| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> |
| * Copyright (C) 2015 Roy Spliet <r.spliet@ultimaker.com> |
| * |
| * Derived from: |
| * https://github.com/yuq/sunxi-nfc-mtd |
| * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> |
| * |
| * https://github.com/hno/Allwinner-Info |
| * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> |
| * |
| * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> |
| * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <common.h> |
| #include <fdtdec.h> |
| #include <memalign.h> |
| #include <nand.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| |
| #include <asm/gpio.h> |
| #include <asm/arch/clock.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define NFC_REG_CTL 0x0000 |
| #define NFC_REG_ST 0x0004 |
| #define NFC_REG_INT 0x0008 |
| #define NFC_REG_TIMING_CTL 0x000C |
| #define NFC_REG_TIMING_CFG 0x0010 |
| #define NFC_REG_ADDR_LOW 0x0014 |
| #define NFC_REG_ADDR_HIGH 0x0018 |
| #define NFC_REG_SECTOR_NUM 0x001C |
| #define NFC_REG_CNT 0x0020 |
| #define NFC_REG_CMD 0x0024 |
| #define NFC_REG_RCMD_SET 0x0028 |
| #define NFC_REG_WCMD_SET 0x002C |
| #define NFC_REG_IO_DATA 0x0030 |
| #define NFC_REG_ECC_CTL 0x0034 |
| #define NFC_REG_ECC_ST 0x0038 |
| #define NFC_REG_DEBUG 0x003C |
| #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) |
| #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) |
| #define NFC_REG_SPARE_AREA 0x00A0 |
| #define NFC_REG_PAT_ID 0x00A4 |
| #define NFC_RAM0_BASE 0x0400 |
| #define NFC_RAM1_BASE 0x0800 |
| |
| /* define bit use in NFC_CTL */ |
| #define NFC_EN BIT(0) |
| #define NFC_RESET BIT(1) |
| #define NFC_BUS_WIDTH_MSK BIT(2) |
| #define NFC_BUS_WIDTH_8 (0 << 2) |
| #define NFC_BUS_WIDTH_16 (1 << 2) |
| #define NFC_RB_SEL_MSK BIT(3) |
| #define NFC_RB_SEL(x) ((x) << 3) |
| #define NFC_CE_SEL_MSK (0x7 << 24) |
| #define NFC_CE_SEL(x) ((x) << 24) |
| #define NFC_CE_CTL BIT(6) |
| #define NFC_PAGE_SHIFT_MSK (0xf << 8) |
| #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) |
| #define NFC_SAM BIT(12) |
| #define NFC_RAM_METHOD BIT(14) |
| #define NFC_DEBUG_CTL BIT(31) |
| |
| /* define bit use in NFC_ST */ |
| #define NFC_RB_B2R BIT(0) |
| #define NFC_CMD_INT_FLAG BIT(1) |
| #define NFC_DMA_INT_FLAG BIT(2) |
| #define NFC_CMD_FIFO_STATUS BIT(3) |
| #define NFC_STA BIT(4) |
| #define NFC_NATCH_INT_FLAG BIT(5) |
| #define NFC_RB_STATE(x) BIT(x + 8) |
| |
| /* define bit use in NFC_INT */ |
| #define NFC_B2R_INT_ENABLE BIT(0) |
| #define NFC_CMD_INT_ENABLE BIT(1) |
| #define NFC_DMA_INT_ENABLE BIT(2) |
| #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ |
| NFC_CMD_INT_ENABLE | \ |
| NFC_DMA_INT_ENABLE) |
| |
| /* define bit use in NFC_TIMING_CTL */ |
| #define NFC_TIMING_CTL_EDO BIT(8) |
| |
| /* define NFC_TIMING_CFG register layout */ |
| #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ |
| (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ |
| (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ |
| (((tCAD) & 0x7) << 8)) |
| |
| /* define bit use in NFC_CMD */ |
| #define NFC_CMD_LOW_BYTE_MSK 0xff |
| #define NFC_CMD_HIGH_BYTE_MSK (0xff << 8) |
| #define NFC_CMD(x) (x) |
| #define NFC_ADR_NUM_MSK (0x7 << 16) |
| #define NFC_ADR_NUM(x) (((x) - 1) << 16) |
| #define NFC_SEND_ADR BIT(19) |
| #define NFC_ACCESS_DIR BIT(20) |
| #define NFC_DATA_TRANS BIT(21) |
| #define NFC_SEND_CMD1 BIT(22) |
| #define NFC_WAIT_FLAG BIT(23) |
| #define NFC_SEND_CMD2 BIT(24) |
| #define NFC_SEQ BIT(25) |
| #define NFC_DATA_SWAP_METHOD BIT(26) |
| #define NFC_ROW_AUTO_INC BIT(27) |
| #define NFC_SEND_CMD3 BIT(28) |
| #define NFC_SEND_CMD4 BIT(29) |
| #define NFC_CMD_TYPE_MSK (0x3 << 30) |
| #define NFC_NORMAL_OP (0 << 30) |
| #define NFC_ECC_OP (1 << 30) |
| #define NFC_PAGE_OP (2 << 30) |
| |
| /* define bit use in NFC_RCMD_SET */ |
| #define NFC_READ_CMD_MSK 0xff |
| #define NFC_RND_READ_CMD0_MSK (0xff << 8) |
| #define NFC_RND_READ_CMD1_MSK (0xff << 16) |
| |
| /* define bit use in NFC_WCMD_SET */ |
| #define NFC_PROGRAM_CMD_MSK 0xff |
| #define NFC_RND_WRITE_CMD_MSK (0xff << 8) |
| #define NFC_READ_CMD0_MSK (0xff << 16) |
| #define NFC_READ_CMD1_MSK (0xff << 24) |
| |
| /* define bit use in NFC_ECC_CTL */ |
| #define NFC_ECC_EN BIT(0) |
| #define NFC_ECC_PIPELINE BIT(3) |
| #define NFC_ECC_EXCEPTION BIT(4) |
| #define NFC_ECC_BLOCK_SIZE_MSK BIT(5) |
| #define NFC_ECC_BLOCK_512 (1 << 5) |
| #define NFC_RANDOM_EN BIT(9) |
| #define NFC_RANDOM_DIRECTION BIT(10) |
| #define NFC_ECC_MODE_MSK (0xf << 12) |
| #define NFC_ECC_MODE(x) ((x) << 12) |
| #define NFC_RANDOM_SEED_MSK (0x7fff << 16) |
| #define NFC_RANDOM_SEED(x) ((x) << 16) |
| |
| /* define bit use in NFC_ECC_ST */ |
| #define NFC_ECC_ERR(x) BIT(x) |
| #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) |
| #define NFC_ECC_ERR_CNT(b, x) (((x) >> ((b) * 8)) & 0xff) |
| |
| #define NFC_DEFAULT_TIMEOUT_MS 1000 |
| |
| #define NFC_SRAM_SIZE 1024 |
| |
| #define NFC_MAX_CS 7 |
| |
| /* |
| * Ready/Busy detection type: describes the Ready/Busy detection modes |
| * |
| * @RB_NONE: no external detection available, rely on STATUS command |
| * and software timeouts |
| * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy |
| * pin of the NAND flash chip must be connected to one of the |
| * native NAND R/B pins (those which can be muxed to the NAND |
| * Controller) |
| * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy |
| * pin of the NAND flash chip must be connected to a GPIO capable |
| * pin. |
| */ |
| enum sunxi_nand_rb_type { |
| RB_NONE, |
| RB_NATIVE, |
| RB_GPIO, |
| }; |
| |
| /* |
| * Ready/Busy structure: stores information related to Ready/Busy detection |
| * |
| * @type: the Ready/Busy detection mode |
| * @info: information related to the R/B detection mode. Either a gpio |
| * id or a native R/B id (those supported by the NAND controller). |
| */ |
| struct sunxi_nand_rb { |
| enum sunxi_nand_rb_type type; |
| union { |
| struct gpio_desc gpio; |
| int nativeid; |
| } info; |
| }; |
| |
| /* |
| * Chip Select structure: stores information related to NAND Chip Select |
| * |
| * @cs: the NAND CS id used to communicate with a NAND Chip |
| * @rb: the Ready/Busy description |
| */ |
| struct sunxi_nand_chip_sel { |
| u8 cs; |
| struct sunxi_nand_rb rb; |
| }; |
| |
| /* |
| * sunxi HW ECC infos: stores information related to HW ECC support |
| * |
| * @mode: the sunxi ECC mode field deduced from ECC requirements |
| * @layout: the OOB layout depending on the ECC requirements and the |
| * selected ECC mode |
| */ |
| struct sunxi_nand_hw_ecc { |
| int mode; |
| struct nand_ecclayout layout; |
| }; |
| |
| /* |
| * NAND chip structure: stores NAND chip device related information |
| * |
| * @node: used to store NAND chips into a list |
| * @nand: base NAND chip structure |
| * @mtd: base MTD structure |
| * @clk_rate: clk_rate required for this NAND chip |
| * @timing_cfg TIMING_CFG register value for this NAND chip |
| * @selected: current active CS |
| * @nsels: number of CS lines required by the NAND chip |
| * @sels: array of CS lines descriptions |
| */ |
| struct sunxi_nand_chip { |
| struct list_head node; |
| struct nand_chip nand; |
| unsigned long clk_rate; |
| u32 timing_cfg; |
| u32 timing_ctl; |
| int selected; |
| int addr_cycles; |
| u32 addr[2]; |
| int cmd_cycles; |
| u8 cmd[2]; |
| int nsels; |
| struct sunxi_nand_chip_sel sels[0]; |
| }; |
| |
| static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct sunxi_nand_chip, nand); |
| } |
| |
| /* |
| * NAND Controller structure: stores sunxi NAND controller information |
| * |
| * @controller: base controller structure |
| * @dev: parent device (used to print error messages) |
| * @regs: NAND controller registers |
| * @ahb_clk: NAND Controller AHB clock |
| * @mod_clk: NAND Controller mod clock |
| * @assigned_cs: bitmask describing already assigned CS lines |
| * @clk_rate: NAND controller current clock rate |
| * @chips: a list containing all the NAND chips attached to |
| * this NAND controller |
| * @complete: a completion object used to wait for NAND |
| * controller events |
| */ |
| struct sunxi_nfc { |
| struct nand_hw_control controller; |
| struct device *dev; |
| void __iomem *regs; |
| struct clk *ahb_clk; |
| struct clk *mod_clk; |
| unsigned long assigned_cs; |
| unsigned long clk_rate; |
| struct list_head chips; |
| }; |
| |
| static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) |
| { |
| return container_of(ctrl, struct sunxi_nfc, controller); |
| } |
| |
| static void sunxi_nfc_set_clk_rate(unsigned long hz) |
| { |
| struct sunxi_ccm_reg *const ccm = |
| (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| int div_m, div_n; |
| |
| div_m = (clock_get_pll6() + hz - 1) / hz; |
| for (div_n = 0; div_n < 3 && div_m > 16; div_n++) { |
| if (div_m % 2) |
| div_m++; |
| div_m >>= 1; |
| } |
| if (div_m > 16) |
| div_m = 16; |
| |
| /* config mod clock */ |
| writel(CCM_NAND_CTRL_ENABLE | CCM_NAND_CTRL_PLL6 | |
| CCM_NAND_CTRL_N(div_n) | CCM_NAND_CTRL_M(div_m), |
| &ccm->nand0_clk_cfg); |
| |
| /* gate on nand clock */ |
| setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_NAND0)); |
| #ifdef CONFIG_MACH_SUN9I |
| setbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA)); |
| #else |
| setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA)); |
| #endif |
| } |
| |
| static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags, |
| unsigned int timeout_ms) |
| { |
| unsigned int timeout_ticks; |
| u32 time_start, status; |
| int ret = -ETIMEDOUT; |
| |
| if (!timeout_ms) |
| timeout_ms = NFC_DEFAULT_TIMEOUT_MS; |
| |
| timeout_ticks = (timeout_ms * CONFIG_SYS_HZ) / 1000; |
| |
| time_start = get_timer(0); |
| |
| do { |
| status = readl(nfc->regs + NFC_REG_ST); |
| if ((status & flags) == flags) { |
| ret = 0; |
| break; |
| } |
| |
| udelay(1); |
| } while (get_timer(time_start) < timeout_ticks); |
| |
| writel(status & flags, nfc->regs + NFC_REG_ST); |
| |
| return ret; |
| } |
| |
| static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) |
| { |
| unsigned long timeout = (CONFIG_SYS_HZ * |
| NFC_DEFAULT_TIMEOUT_MS) / 1000; |
| u32 time_start; |
| |
| time_start = get_timer(0); |
| do { |
| if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS)) |
| return 0; |
| } while (get_timer(time_start) < timeout); |
| |
| dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int sunxi_nfc_rst(struct sunxi_nfc *nfc) |
| { |
| unsigned long timeout = (CONFIG_SYS_HZ * |
| NFC_DEFAULT_TIMEOUT_MS) / 1000; |
| u32 time_start; |
| |
| writel(0, nfc->regs + NFC_REG_ECC_CTL); |
| writel(NFC_RESET, nfc->regs + NFC_REG_CTL); |
| |
| time_start = get_timer(0); |
| do { |
| if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET)) |
| return 0; |
| } while (get_timer(time_start) < timeout); |
| |
| dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int sunxi_nfc_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_rb *rb; |
| unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20); |
| int ret; |
| |
| if (sunxi_nand->selected < 0) |
| return 0; |
| |
| rb = &sunxi_nand->sels[sunxi_nand->selected].rb; |
| |
| switch (rb->type) { |
| case RB_NATIVE: |
| ret = !!(readl(nfc->regs + NFC_REG_ST) & |
| NFC_RB_STATE(rb->info.nativeid)); |
| if (ret) |
| break; |
| |
| sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo); |
| ret = !!(readl(nfc->regs + NFC_REG_ST) & |
| NFC_RB_STATE(rb->info.nativeid)); |
| break; |
| case RB_GPIO: |
| ret = dm_gpio_get_value(&rb->info.gpio); |
| break; |
| case RB_NONE: |
| default: |
| ret = 0; |
| dev_err(nfc->dev, "cannot check R/B NAND status!\n"); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_chip_sel *sel; |
| u32 ctl; |
| |
| if (chip > 0 && chip >= sunxi_nand->nsels) |
| return; |
| |
| if (chip == sunxi_nand->selected) |
| return; |
| |
| ctl = readl(nfc->regs + NFC_REG_CTL) & |
| ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); |
| |
| if (chip >= 0) { |
| sel = &sunxi_nand->sels[chip]; |
| |
| ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | |
| NFC_PAGE_SHIFT(nand->page_shift - 10); |
| if (sel->rb.type == RB_NONE) { |
| nand->dev_ready = NULL; |
| } else { |
| nand->dev_ready = sunxi_nfc_dev_ready; |
| if (sel->rb.type == RB_NATIVE) |
| ctl |= NFC_RB_SEL(sel->rb.info.nativeid); |
| } |
| |
| writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); |
| |
| if (nfc->clk_rate != sunxi_nand->clk_rate) { |
| sunxi_nfc_set_clk_rate(sunxi_nand->clk_rate); |
| nfc->clk_rate = sunxi_nand->clk_rate; |
| } |
| } |
| |
| writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); |
| writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); |
| writel(ctl, nfc->regs + NFC_REG_CTL); |
| |
| sunxi_nand->selected = chip; |
| } |
| |
| static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| break; |
| |
| if (buf) |
| memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, |
| cnt); |
| offs += cnt; |
| } |
| } |
| |
| static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int len) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| NFC_ACCESS_DIR; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| break; |
| |
| offs += cnt; |
| } |
| } |
| |
| static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) |
| { |
| uint8_t ret; |
| |
| sunxi_nfc_read_buf(mtd, &ret, 1); |
| |
| return ret; |
| } |
| |
| static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, |
| unsigned int ctrl) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| u32 tmp; |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| tmp = readl(nfc->regs + NFC_REG_CTL); |
| if (ctrl & NAND_NCE) |
| tmp |= NFC_CE_CTL; |
| else |
| tmp &= ~NFC_CE_CTL; |
| writel(tmp, nfc->regs + NFC_REG_CTL); |
| } |
| |
| if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) && |
| !(ctrl & (NAND_CLE | NAND_ALE))) { |
| u32 cmd = 0; |
| |
| if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles) |
| return; |
| |
| if (sunxi_nand->cmd_cycles--) |
| cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0]; |
| |
| if (sunxi_nand->cmd_cycles--) { |
| cmd |= NFC_SEND_CMD2; |
| writel(sunxi_nand->cmd[1], |
| nfc->regs + NFC_REG_RCMD_SET); |
| } |
| |
| sunxi_nand->cmd_cycles = 0; |
| |
| if (sunxi_nand->addr_cycles) { |
| cmd |= NFC_SEND_ADR | |
| NFC_ADR_NUM(sunxi_nand->addr_cycles); |
| writel(sunxi_nand->addr[0], |
| nfc->regs + NFC_REG_ADDR_LOW); |
| } |
| |
| if (sunxi_nand->addr_cycles > 4) |
| writel(sunxi_nand->addr[1], |
| nfc->regs + NFC_REG_ADDR_HIGH); |
| |
| writel(cmd, nfc->regs + NFC_REG_CMD); |
| sunxi_nand->addr[0] = 0; |
| sunxi_nand->addr[1] = 0; |
| sunxi_nand->addr_cycles = 0; |
| sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| } |
| |
| if (ctrl & NAND_CLE) { |
| sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat; |
| } else if (ctrl & NAND_ALE) { |
| sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |= |
| dat << ((sunxi_nand->addr_cycles % 4) * 8); |
| sunxi_nand->addr_cycles++; |
| } |
| } |
| |
| /* These seed values have been extracted from Allwinner's BSP */ |
| static const u16 sunxi_nfc_randomizer_page_seeds[] = { |
| 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, |
| 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, |
| 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, |
| 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, |
| 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, |
| 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, |
| 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, |
| 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, |
| 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, |
| 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, |
| 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, |
| 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, |
| 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, |
| 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, |
| 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, |
| 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, |
| }; |
| |
| /* |
| * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds |
| * have been generated using |
| * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what |
| * the randomizer engine does internally before de/scrambling OOB data. |
| * |
| * Those tables are statically defined to avoid calculating randomizer state |
| * at runtime. |
| */ |
| static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { |
| 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, |
| 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, |
| 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, |
| 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, |
| 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, |
| 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, |
| 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, |
| 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, |
| 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, |
| 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, |
| 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, |
| 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, |
| 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, |
| 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, |
| 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, |
| 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, |
| }; |
| |
| static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { |
| 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, |
| 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, |
| 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, |
| 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, |
| 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, |
| 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, |
| 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, |
| 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, |
| 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, |
| 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, |
| 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, |
| 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, |
| 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, |
| 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, |
| 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, |
| 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, |
| }; |
| |
| static u16 sunxi_nfc_randomizer_step(u16 state, int count) |
| { |
| state &= 0x7fff; |
| |
| /* |
| * This loop is just a simple implementation of a Fibonacci LFSR using |
| * the x16 + x15 + 1 polynomial. |
| */ |
| while (count--) |
| state = ((state >> 1) | |
| (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; |
| |
| return state; |
| } |
| |
| static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc) |
| { |
| const u16 *seeds = sunxi_nfc_randomizer_page_seeds; |
| int mod = mtd->erasesize / mtd->writesize; |
| |
| if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) |
| mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); |
| |
| if (ecc) { |
| if (mtd->ecc_step_size == 512) |
| seeds = sunxi_nfc_randomizer_ecc512_seeds; |
| else |
| seeds = sunxi_nfc_randomizer_ecc1024_seeds; |
| } |
| |
| return seeds[page % mod]; |
| } |
| |
| static void sunxi_nfc_randomizer_config(struct mtd_info *mtd, |
| int page, bool ecc) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| u16 state; |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| state = sunxi_nfc_randomizer_state(mtd, page, ecc); |
| ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; |
| writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| return; |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm) |
| { |
| u16 state = sunxi_nfc_randomizer_state(mtd, page, true); |
| |
| bbm[0] ^= state; |
| bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); |
| } |
| |
| static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd, |
| const uint8_t *buf, int len, |
| bool ecc, int page) |
| { |
| sunxi_nfc_randomizer_config(mtd, page, ecc); |
| sunxi_nfc_randomizer_enable(mtd); |
| sunxi_nfc_write_buf(mtd, buf, len); |
| sunxi_nfc_randomizer_disable(mtd); |
| } |
| |
| static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf, |
| int len, bool ecc, int page) |
| { |
| sunxi_nfc_randomizer_config(mtd, page, ecc); |
| sunxi_nfc_randomizer_enable(mtd); |
| sunxi_nfc_read_buf(mtd, buf, len); |
| sunxi_nfc_randomizer_disable(mtd); |
| } |
| |
| static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct sunxi_nand_hw_ecc *data = nand->ecc.priv; |
| u32 ecc_ctl; |
| |
| ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | |
| NFC_ECC_BLOCK_SIZE_MSK); |
| ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; |
| |
| if (nand->ecc.size == 512) |
| ecc_ctl |= NFC_ECC_BLOCK_512; |
| |
| writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| } |
| |
| static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) |
| { |
| buf[0] = user_data; |
| buf[1] = user_data >> 8; |
| buf[2] = user_data >> 16; |
| buf[3] = user_data >> 24; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, |
| u8 *data, int data_off, |
| u8 *oob, int oob_off, |
| int *cur_off, |
| unsigned int *max_bitflips, |
| bool bbm, int page) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int raw_mode = 0; |
| u32 status; |
| int ret; |
| |
| if (*cur_off != data_off) |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); |
| |
| sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page); |
| |
| if (data_off + ecc->size != oob_off) |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| sunxi_nfc_randomizer_enable(mtd); |
| writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| sunxi_nfc_randomizer_disable(mtd); |
| if (ret) |
| return ret; |
| |
| *cur_off = oob_off + ecc->bytes + 4; |
| |
| status = readl(nfc->regs + NFC_REG_ECC_ST); |
| if (status & NFC_ECC_PAT_FOUND(0)) { |
| u8 pattern = 0xff; |
| |
| if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) |
| pattern = 0x0; |
| |
| memset(data, pattern, ecc->size); |
| memset(oob, pattern, ecc->bytes + 4); |
| |
| return 1; |
| } |
| |
| ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0))); |
| |
| memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); |
| |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); |
| sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page); |
| |
| if (status & NFC_ECC_ERR(0)) { |
| /* |
| * Re-read the data with the randomizer disabled to identify |
| * bitflips in erased pages. |
| */ |
| if (nand->options & NAND_NEED_SCRAMBLING) { |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1); |
| nand->read_buf(mtd, data, ecc->size); |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1); |
| nand->read_buf(mtd, oob, ecc->bytes + 4); |
| } |
| |
| ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| oob, ecc->bytes + 4, |
| NULL, 0, ecc->strength); |
| if (ret >= 0) |
| raw_mode = 1; |
| } else { |
| /* |
| * The engine protects 4 bytes of OOB data per chunk. |
| * Retrieve the corrected OOB bytes. |
| */ |
| sunxi_nfc_user_data_to_buf(readl(nfc->regs + |
| NFC_REG_USER_DATA(0)), |
| oob); |
| |
| /* De-randomize the Bad Block Marker. */ |
| if (bbm && nand->options & NAND_NEED_SCRAMBLING) |
| sunxi_nfc_randomize_bbm(mtd, page, oob); |
| } |
| |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += ret; |
| *max_bitflips = max_t(unsigned int, *max_bitflips, ret); |
| } |
| |
| return raw_mode; |
| } |
| |
| static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, |
| u8 *oob, int *cur_off, |
| bool randomize, int page) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int offset = ((ecc->bytes + 4) * ecc->steps); |
| int len = mtd->oobsize - offset; |
| |
| if (len <= 0) |
| return; |
| |
| if (*cur_off != offset) |
| nand->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| offset + mtd->writesize, -1); |
| |
| if (!randomize) |
| sunxi_nfc_read_buf(mtd, oob + offset, len); |
| else |
| sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len, |
| false, page); |
| |
| *cur_off = mtd->oobsize + mtd->writesize; |
| } |
| |
| static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) |
| { |
| return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, |
| const u8 *data, int data_off, |
| const u8 *oob, int oob_off, |
| int *cur_off, bool bbm, |
| int page) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int ret; |
| |
| if (data_off != *cur_off) |
| nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1); |
| |
| sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page); |
| |
| /* Fill OOB data in */ |
| if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) { |
| u8 user_data[4]; |
| |
| memcpy(user_data, oob, 4); |
| sunxi_nfc_randomize_bbm(mtd, page, user_data); |
| writel(sunxi_nfc_buf_to_user_data(user_data), |
| nfc->regs + NFC_REG_USER_DATA(0)); |
| } else { |
| writel(sunxi_nfc_buf_to_user_data(oob), |
| nfc->regs + NFC_REG_USER_DATA(0)); |
| } |
| |
| if (data_off + ecc->size != oob_off) |
| nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| sunxi_nfc_randomizer_enable(mtd); |
| writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| NFC_ACCESS_DIR | NFC_ECC_OP, |
| nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| sunxi_nfc_randomizer_disable(mtd); |
| if (ret) |
| return ret; |
| |
| *cur_off = oob_off + ecc->bytes + 4; |
| |
| return 0; |
| } |
| |
| static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd, |
| u8 *oob, int *cur_off, |
| int page) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &nand->ecc; |
| int offset = ((ecc->bytes + 4) * ecc->steps); |
| int len = mtd->oobsize - offset; |
| |
| if (len <= 0) |
| return; |
| |
| if (*cur_off != offset) |
| nand->cmdfunc(mtd, NAND_CMD_RNDIN, |
| offset + mtd->writesize, -1); |
| |
| sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page); |
| |
| *cur_off = mtd->oobsize + mtd->writesize; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| unsigned int max_bitflips = 0; |
| int ret, i, cur_off = 0; |
| bool raw_mode = false; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = buf + data_off; |
| u8 *oob = chip->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, &max_bitflips, |
| !i, page); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| raw_mode = true; |
| } |
| |
| if (oob_required) |
| sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, |
| !raw_mode, page); |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint32_t data_offs, uint32_t readlen, |
| uint8_t *bufpoi, int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret, i, cur_off = 0; |
| unsigned int max_bitflips = 0; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| for (i = data_offs / ecc->size; |
| i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| u8 *data = bufpoi + data_off; |
| u8 *oob = chip->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, |
| oob, oob_off + mtd->writesize, |
| &cur_off, &max_bitflips, !i, page); |
| if (ret < 0) |
| return ret; |
| } |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret, i, cur_off = 0; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| const u8 *data = buf + data_off; |
| const u8 *oob = chip->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, !i, page); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) |
| sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, |
| &cur_off, page); |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| u32 data_offs, u32 data_len, |
| const u8 *buf, int oob_required, |
| int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret, i, cur_off = 0; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| for (i = data_offs / ecc->size; |
| i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { |
| int data_off = i * ecc->size; |
| int oob_off = i * (ecc->bytes + 4); |
| const u8 *data = buf + data_off; |
| const u8 *oob = chip->oob_poi + oob_off; |
| |
| ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, |
| oob_off + mtd->writesize, |
| &cur_off, !i, page); |
| if (ret) |
| return ret; |
| } |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| unsigned int max_bitflips = 0; |
| int ret, i, cur_off = 0; |
| bool raw_mode = false; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * (ecc->size + ecc->bytes + 4); |
| int oob_off = data_off + ecc->size; |
| u8 *data = buf + (i * ecc->size); |
| u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); |
| |
| ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, |
| oob_off, &cur_off, |
| &max_bitflips, !i, page); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| raw_mode = true; |
| } |
| |
| if (oob_required) |
| sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, |
| !raw_mode, page); |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret, i, cur_off = 0; |
| |
| sunxi_nfc_hw_ecc_enable(mtd); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| int data_off = i * (ecc->size + ecc->bytes + 4); |
| int oob_off = data_off + ecc->size; |
| const u8 *data = buf + (i * ecc->size); |
| const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); |
| |
| ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, |
| oob, oob_off, &cur_off, |
| false, page); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) |
| sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, |
| &cur_off, page); |
| |
| sunxi_nfc_hw_ecc_disable(mtd); |
| |
| return 0; |
| } |
| |
| static const s32 tWB_lut[] = {6, 12, 16, 20}; |
| static const s32 tRHW_lut[] = {4, 8, 12, 20}; |
| |
| static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, |
| u32 clk_period) |
| { |
| u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); |
| int i; |
| |
| for (i = 0; i < lut_size; i++) { |
| if (clk_cycles <= lut[i]) |
| return i; |
| } |
| |
| /* Doesn't fit */ |
| return -EINVAL; |
| } |
| |
| #define sunxi_nand_lookup_timing(l, p, c) \ |
| _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) |
| |
| static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, |
| const struct nand_sdr_timings *timings) |
| { |
| u32 min_clk_period = 0; |
| s32 tWB, tADL, tWHR, tRHW, tCAD; |
| |
| /* T1 <=> tCLS */ |
| if (timings->tCLS_min > min_clk_period) |
| min_clk_period = timings->tCLS_min; |
| |
| /* T2 <=> tCLH */ |
| if (timings->tCLH_min > min_clk_period) |
| min_clk_period = timings->tCLH_min; |
| |
| /* T3 <=> tCS */ |
| if (timings->tCS_min > min_clk_period) |
| min_clk_period = timings->tCS_min; |
| |
| /* T4 <=> tCH */ |
| if (timings->tCH_min > min_clk_period) |
| min_clk_period = timings->tCH_min; |
| |
| /* T5 <=> tWP */ |
| if (timings->tWP_min > min_clk_period) |
| min_clk_period = timings->tWP_min; |
| |
| /* T6 <=> tWH */ |
| if (timings->tWH_min > min_clk_period) |
| min_clk_period = timings->tWH_min; |
| |
| /* T7 <=> tALS */ |
| if (timings->tALS_min > min_clk_period) |
| min_clk_period = timings->tALS_min; |
| |
| /* T8 <=> tDS */ |
| if (timings->tDS_min > min_clk_period) |
| min_clk_period = timings->tDS_min; |
| |
| /* T9 <=> tDH */ |
| if (timings->tDH_min > min_clk_period) |
| min_clk_period = timings->tDH_min; |
| |
| /* T10 <=> tRR */ |
| if (timings->tRR_min > (min_clk_period * 3)) |
| min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); |
| |
| /* T11 <=> tALH */ |
| if (timings->tALH_min > min_clk_period) |
| min_clk_period = timings->tALH_min; |
| |
| /* T12 <=> tRP */ |
| if (timings->tRP_min > min_clk_period) |
| min_clk_period = timings->tRP_min; |
| |
| /* T13 <=> tREH */ |
| if (timings->tREH_min > min_clk_period) |
| min_clk_period = timings->tREH_min; |
| |
| /* T14 <=> tRC */ |
| if (timings->tRC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); |
| |
| /* T15 <=> tWC */ |
| if (timings->tWC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); |
| |
| /* T16 - T19 + tCAD */ |
| tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, |
| min_clk_period); |
| if (tWB < 0) { |
| dev_err(nfc->dev, "unsupported tWB\n"); |
| return tWB; |
| } |
| |
| tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; |
| if (tADL > 3) { |
| dev_err(nfc->dev, "unsupported tADL\n"); |
| return -EINVAL; |
| } |
| |
| tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; |
| if (tWHR > 3) { |
| dev_err(nfc->dev, "unsupported tWHR\n"); |
| return -EINVAL; |
| } |
| |
| tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, |
| min_clk_period); |
| if (tRHW < 0) { |
| dev_err(nfc->dev, "unsupported tRHW\n"); |
| return tRHW; |
| } |
| |
| /* |
| * TODO: according to ONFI specs this value only applies for DDR NAND, |
| * but Allwinner seems to set this to 0x7. Mimic them for now. |
| */ |
| tCAD = 0x7; |
| |
| /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ |
| chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); |
| |
| /* |
| * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data |
| * output cycle timings shall be used if the host drives tRC less than |
| * 30 ns. |
| */ |
| chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0; |
| |
| /* Convert min_clk_period from picoseconds to nanoseconds */ |
| min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); |
| |
| /* |
| * Convert min_clk_period into a clk frequency, then get the |
| * appropriate rate for the NAND controller IP given this formula |
| * (specified in the datasheet): |
| * nand clk_rate = min_clk_rate |
| */ |
| chip->clk_rate = 1000000000L / min_clk_period; |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(&chip->nand); |
| const struct nand_sdr_timings *timings; |
| int ret; |
| int mode; |
| |
| mode = onfi_get_async_timing_mode(&chip->nand); |
| if (mode == ONFI_TIMING_MODE_UNKNOWN) { |
| mode = chip->nand.onfi_timing_mode_default; |
| } else { |
| uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; |
| int i; |
| |
| mode = fls(mode) - 1; |
| if (mode < 0) |
| mode = 0; |
| |
| feature[0] = mode; |
| for (i = 0; i < chip->nsels; i++) { |
| chip->nand.select_chip(mtd, i); |
| ret = chip->nand.onfi_set_features(mtd, |
| &chip->nand, |
| ONFI_FEATURE_ADDR_TIMING_MODE, |
| feature); |
| chip->nand.select_chip(mtd, -1); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| timings = onfi_async_timing_mode_to_sdr_timings(mode); |
| if (IS_ERR(timings)) |
| return PTR_ERR(timings); |
| |
| return sunxi_nand_chip_set_timings(chip, timings); |
| } |
| |
| static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc) |
| { |
| static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; |
| struct sunxi_nand_hw_ecc *data; |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int ret; |
| int i; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| if (ecc->size != 512 && ecc->size != 1024) |
| return -EINVAL; |
| |
| /* Prefer 1k ECC chunk over 512 ones */ |
| if (ecc->size == 512 && mtd->writesize > 512) { |
| ecc->size = 1024; |
| ecc->strength *= 2; |
| } |
| |
| /* Add ECC info retrieval from DT */ |
| for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| if (ecc->strength <= strengths[i]) { |
| /* |
| * Update ecc->strength value with the actual strength |
| * that will be used by the ECC engine. |
| */ |
| ecc->strength = strengths[i]; |
| break; |
| } |
| } |
| |
| if (i >= ARRAY_SIZE(strengths)) { |
| dev_err(nfc->dev, "unsupported strength\n"); |
| ret = -ENOTSUPP; |
| goto err; |
| } |
| |
| data->mode = i; |
| |
| /* HW ECC always request ECC bytes for 1024 bytes blocks */ |
| ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); |
| |
| /* HW ECC always work with even numbers of ECC bytes */ |
| ecc->bytes = ALIGN(ecc->bytes, 2); |
| |
| layout = &data->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| layout->eccbytes = (ecc->bytes * nsectors); |
| |
| ecc->layout = layout; |
| ecc->priv = data; |
| |
| return 0; |
| |
| err: |
| kfree(data); |
| |
| return ret; |
| } |
| |
| #ifndef __UBOOT__ |
| static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) |
| { |
| kfree(ecc->priv); |
| } |
| #endif /* __UBOOT__ */ |
| |
| static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc) |
| { |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int i, j; |
| int ret; |
| |
| ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc); |
| if (ret) |
| return ret; |
| |
| ecc->read_page = sunxi_nfc_hw_ecc_read_page; |
| ecc->write_page = sunxi_nfc_hw_ecc_write_page; |
| ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; |
| ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; |
| layout = ecc->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| for (i = 0; i < nsectors; i++) { |
| if (i) { |
| layout->oobfree[i].offset = |
| layout->oobfree[i - 1].offset + |
| layout->oobfree[i - 1].length + |
| ecc->bytes; |
| layout->oobfree[i].length = 4; |
| } else { |
| /* |
| * The first 2 bytes are used for BB markers, hence we |
| * only have 2 bytes available in the first user data |
| * section. |
| */ |
| layout->oobfree[i].length = 2; |
| layout->oobfree[i].offset = 2; |
| } |
| |
| for (j = 0; j < ecc->bytes; j++) |
| layout->eccpos[(ecc->bytes * i) + j] = |
| layout->oobfree[i].offset + |
| layout->oobfree[i].length + j; |
| } |
| |
| if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { |
| layout->oobfree[nsectors].offset = |
| layout->oobfree[nsectors - 1].offset + |
| layout->oobfree[nsectors - 1].length + |
| ecc->bytes; |
| layout->oobfree[nsectors].length = mtd->oobsize - |
| ((ecc->bytes + 4) * nsectors); |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc) |
| { |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int i; |
| int ret; |
| |
| ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc); |
| if (ret) |
| return ret; |
| |
| ecc->prepad = 4; |
| ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; |
| ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; |
| |
| layout = ecc->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| for (i = 0; i < (ecc->bytes * nsectors); i++) |
| layout->eccpos[i] = i; |
| |
| layout->oobfree[0].length = mtd->oobsize - i; |
| layout->oobfree[0].offset = i; |
| |
| return 0; |
| } |
| |
| #ifndef __UBOOT__ |
| static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) |
| { |
| switch (ecc->mode) { |
| case NAND_ECC_HW: |
| case NAND_ECC_HW_SYNDROME: |
| sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); |
| break; |
| case NAND_ECC_NONE: |
| kfree(ecc->layout); |
| default: |
| break; |
| } |
| } |
| #endif /* __UBOOT__ */ |
| |
| static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| int ret; |
| |
| if (!ecc->size) { |
| ecc->size = nand->ecc_step_ds; |
| ecc->strength = nand->ecc_strength_ds; |
| } |
| |
| if (!ecc->size || !ecc->strength) |
| return -EINVAL; |
| |
| switch (ecc->mode) { |
| case NAND_ECC_SOFT_BCH: |
| break; |
| case NAND_ECC_HW: |
| ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_HW_SYNDROME: |
| ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_NONE: |
| ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); |
| if (!ecc->layout) |
| return -ENOMEM; |
| ecc->layout->oobfree[0].length = mtd->oobsize; |
| case NAND_ECC_SOFT: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chip_init(int node, struct sunxi_nfc *nfc, int devnum) |
| { |
| const struct nand_sdr_timings *timings; |
| const void *blob = gd->fdt_blob; |
| struct sunxi_nand_chip *chip; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| int nsels; |
| int ret; |
| int i; |
| u32 cs[8], rb[8]; |
| |
| if (!fdt_getprop(blob, node, "reg", &nsels)) |
| return -EINVAL; |
| |
| nsels /= sizeof(u32); |
| if (!nsels || nsels > 8) { |
| dev_err(dev, "invalid reg property size\n"); |
| return -EINVAL; |
| } |
| |
| chip = kzalloc(sizeof(*chip) + |
| (nsels * sizeof(struct sunxi_nand_chip_sel)), |
| GFP_KERNEL); |
| if (!chip) { |
| dev_err(dev, "could not allocate chip\n"); |
| return -ENOMEM; |
| } |
| |
| chip->nsels = nsels; |
| chip->selected = -1; |
| |
| for (i = 0; i < nsels; i++) { |
| cs[i] = -1; |
| rb[i] = -1; |
| } |
| |
| ret = fdtdec_get_int_array(gd->fdt_blob, node, "reg", cs, nsels); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", ret); |
| return ret; |
| } |
| |
| ret = fdtdec_get_int_array(gd->fdt_blob, node, "allwinner,rb", rb, |
| nsels); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", ret); |
| return ret; |
| } |
| |
| for (i = 0; i < nsels; i++) { |
| int tmp = cs[i]; |
| |
| if (tmp > NFC_MAX_CS) { |
| dev_err(dev, |
| "invalid reg value: %u (max CS = 7)\n", |
| tmp); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %d already assigned\n", tmp); |
| return -EINVAL; |
| } |
| |
| chip->sels[i].cs = tmp; |
| |
| tmp = rb[i]; |
| if (tmp >= 0 && tmp < 2) { |
| chip->sels[i].rb.type = RB_NATIVE; |
| chip->sels[i].rb.info.nativeid = tmp; |
| } else { |
| ret = gpio_request_by_name_nodev(offset_to_ofnode(node), |
| "rb-gpios", i, |
| &chip->sels[i].rb.info.gpio, |
| GPIOD_IS_IN); |
| if (ret) |
| chip->sels[i].rb.type = RB_GPIO; |
| else |
| chip->sels[i].rb.type = RB_NONE; |
| } |
| } |
| |
| timings = onfi_async_timing_mode_to_sdr_timings(0); |
| if (IS_ERR(timings)) { |
| ret = PTR_ERR(timings); |
| dev_err(dev, |
| "could not retrieve timings for ONFI mode 0: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = sunxi_nand_chip_set_timings(chip, timings); |
| if (ret) { |
| dev_err(dev, "could not configure chip timings: %d\n", ret); |
| return ret; |
| } |
| |
| nand = &chip->nand; |
| /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ |
| nand->chip_delay = 200; |
| nand->controller = &nfc->controller; |
| /* |
| * Set the ECC mode to the default value in case nothing is specified |
| * in the DT. |
| */ |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->flash_node = node; |
| nand->select_chip = sunxi_nfc_select_chip; |
| nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; |
| nand->read_buf = sunxi_nfc_read_buf; |
| nand->write_buf = sunxi_nfc_write_buf; |
| nand->read_byte = sunxi_nfc_read_byte; |
| |
| mtd = nand_to_mtd(nand); |
| ret = nand_scan_ident(mtd, nsels, NULL); |
| if (ret) |
| return ret; |
| |
| if (nand->bbt_options & NAND_BBT_USE_FLASH) |
| nand->bbt_options |= NAND_BBT_NO_OOB; |
| |
| if (nand->options & NAND_NEED_SCRAMBLING) |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| nand->options |= NAND_SUBPAGE_READ; |
| |
| ret = sunxi_nand_chip_init_timings(chip); |
| if (ret) { |
| dev_err(dev, "could not configure chip timings: %d\n", ret); |
| return ret; |
| } |
| |
| ret = sunxi_nand_ecc_init(mtd, &nand->ecc); |
| if (ret) { |
| dev_err(dev, "ECC init failed: %d\n", ret); |
| return ret; |
| } |
| |
| ret = nand_scan_tail(mtd); |
| if (ret) { |
| dev_err(dev, "nand_scan_tail failed: %d\n", ret); |
| return ret; |
| } |
| |
| ret = nand_register(devnum, mtd); |
| if (ret) { |
| dev_err(dev, "failed to register mtd device: %d\n", ret); |
| return ret; |
| } |
| |
| list_add_tail(&chip->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chips_init(int node, struct sunxi_nfc *nfc) |
| { |
| const void *blob = gd->fdt_blob; |
| int nand_node; |
| int ret, i = 0; |
| |
| for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0; |
| nand_node = fdt_next_subnode(blob, nand_node)) |
| i++; |
| |
| if (i > 8) { |
| dev_err(dev, "too many NAND chips: %d (max = 8)\n", i); |
| return -EINVAL; |
| } |
| |
| i = 0; |
| for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0; |
| nand_node = fdt_next_subnode(blob, nand_node)) { |
| ret = sunxi_nand_chip_init(nand_node, nfc, i++); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #ifndef __UBOOT__ |
| static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) |
| { |
| struct sunxi_nand_chip *chip; |
| |
| while (!list_empty(&nfc->chips)) { |
| chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, |
| node); |
| nand_release(&chip->mtd); |
| sunxi_nand_ecc_cleanup(&chip->nand.ecc); |
| list_del(&chip->node); |
| kfree(chip); |
| } |
| } |
| #endif /* __UBOOT__ */ |
| |
| void sunxi_nand_init(void) |
| { |
| const void *blob = gd->fdt_blob; |
| struct sunxi_nfc *nfc; |
| fdt_addr_t regs; |
| int node; |
| int ret; |
| |
| nfc = kzalloc(sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return; |
| |
| spin_lock_init(&nfc->controller.lock); |
| init_waitqueue_head(&nfc->controller.wq); |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| node = fdtdec_next_compatible(blob, 0, COMPAT_SUNXI_NAND); |
| if (node < 0) { |
| pr_err("unable to find nfc node in device tree\n"); |
| goto err; |
| } |
| |
| if (!fdtdec_get_is_enabled(blob, node)) { |
| pr_err("nfc disabled in device tree\n"); |
| goto err; |
| } |
| |
| regs = fdtdec_get_addr(blob, node, "reg"); |
| if (regs == FDT_ADDR_T_NONE) { |
| pr_err("unable to find nfc address in device tree\n"); |
| goto err; |
| } |
| |
| nfc->regs = (void *)regs; |
| |
| ret = sunxi_nfc_rst(nfc); |
| if (ret) |
| goto err; |
| |
| ret = sunxi_nand_chips_init(node, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init nand chips\n"); |
| goto err; |
| } |
| |
| return; |
| |
| err: |
| kfree(nfc); |
| } |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Boris BREZILLON"); |
| MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); |