uts) |
| { |
| struct uclass *uc; |
| |
| ut_assertok(uclass_get(UCLASS_TEST, &uc)); |
| |
| gd->dm_root = NULL; |
| gd->dm_root_f = NULL; |
| memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root)); |
| |
| ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST)); |
| ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_before_ready, 0); |
| |
| static int dm_test_uclass_devices_find(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| int ret; |
| |
| for (ret = uclass_find_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_find_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assertnonnull(dev); |
| } |
| |
| ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev)); |
| ut_assertnull(dev); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA); |
| |
| static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts) |
| { |
| struct udevice *finddev; |
| struct udevice *testdev; |
| int findret, ret; |
| |
| /* |
| * For each test device found in fdt like: "a-test", "b-test", etc., |
| * use its name and try to find it by uclass_find_device_by_name(). |
| * Then, on success check if: |
| * - current 'testdev' name is equal to the returned 'finddev' name |
| * - current 'testdev' pointer is equal to the returned 'finddev' |
| * |
| * We assume that, each uclass's device name is unique, so if not, then |
| * this will fail on checking condition: testdev == finddev, since the |
| * uclass_find_device_by_name(), returns the first device by given name. |
| */ |
| for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev); |
| testdev; |
| ret = uclass_find_next_device(&testdev)) { |
| ut_assertok(ret); |
| ut_assertnonnull(testdev); |
| |
| findret = uclass_find_device_by_name(UCLASS_TEST_FDT, |
| testdev->name, |
| &finddev); |
| |
| ut_assertok(findret); |
| ut_assert(testdev); |
| ut_asserteq_str(testdev->name, finddev->name); |
| ut_asserteq_ptr(testdev, finddev); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_uclass_devices_get(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| int ret; |
| |
| for (ret = uclass_first_device(UCLASS_TEST, &dev); |
| dev; |
| ret = uclass_next_device(&dev)) { |
| ut_assert(!ret); |
| ut_assert(dev); |
| ut_assert(device_active(dev)); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA); |
| |
| static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts) |
| { |
| struct udevice *finddev; |
| struct udevice *testdev; |
| int ret, findret; |
| |
| /* |
| * For each test device found in fdt like: "a-test", "b-test", etc., |
| * use its name and try to get it by uclass_get_device_by_name(). |
| * On success check if: |
| * - returned finddev' is active |
| * - current 'testdev' name is equal to the returned 'finddev' name |
| * - current 'testdev' pointer is equal to the returned 'finddev' |
| * |
| * We asserts that the 'testdev' is active on each loop entry, so we |
| * could be sure that the 'finddev' is activated too, but for sure |
| * we check it again. |
| * |
| * We assume that, each uclass's device name is unique, so if not, then |
| * this will fail on checking condition: testdev == finddev, since the |
| * uclass_get_device_by_name(), returns the first device by given name. |
| */ |
| for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev); |
| testdev; |
| ret = uclass_next_device(&testdev)) { |
| ut_assertok(ret); |
| ut_assert(testdev); |
| ut_assert(device_active(testdev)); |
| |
| findret = uclass_get_device_by_name(UCLASS_TEST_FDT, |
| testdev->name, |
| &finddev); |
| |
| ut_assertok(findret); |
| ut_assert(finddev); |
| ut_assert(device_active(finddev)); |
| ut_asserteq_str(testdev->name, finddev->name); |
| ut_asserteq_ptr(testdev, finddev); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_device_get_uclass_id(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev)); |
| ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA); |
| |
| static int dm_test_uclass_names(struct unit_test_state *uts) |
| { |
| ut_asserteq_str("test", uclass_get_name(UCLASS_TEST)); |
| ut_asserteq(UCLASS_TEST, uclass_get_by_name("test")); |
| |
| ut_asserteq(UCLASS_SPI, uclass_get_by_name("spi")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA); |
| |
| static int dm_test_inactive_child(struct unit_test_state *uts) |
| { |
| struct udevice *parent, *dev1, *dev2; |
| |
| /* Skip the behaviour in test_post_probe() */ |
| uts->skip_post_probe = 1; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent)); |
| |
| /* |
| * Create a child but do not activate it. Calling the function again |
| * should return the same child. |
| */ |
| ut_asserteq(-ENODEV, device_find_first_inactive_child(parent, |
| UCLASS_TEST, &dev1)); |
| ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv), |
| "test_child", 0, ofnode_null(), &dev1)); |
| |
| ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST, |
| &dev2)); |
| ut_asserteq_ptr(dev1, dev2); |
| |
| ut_assertok(device_probe(dev1)); |
| ut_asserteq(-ENODEV, device_find_first_inactive_child(parent, |
| UCLASS_TEST, &dev2)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA); |
| |
| /* Make sure all bound devices have a sequence number */ |
| static int dm_test_all_have_seq(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| struct uclass *uc; |
| |
| list_for_each_entry(uc, gd->uclass_root, sibling_node) { |
| list_for_each_entry(dev, &uc->dev_head, uclass_node) { |
| if (dev->seq_ == -1) |
| printf("Device '%s' has no seq (%d)\n", |
| dev->name, dev->seq_); |
| ut_assert(dev->seq_ != -1); |
| } |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA); |
| |
| #if CONFIG_IS_ENABLED(DM_DMA) |
| static int dm_test_dma_offset(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| ofnode node; |
| |
| /* Make sure the bus's dma-ranges aren't taken into account here */ |
| node = ofnode_path("/mmio-bus@0"); |
| ut_assert(ofnode_valid(node)); |
| ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev)); |
| ut_asserteq_64(0, dev->dma_offset); |
| |
| /* Device behind a bus with dma-ranges */ |
| node = ofnode_path("/mmio-bus@0/subnode@0"); |
| ut_assert(ofnode_valid(node)); |
| ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev)); |
| ut_asserteq_64(-0x10000000ULL, dev->dma_offset); |
| |
| /* This one has no dma-ranges */ |
| node = ofnode_path("/mmio-bus@1"); |
| ut_assert(ofnode_valid(node)); |
| ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev)); |
| node = ofnode_path("/mmio-bus@1/subnode@0"); |
| ut_assert(ofnode_valid(node)); |
| ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev)); |
| ut_asserteq_64(0, dev->dma_offset); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |
| #endif |
| |
| /* Test dm_get_stats() */ |
| static int dm_test_get_stats(struct unit_test_state *uts) |
| { |
| int dev_count, uc_count; |
| |
| dm_get_stats(&dev_count, &uc_count); |
| ut_assert(dev_count > 50); |
| ut_assert(uc_count > 30); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_get_stats, UT_TESTF_SCAN_FDT); |
| |
| /* Test uclass_find_device_by_name() */ |
| static int dm_test_uclass_find_device(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(uclass_find_device_by_name(UCLASS_I2C, "i2c@0", &dev)); |
| ut_asserteq(-ENODEV, |
| uclass_find_device_by_name(UCLASS_I2C, "i2c@0x", &dev)); |
| ut_assertok(uclass_find_device_by_namelen(UCLASS_I2C, "i2c@0x", 5, |
| &dev)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_uclass_find_device, UT_TESTF_SCAN_FDT); |
| |
| /* Test getting information about tags attached to devices */ |
| static int dm_test_dev_get_attach(struct unit_test_state *uts) |
| { |
| struct udevice *dev; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); |
| ut_asserteq_str("a-test", dev->name); |
| |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT)); |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV)); |
| |
| ut_asserteq(sizeof(struct dm_test_pdata), |
| dev_get_attach_size(dev, DM_TAG_PLAT)); |
| ut_asserteq(sizeof(struct dm_test_priv), |
| dev_get_attach_size(dev, DM_TAG_PRIV)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PRIV)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_UC_PLAT)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_dev_get_attach, UT_TESTF_SCAN_FDT); |
| |
| /* Test getting information about tags attached to bus devices */ |
| static int dm_test_dev_get_attach_bus(struct unit_test_state *uts) |
| { |
| struct udevice *dev, *child; |
| |
| ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &dev)); |
| ut_asserteq_str("some-bus", dev->name); |
| |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PLAT)); |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_PRIV)); |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PRIV)); |
| ut_assertnonnull(dev_get_attach_ptr(dev, DM_TAG_UC_PLAT)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PLAT)); |
| ut_assertnull(dev_get_attach_ptr(dev, DM_TAG_PARENT_PRIV)); |
| |
| ut_asserteq(sizeof(struct dm_test_pdata), |
| dev_get_attach_size(dev, DM_TAG_PLAT)); |
| ut_asserteq(sizeof(struct dm_test_priv), |
| dev_get_attach_size(dev, DM_TAG_PRIV)); |
| ut_asserteq(sizeof(struct dm_test_uclass_priv), |
| dev_get_attach_size(dev, DM_TAG_UC_PRIV)); |
| ut_asserteq(sizeof(struct dm_test_uclass_plat), |
| dev_get_attach_size(dev, DM_TAG_UC_PLAT)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PLAT)); |
| ut_asserteq(0, dev_get_attach_size(dev, DM_TAG_PARENT_PRIV)); |
| |
| /* Now try the child of the bus */ |
| ut_assertok(device_first_child_err(dev, &child)); |
| ut_asserteq_str("c-test@5", child->name); |
| |
| ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PLAT)); |
| ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PRIV)); |
| ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PRIV)); |
| ut_assertnull(dev_get_attach_ptr(child, DM_TAG_UC_PLAT)); |
| ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PLAT)); |
| ut_assertnonnull(dev_get_attach_ptr(child, DM_TAG_PARENT_PRIV)); |
| |
| ut_asserteq(sizeof(struct dm_test_pdata), |
| dev_get_attach_size(child, DM_TAG_PLAT)); |
| ut_asserteq(sizeof(struct dm_test_priv), |
| dev_get_attach_size(child, DM_TAG_PRIV)); |
| ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PRIV)); |
| ut_asserteq(0, dev_get_attach_size(child, DM_TAG_UC_PLAT)); |
| ut_asserteq(sizeof(struct dm_test_parent_plat), |
| dev_get_attach_size(child, DM_TAG_PARENT_PLAT)); |
| ut_asserteq(sizeof(struct dm_test_parent_data), |
| dev_get_attach_size(child, DM_TAG_PARENT_PRIV)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_dev_get_attach_bus, UT_TESTF_SCAN_FDT); |
| |
| /* Test getting information about tags attached to bus devices */ |
| static int dm_test_dev_get_mem(struct unit_test_state *uts) |
| { |
| struct dm_stats stats; |
| |
| dm_get_mem(&stats); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_dev_get_mem, UT_TESTF_SCAN_FDT); |