blob: 0541bbadf074bae845bf9032bceec800c96a8473 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* (C) Copyright 2017 Rockchip Electronics Co., Ltd.
*/
#include <common.h>
#include <clk.h>
#include <debug_uart.h>
#include <dm.h>
#include <dt-structs.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_rk3328.h>
#include <asm/arch-rockchip/grf_rk3328.h>
#include <asm/arch-rockchip/sdram_common.h>
#include <asm/arch-rockchip/sdram_rk3328.h>
#include <asm/arch-rockchip/uart.h>
struct dram_info {
#ifdef CONFIG_TPL_BUILD
struct rk3328_ddr_pctl_regs *pctl;
struct rk3328_ddr_phy_regs *phy;
struct clk ddr_clk;
struct rk3328_cru *cru;
struct rk3328_msch_regs *msch;
struct rk3328_ddr_grf_regs *ddr_grf;
#endif
struct ram_info info;
struct rk3328_grf_regs *grf;
};
#ifdef CONFIG_TPL_BUILD
struct rk3328_sdram_channel sdram_ch;
struct rockchip_dmc_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3328_dmc dtplat;
#else
struct rk3328_sdram_params sdram_params;
#endif
struct regmap *map;
};
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
struct dtd_rockchip_rk3328_dmc *dtplat = &plat->dtplat;
int ret;
ret = regmap_init_mem_platdata(dev, dtplat->reg,
ARRAY_SIZE(dtplat->reg) / 2,
&plat->map);
if (ret)
return ret;
return 0;
}
#endif
static void rkclk_ddr_reset(struct dram_info *dram,
u32 ctl_srstn, u32 ctl_psrstn,
u32 phy_srstn, u32 phy_psrstn)
{
writel(ddrctrl_srstn_req(ctl_srstn) | ddrctrl_psrstn_req(ctl_psrstn) |
ddrphy_srstn_req(phy_srstn) | ddrphy_psrstn_req(phy_psrstn),
&dram->cru->softrst_con[5]);
writel(ddrctrl_asrstn_req(ctl_srstn), &dram->cru->softrst_con[9]);
}
static void rkclk_set_dpll(struct dram_info *dram, unsigned int mhz)
{
unsigned int refdiv, postdiv1, postdiv2, fbdiv;
int delay = 1000;
refdiv = 1;
if (mhz <= 300) {
postdiv1 = 4;
postdiv2 = 2;
} else if (mhz <= 400) {
postdiv1 = 6;
postdiv2 = 1;
} else if (mhz <= 600) {
postdiv1 = 4;
postdiv2 = 1;
} else if (mhz <= 800) {
postdiv1 = 3;
postdiv2 = 1;
} else if (mhz <= 1600) {
postdiv1 = 2;
postdiv2 = 1;
} else {
postdiv1 = 1;
postdiv2 = 1;
}
fbdiv = (mhz * refdiv * postdiv1 * postdiv2) / 24;
writel(((0x1 << 4) << 16) | (0 << 4), &dram->cru->mode_con);
writel(POSTDIV1(postdiv1) | FBDIV(fbdiv), &dram->cru->dpll_con[0]);
writel(DSMPD(1) | POSTDIV2(postdiv2) | REFDIV(refdiv),
&dram->cru->dpll_con[1]);
while (delay > 0) {
udelay(1);
if (LOCK(readl(&dram->cru->dpll_con[1])))
break;
delay--;
}
writel(((0x1 << 4) << 16) | (1 << 4), &dram->cru->mode_con);
}
static void rkclk_configure_ddr(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
void __iomem *phy_base = dram->phy;
/* choose DPLL for ddr clk source */
clrbits_le32(PHY_REG(phy_base, 0xef), 1 << 7);
/* for inno ddr phy need 2*freq */
rkclk_set_dpll(dram, sdram_params->ddr_freq * 2);
}
static void phy_soft_reset(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrbits_le32(PHY_REG(phy_base, 0), 0x3 << 2);
udelay(1);
setbits_le32(PHY_REG(phy_base, 0), ANALOG_DERESET);
udelay(5);
setbits_le32(PHY_REG(phy_base, 0), DIGITAL_DERESET);
udelay(1);
}
static int pctl_cfg(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
u32 i;
void __iomem *pctl_base = dram->pctl;
for (i = 0; sdram_params->pctl_regs.pctl[i][0] != 0xFFFFFFFF; i++) {
writel(sdram_params->pctl_regs.pctl[i][1],
pctl_base + sdram_params->pctl_regs.pctl[i][0]);
}
clrsetbits_le32(pctl_base + DDR_PCTL2_PWRTMG,
(0xff << 16) | 0x1f,
((SR_IDLE & 0xff) << 16) | (PD_IDLE & 0x1f));
/*
* dfi_lp_en_pd=1,dfi_lp_wakeup_pd=2
* hw_lp_idle_x32=1
*/
if (sdram_params->dramtype == LPDDR3) {
setbits_le32(pctl_base + DDR_PCTL2_DFILPCFG0, 1);
clrsetbits_le32(pctl_base + DDR_PCTL2_DFILPCFG0,
0xf << 4,
2 << 4);
}
clrsetbits_le32(pctl_base + DDR_PCTL2_HWLPCTL,
0xfff << 16,
1 << 16);
/* disable zqcs */
setbits_le32(pctl_base + DDR_PCTL2_ZQCTL0, 1u << 31);
setbits_le32(pctl_base + 0x2000 + DDR_PCTL2_ZQCTL0, 1u << 31);
return 0;
}
/* return ddrconfig value
* (-1), find ddrconfig fail
* other, the ddrconfig value
* only support cs0_row >= cs1_row
*/
static unsigned int calculate_ddrconfig(struct rk3328_sdram_params *sdram_params)
{
static const u16 ddr_cfg_2_rbc[] = {
/***************************
* [5:4] row(13+n)
* [3] cs(0:0 cs, 1:2 cs)
* [2] bank(0:0bank,1:8bank)
* [1:0] col(11+n)
****************************/
/* row, cs, bank, col */
((3 << 4) | (0 << 3) | (1 << 2) | 0),
((3 << 4) | (0 << 3) | (1 << 2) | 1),
((2 << 4) | (0 << 3) | (1 << 2) | 2),
((3 << 4) | (0 << 3) | (1 << 2) | 2),
((2 << 4) | (0 << 3) | (1 << 2) | 3),
((3 << 4) | (1 << 3) | (1 << 2) | 0),
((3 << 4) | (1 << 3) | (1 << 2) | 1),
((2 << 4) | (1 << 3) | (1 << 2) | 2),
((3 << 4) | (0 << 3) | (0 << 2) | 1),
((2 << 4) | (0 << 3) | (1 << 2) | 1),
};
static const u16 ddr4_cfg_2_rbc[] = {
/***************************
* [6] cs 0:0cs 1:2 cs
* [5:3] row(13+n)
* [2] cs(0:0 cs, 1:2 cs)
* [1] bw 0: 16bit 1:32bit
* [0] diebw 0:8bit 1:16bit
***************************/
/* cs, row, cs, bw, diebw */
((0 << 6) | (3 << 3) | (0 << 2) | (1 << 1) | 0),
((1 << 6) | (2 << 3) | (0 << 2) | (1 << 1) | 0),
((0 << 6) | (4 << 3) | (0 << 2) | (0 << 1) | 0),
((1 << 6) | (3 << 3) | (0 << 2) | (0 << 1) | 0),
((0 << 6) | (4 << 3) | (0 << 2) | (1 << 1) | 1),
((1 << 6) | (3 << 3) | (0 << 2) | (1 << 1) | 1),
((1 << 6) | (4 << 3) | (0 << 2) | (0 << 1) | 1),
((0 << 6) | (2 << 3) | (1 << 2) | (1 << 1) | 0),
((0 << 6) | (3 << 3) | (1 << 2) | (0 << 1) | 0),
((0 << 6) | (3 << 3) | (1 << 2) | (1 << 1) | 1),
((0 << 6) | (4 << 3) | (1 << 2) | (0 << 1) | 1),
};
u32 cs, bw, die_bw, col, row, bank;
u32 i, tmp;
u32 ddrconf = -1;
cs = sdram_ch.rank;
bw = sdram_ch.bw;
die_bw = sdram_ch.dbw;
col = sdram_ch.col;
row = sdram_ch.cs0_row;
bank = sdram_ch.bk;
if (sdram_params->dramtype == DDR4) {
tmp = ((cs - 1) << 6) | ((row - 13) << 3) | (bw & 0x2) | die_bw;
for (i = 10; i < 17; i++) {
if (((tmp & 0x7) == (ddr4_cfg_2_rbc[i - 10] & 0x7)) &&
((tmp & 0x3c) <= (ddr4_cfg_2_rbc[i - 10] & 0x3c)) &&
((tmp & 0x40) <= (ddr4_cfg_2_rbc[i - 10] & 0x40))) {
ddrconf = i;
goto out;
}
}
} else {
if (bank == 2) {
ddrconf = 8;
goto out;
}
tmp = ((row - 13) << 4) | (1 << 2) | ((bw + col - 11) << 0);
for (i = 0; i < 5; i++)
if (((tmp & 0xf) == (ddr_cfg_2_rbc[i] & 0xf)) &&
((tmp & 0x30) <= (ddr_cfg_2_rbc[i] & 0x30))) {
ddrconf = i;
goto out;
}
}
out:
if (ddrconf > 20)
printf("calculate_ddrconfig error\n");
return ddrconf;
}
/* n: Unit bytes */
static void copy_to_reg(u32 *dest, u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
writel(*src, dest);
src++;
dest++;
}
}
/*******
* calculate controller dram address map, and setting to register.
* argument sdram_ch.ddrconf must be right value before
* call this function.
*******/
static void set_ctl_address_map(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
copy_to_reg((u32 *)(pctl_base + DDR_PCTL2_ADDRMAP0),
&addrmap[sdram_ch.ddrconfig][0], 9 * 4);
if (sdram_params->dramtype == LPDDR3 && sdram_ch.row_3_4)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6, 1 << 31);
if (sdram_params->dramtype == DDR4 && sdram_ch.bw == 0x1)
setbits_le32(pctl_base + DDR_PCTL2_PCCFG, 1 << 8);
if (sdram_ch.rank == 1)
clrsetbits_le32(pctl_base + DDR_PCTL2_ADDRMAP0, 0x1f, 0x1f);
}
static void phy_dll_bypass_set(struct dram_info *dram, u32 freq)
{
u32 tmp;
void __iomem *phy_base = dram->phy;
setbits_le32(PHY_REG(phy_base, 0x13), 1 << 4);
clrbits_le32(PHY_REG(phy_base, 0x14), 1 << 3);
setbits_le32(PHY_REG(phy_base, 0x26), 1 << 4);
clrbits_le32(PHY_REG(phy_base, 0x27), 1 << 3);
setbits_le32(PHY_REG(phy_base, 0x36), 1 << 4);
clrbits_le32(PHY_REG(phy_base, 0x37), 1 << 3);
setbits_le32(PHY_REG(phy_base, 0x46), 1 << 4);
clrbits_le32(PHY_REG(phy_base, 0x47), 1 << 3);
setbits_le32(PHY_REG(phy_base, 0x56), 1 << 4);
clrbits_le32(PHY_REG(phy_base, 0x57), 1 << 3);
if (freq <= 400)
/* DLL bypass */
setbits_le32(PHY_REG(phy_base, 0xa4), 0x1f);
else
clrbits_le32(PHY_REG(phy_base, 0xa4), 0x1f);
if (freq <= 680)
tmp = 2;
else
tmp = 1;
writel(tmp, PHY_REG(phy_base, 0x28));
writel(tmp, PHY_REG(phy_base, 0x38));
writel(tmp, PHY_REG(phy_base, 0x48));
writel(tmp, PHY_REG(phy_base, 0x58));
}
static void set_ds_odt(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
u32 cmd_drv, clk_drv, dqs_drv, dqs_odt;
void __iomem *phy_base = dram->phy;
if (sdram_params->dramtype == DDR3) {
cmd_drv = PHY_DDR3_RON_RTT_34ohm;
clk_drv = PHY_DDR3_RON_RTT_45ohm;
dqs_drv = PHY_DDR3_RON_RTT_34ohm;
dqs_odt = PHY_DDR3_RON_RTT_225ohm;
} else {
cmd_drv = PHY_DDR4_LPDDR3_RON_RTT_34ohm;
clk_drv = PHY_DDR4_LPDDR3_RON_RTT_43ohm;
dqs_drv = PHY_DDR4_LPDDR3_RON_RTT_34ohm;
dqs_odt = PHY_DDR4_LPDDR3_RON_RTT_240ohm;
}
/* DS */
writel(cmd_drv, PHY_REG(phy_base, 0x11));
clrsetbits_le32(PHY_REG(phy_base, 0x12), 0x1f << 3, cmd_drv << 3);
writel(clk_drv, PHY_REG(phy_base, 0x16));
writel(clk_drv, PHY_REG(phy_base, 0x18));
writel(dqs_drv, PHY_REG(phy_base, 0x20));
writel(dqs_drv, PHY_REG(phy_base, 0x2f));
writel(dqs_drv, PHY_REG(phy_base, 0x30));
writel(dqs_drv, PHY_REG(phy_base, 0x3f));
writel(dqs_drv, PHY_REG(phy_base, 0x40));
writel(dqs_drv, PHY_REG(phy_base, 0x4f));
writel(dqs_drv, PHY_REG(phy_base, 0x50));
writel(dqs_drv, PHY_REG(phy_base, 0x5f));
/* ODT */
writel(dqs_odt, PHY_REG(phy_base, 0x21));
writel(dqs_odt, PHY_REG(phy_base, 0x2e));
writel(dqs_odt, PHY_REG(phy_base, 0x31));
writel(dqs_odt, PHY_REG(phy_base, 0x3e));
writel(dqs_odt, PHY_REG(phy_base, 0x41));
writel(dqs_odt, PHY_REG(phy_base, 0x4e));
writel(dqs_odt, PHY_REG(phy_base, 0x51));
writel(dqs_odt, PHY_REG(phy_base, 0x5e));
}
static void phy_cfg(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
u32 i;
void __iomem *phy_base = dram->phy;
phy_dll_bypass_set(dram, sdram_params->ddr_freq);
for (i = 0; sdram_params->phy_regs.phy[i][0] != 0xFFFFFFFF; i++) {
writel(sdram_params->phy_regs.phy[i][1],
phy_base + sdram_params->phy_regs.phy[i][0]);
}
if (sdram_ch.bw == 2) {
clrsetbits_le32(PHY_REG(phy_base, 0), 0xf << 4, 0xf << 4);
} else {
clrsetbits_le32(PHY_REG(phy_base, 0), 0xf << 4, 3 << 4);
/* disable DQS2,DQS3 tx dll for saving power */
clrbits_le32(PHY_REG(phy_base, 0x46), 1 << 3);
clrbits_le32(PHY_REG(phy_base, 0x56), 1 << 3);
}
set_ds_odt(dram, sdram_params);
/* deskew */
setbits_le32(PHY_REG(phy_base, 2), 8);
copy_to_reg(PHY_REG(phy_base, 0xb0),
&sdram_params->skew.a0_a1_skew[0], 15 * 4);
copy_to_reg(PHY_REG(phy_base, 0x70),
&sdram_params->skew.cs0_dm0_skew[0], 44 * 4);
copy_to_reg(PHY_REG(phy_base, 0xc0),
&sdram_params->skew.cs0_dm1_skew[0], 44 * 4);
}
static int update_refresh_reg(struct dram_info *dram)
{
void __iomem *pctl_base = dram->pctl;
u32 ret;
ret = readl(pctl_base + DDR_PCTL2_RFSHCTL3) ^ (1 << 1);
writel(ret, pctl_base + DDR_PCTL2_RFSHCTL3);
return 0;
}
static int data_training(struct dram_info *dram, u32 cs, u32 dramtype)
{
u32 ret;
u32 dis_auto_zq = 0;
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
/* disable zqcs */
if (!(readl(pctl_base + DDR_PCTL2_ZQCTL0) &
(1ul << 31))) {
dis_auto_zq = 1;
setbits_le32(pctl_base + DDR_PCTL2_ZQCTL0, 1 << 31);
}
/* disable auto refresh */
setbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3, 1);
update_refresh_reg(dram);
if (dramtype == DDR4) {
clrsetbits_le32(PHY_REG(phy_base, 0x29), 0x3, 0);
clrsetbits_le32(PHY_REG(phy_base, 0x39), 0x3, 0);
clrsetbits_le32(PHY_REG(phy_base, 0x49), 0x3, 0);
clrsetbits_le32(PHY_REG(phy_base, 0x59), 0x3, 0);
}
/* choose training cs */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs));
/* enable gate training */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs) | 1);
udelay(50);
ret = readl(PHY_REG(phy_base, 0xff));
/* disable gate training */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs) | 0);
/* restore zqcs */
if (dis_auto_zq)
clrbits_le32(pctl_base + DDR_PCTL2_ZQCTL0, 1 << 31);
/* restore auto refresh */
clrbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3, 1);
update_refresh_reg(dram);
if (dramtype == DDR4) {
clrsetbits_le32(PHY_REG(phy_base, 0x29), 0x3, 0x2);
clrsetbits_le32(PHY_REG(phy_base, 0x39), 0x3, 0x2);
clrsetbits_le32(PHY_REG(phy_base, 0x49), 0x3, 0x2);
clrsetbits_le32(PHY_REG(phy_base, 0x59), 0x3, 0x2);
}
if (ret & 0x10) {
ret = -1;
} else {
ret = (ret & 0xf) ^ (readl(PHY_REG(phy_base, 0)) >> 4);
ret = (ret == 0) ? 0 : -1;
}
return ret;
}
/* rank = 1: cs0
* rank = 2: cs1
* rank = 3: cs0 & cs1
* note: be careful of keep mr original val
*/
static int write_mr(struct dram_info *dram, u32 rank, u32 mr_num, u32 arg,
u32 dramtype)
{
void __iomem *pctl_base = dram->pctl;
while (readl(pctl_base + DDR_PCTL2_MRSTAT) & MR_WR_BUSY)
continue;
if (dramtype == DDR3 || dramtype == DDR4) {
writel((mr_num << 12) | (rank << 4) | (0 << 0),
pctl_base + DDR_PCTL2_MRCTRL0);
writel(arg, pctl_base + DDR_PCTL2_MRCTRL1);
} else {
writel((rank << 4) | (0 << 0),
pctl_base + DDR_PCTL2_MRCTRL0);
writel((mr_num << 8) | (arg & 0xff),
pctl_base + DDR_PCTL2_MRCTRL1);
}
setbits_le32(pctl_base + DDR_PCTL2_MRCTRL0, 1u << 31);
while (readl(pctl_base + DDR_PCTL2_MRCTRL0) & (1u << 31))
continue;
while (readl(pctl_base + DDR_PCTL2_MRSTAT) & MR_WR_BUSY)
continue;
return 0;
}
/*
* rank : 1:cs0, 2:cs1, 3:cs0&cs1
* vrefrate: 4500: 45%,
*/
static int write_vrefdq(struct dram_info *dram, u32 rank, u32 vrefrate,
u32 dramtype)
{
u32 tccd_l, value;
u32 dis_auto_zq = 0;
void __iomem *pctl_base = dram->pctl;
if (dramtype != DDR4 || vrefrate < 4500 || vrefrate > 9200)
return -1;
tccd_l = (readl(pctl_base + DDR_PCTL2_DRAMTMG4) >> 16) & 0xf;
tccd_l = (tccd_l - 4) << 10;
if (vrefrate > 7500) {
/* range 1 */
value = ((vrefrate - 6000) / 65) | tccd_l;
} else {
/* range 2 */
value = ((vrefrate - 4500) / 65) | tccd_l | (1 << 6);
}
/* disable zqcs */
if (!(readl(pctl_base + DDR_PCTL2_ZQCTL0) &
(1ul << 31))) {
dis_auto_zq = 1;
setbits_le32(pctl_base + DDR_PCTL2_ZQCTL0, 1 << 31);
}
/* disable auto refresh */
setbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3, 1);
update_refresh_reg(dram);
/* enable vrefdq calibratin */
write_mr(dram, rank, 6, value | (1 << 7), dramtype);
udelay(1);/* tvrefdqe */
/* write vrefdq value */
write_mr(dram, rank, 6, value | (1 << 7), dramtype);
udelay(1);/* tvref_time */
write_mr(dram, rank, 6, value | (0 << 7), dramtype);
udelay(1);/* tvrefdqx */
/* restore zqcs */
if (dis_auto_zq)
clrbits_le32(pctl_base + DDR_PCTL2_ZQCTL0, 1 << 31);
/* restore auto refresh */
clrbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3, 1);
update_refresh_reg(dram);
return 0;
}
#define _MAX_(x, y) ((x) > (y) ? (x) : (y))
static void rx_deskew_switch_adjust(struct dram_info *dram)
{
u32 i, deskew_val;
u32 gate_val = 0;
void __iomem *phy_base = dram->phy;
for (i = 0; i < 4; i++)
gate_val = _MAX_(readl(PHY_REG(phy_base, 0xfb + i)), gate_val);
deskew_val = (gate_val >> 3) + 1;
deskew_val = (deskew_val > 0x1f) ? 0x1f : deskew_val;
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0xc, (deskew_val & 0x3) << 2);
clrsetbits_le32(PHY_REG(phy_base, 0x6f), 0x7 << 4,
(deskew_val & 0x1c) << 2);
}
#undef _MAX_
static void tx_deskew_switch_adjust(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0x3, 1);
}
static void set_ddrconfig(struct dram_info *dram, u32 ddrconfig)
{
writel(ddrconfig, &dram->msch->ddrconf);
}
static void dram_all_config(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
u32 sys_reg = 0, tmp = 0;
set_ddrconfig(dram, sdram_ch.ddrconfig);
sys_reg |= SYS_REG_ENC_DDRTYPE(sdram_params->dramtype);
sys_reg |= SYS_REG_ENC_ROW_3_4(sdram_ch.row_3_4, 0);
sys_reg |= SYS_REG_ENC_RANK(sdram_ch.rank, 0);
sys_reg |= SYS_REG_ENC_COL(sdram_ch.col, 0);
sys_reg |= SYS_REG_ENC_BK(sdram_ch.bk, 0);
SYS_REG_ENC_CS0_ROW(sdram_ch.cs0_row, sys_reg, tmp, 0);
if (sdram_ch.cs1_row)
SYS_REG_ENC_CS1_ROW(sdram_ch.cs1_row, sys_reg, tmp, 0);
sys_reg |= SYS_REG_ENC_BW(sdram_ch.bw, 0);
sys_reg |= SYS_REG_ENC_DBW(sdram_ch.dbw, 0);
writel(sys_reg, &dram->grf->os_reg[2]);
writel(sdram_ch.noc_timings.ddrtiming.d32, &dram->msch->ddrtiming);
writel(sdram_ch.noc_timings.ddrmode.d32, &dram->msch->ddrmode);
writel(sdram_ch.noc_timings.readlatency, &dram->msch->readlatency);
writel(sdram_ch.noc_timings.activate.d32, &dram->msch->activate);
writel(sdram_ch.noc_timings.devtodev.d32, &dram->msch->devtodev);
writel(sdram_ch.noc_timings.ddr4timing.d32, &dram->msch->ddr4_timing);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging0);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging1);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging2);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging3);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging4);
writel(sdram_ch.noc_timings.agingx0, &dram->msch->aging5);
}
static void enable_low_power(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
/* enable upctl2 axi clock auto gating */
writel(0x00800000, &dram->ddr_grf->ddr_grf_con[0]);
writel(0x20012001, &dram->ddr_grf->ddr_grf_con[2]);
/* enable upctl2 core clock auto gating */
writel(0x001e001a, &dram->ddr_grf->ddr_grf_con[2]);
/* enable sr, pd */
if (PD_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
if (SR_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 3));
}
static int sdram_init(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params, u32 pre_init)
{
void __iomem *pctl_base = dram->pctl;
rkclk_ddr_reset(dram, 1, 1, 1, 1);
udelay(10);
/*
* dereset ddr phy psrstn to config pll,
* if using phy pll psrstn must be dereset
* before config pll
*/
rkclk_ddr_reset(dram, 1, 1, 1, 0);
rkclk_configure_ddr(dram, sdram_params);
if (pre_init == 0) {
switch (sdram_params->dramtype) {
case DDR3:
printf("DDR3\n");
break;
case DDR4:
printf("DDR4\n");
break;
case LPDDR3:
default:
printf("LPDDR3\n");
break;
}
}
/* release phy srst to provide clk to ctrl */
rkclk_ddr_reset(dram, 1, 1, 0, 0);
udelay(10);
phy_soft_reset(dram);
/* release ctrl presetn, and config ctl registers */
rkclk_ddr_reset(dram, 1, 0, 0, 0);
pctl_cfg(dram, sdram_params);
sdram_ch.ddrconfig = calculate_ddrconfig(sdram_params);
set_ctl_address_map(dram, sdram_params);
phy_cfg(dram, sdram_params);
/* enable dfi_init_start to init phy after ctl srstn deassert */
setbits_le32(pctl_base + DDR_PCTL2_DFIMISC, (1 << 5) | (1 << 4));
rkclk_ddr_reset(dram, 0, 0, 0, 0);
/* wait for dfi_init_done and dram init complete */
while ((readl(pctl_base + DDR_PCTL2_STAT) & 0x7) == 0)
continue;
/* do ddr gate training */
if (data_training(dram, 0, sdram_params->dramtype) != 0) {
printf("data training error\n");
return -1;
}
if (sdram_params->dramtype == DDR4)
write_vrefdq(dram, 0x3, 5670, sdram_params->dramtype);
if (pre_init == 0) {
rx_deskew_switch_adjust(dram);
tx_deskew_switch_adjust(dram);
}
dram_all_config(dram, sdram_params);
enable_low_power(dram, sdram_params);
return 0;
}
static u64 dram_detect_cap(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params,
unsigned char channel)
{
void __iomem *pctl_base = dram->pctl;
/*
* for ddr3: ddrconf = 3
* for ddr4: ddrconf = 12
* for lpddr3: ddrconf = 3
* default bw = 1
*/
u32 bk, bktmp;
u32 col, coltmp;
u32 row, rowtmp, row_3_4;
void __iomem *test_addr, *test_addr1;
u32 dbw;
u32 cs;
u32 bw = 1;
u64 cap = 0;
u32 dram_type = sdram_params->dramtype;
u32 pwrctl;
if (dram_type != DDR4) {
/* detect col and bk for ddr3/lpddr3 */
coltmp = 12;
bktmp = 3;
rowtmp = 16;
for (col = coltmp; col >= 9; col -= 1) {
writel(0, SDRAM_ADDR);
test_addr = (void __iomem *)(SDRAM_ADDR +
(1ul << (col + bw - 1ul)));
writel(PATTERN, test_addr);
if ((readl(test_addr) == PATTERN) &&
(readl(SDRAM_ADDR) == 0))
break;
}
if (col == 8) {
printf("col error\n");
goto cap_err;
}
test_addr = (void __iomem *)(SDRAM_ADDR +
(1ul << (coltmp + bktmp + bw - 1ul)));
writel(0, SDRAM_ADDR);
writel(PATTERN, test_addr);
if ((readl(test_addr) == PATTERN) &&
(readl(SDRAM_ADDR) == 0))
bk = 3;
else
bk = 2;
if (dram_type == LPDDR3)
dbw = 2;
else
dbw = 1;
} else {
/* detect bg for ddr4 */
coltmp = 10;
bktmp = 4;
rowtmp = 17;
col = 10;
bk = 2;
test_addr = (void __iomem *)(SDRAM_ADDR +
(1ul << (coltmp + bw + 1ul)));
writel(0, SDRAM_ADDR);
writel(PATTERN, test_addr);
if ((readl(test_addr) == PATTERN) &&
(readl(SDRAM_ADDR) == 0))
dbw = 0;
else
dbw = 1;
}
/* detect row */
for (row = rowtmp; row > 12; row--) {
writel(0, SDRAM_ADDR);
test_addr = (void __iomem *)(SDRAM_ADDR +
(1ul << (row + bktmp + coltmp + bw - 1ul)));
writel(PATTERN, test_addr);
if ((readl(test_addr) == PATTERN) &&
(readl(SDRAM_ADDR) == 0))
break;
}
if (row == 12) {
printf("row error");
goto cap_err;
}
/* detect row_3_4 */
test_addr = SDRAM_ADDR;
test_addr1 = (void __iomem *)(SDRAM_ADDR +
(0x3ul << (row + bktmp + coltmp + bw - 1ul - 1ul)));
writel(0, test_addr);
writel(PATTERN, test_addr1);
if ((readl(test_addr) == 0) &&
(readl(test_addr1) == PATTERN))
row_3_4 = 0;
else
row_3_4 = 1;
/* disable auto low-power */
pwrctl = readl(pctl_base + DDR_PCTL2_PWRCTL);
writel(0, pctl_base + DDR_PCTL2_PWRCTL);
/* bw and cs detect using phy read gate training */
if (data_training(dram, 1, dram_type) == 0)
cs = 1;
else
cs = 0;
bw = 2;
/* restore auto low-power */
writel(pwrctl, pctl_base + DDR_PCTL2_PWRCTL);
sdram_ch.rank = cs + 1;
sdram_ch.col = col;
sdram_ch.bk = bk;
sdram_ch.dbw = dbw;
sdram_ch.bw = bw;
sdram_ch.cs0_row = row;
if (cs)
sdram_ch.cs1_row = row;
else
sdram_ch.cs1_row = 0;
sdram_ch.row_3_4 = row_3_4;
if (dram_type == DDR4)
cap = 1llu << (cs + row + bk + col + ((dbw == 0) ? 2 : 1) + bw);
else
cap = 1llu << (cs + row + bk + col + bw);
return cap;
cap_err:
return 0;
}
static u32 remodify_sdram_params(struct rk3328_sdram_params *sdram_params)
{
u32 tmp = 0, tmp_adr = 0, i;
for (i = 0; sdram_params->pctl_regs.pctl[i][0] != 0xFFFFFFFF; i++) {
if (sdram_params->pctl_regs.pctl[i][0] == 0) {
tmp = sdram_params->pctl_regs.pctl[i][1];/* MSTR */
tmp_adr = i;
}
}
tmp &= ~((3ul << 30) | (3ul << 24) | (3ul << 12));
switch (sdram_ch.dbw) {
case 2:
tmp |= (3ul << 30);
break;
case 1:
tmp |= (2ul << 30);
break;
case 0:
default:
tmp |= (1ul << 30);
break;
}
if (sdram_ch.rank == 2)
tmp |= 3 << 24;
else
tmp |= 1 << 24;
tmp |= (2 - sdram_ch.bw) << 12;
sdram_params->pctl_regs.pctl[tmp_adr][1] = tmp;
if (sdram_ch.bw == 2)
sdram_ch.noc_timings.ddrtiming.b.bwratio = 0;
else
sdram_ch.noc_timings.ddrtiming.b.bwratio = 1;
return 0;
}
static int dram_detect_cs1_row(struct rk3328_sdram_params *sdram_params,
unsigned char channel)
{
u32 ret = 0;
u32 cs1_bit;
void __iomem *test_addr, *cs1_addr;
u32 row, bktmp, coltmp, bw;
u32 ddrconf = sdram_ch.ddrconfig;
if (sdram_ch.rank == 2) {
cs1_bit = addrmap[ddrconf][0] + 8;
if (cs1_bit > 31)
goto out;
cs1_addr = (void __iomem *)(1ul << cs1_bit);
if (cs1_bit < 20)
cs1_bit = 1;
else
cs1_bit = 0;
if (sdram_params->dramtype == DDR4) {
if (sdram_ch.dbw == 0)
bktmp = sdram_ch.bk + 2;
else
bktmp = sdram_ch.bk + 1;
} else {
bktmp = sdram_ch.bk;
}
bw = sdram_ch.bw;
coltmp = sdram_ch.col;
/* detect cs1 row */
for (row = sdram_ch.cs0_row; row > 12; row--) {
test_addr = (void __iomem *)(SDRAM_ADDR + cs1_addr +
(1ul << (row + cs1_bit + bktmp +
coltmp + bw - 1ul)));
writel(0, SDRAM_ADDR + cs1_addr);
writel(PATTERN, test_addr);
if ((readl(test_addr) == PATTERN) &&
(readl(SDRAM_ADDR + cs1_addr) == 0)) {
ret = row;
break;
}
}
}
out:
return ret;
}
static int sdram_init_detect(struct dram_info *dram,
struct rk3328_sdram_params *sdram_params)
{
debug("Starting SDRAM initialization...\n");
memcpy(&sdram_ch, &sdram_params->ch,
sizeof(struct rk3328_sdram_channel));
sdram_init(dram, sdram_params, 1);
dram_detect_cap(dram, sdram_params, 0);
/* modify bw, cs related timing */
remodify_sdram_params(sdram_params);
/* reinit sdram by real dram cap */
sdram_init(dram, sdram_params, 0);
/* redetect cs1 row */
sdram_ch.cs1_row =
dram_detect_cs1_row(sdram_params, 0);
return 0;
}
static int rk3328_dmc_init(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
int ret;
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3328_sdram_params *params = &plat->sdram_params;
#else
struct dtd_rockchip_rk3328_dmc *dtplat = &plat->dtplat;
struct rk3328_sdram_params *params =
(void *)dtplat->rockchip_sdram_params;
ret = conv_of_platdata(dev);
if (ret)
return ret;
#endif
priv->phy = regmap_get_range(plat->map, 0);
priv->pctl = regmap_get_range(plat->map, 1);
priv->grf = regmap_get_range(plat->map, 2);
priv->cru = regmap_get_range(plat->map, 3);
priv->msch = regmap_get_range(plat->map, 4);
priv->ddr_grf = regmap_get_range(plat->map, 5);
debug("%s phy %p pctrl %p grf %p cru %p msch %p ddr_grf %p\n",
__func__, priv->phy, priv->pctl, priv->grf, priv->cru,
priv->msch, priv->ddr_grf);
ret = sdram_init_detect(priv, params);
if (ret < 0) {
printf("%s DRAM init failed%d\n", __func__, ret);
return ret;
}
return 0;
}
static int rk3328_dmc_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rockchip_dmc_plat *plat = dev_get_platdata(dev);
int ret;
ret = dev_read_u32_array(dev, "rockchip,sdram-params",
(u32 *)&plat->sdram_params,
sizeof(plat->sdram_params) / sizeof(u32));
if (ret) {
printf("%s: Cannot read rockchip,sdram-params %d\n",
__func__, ret);
return ret;
}
ret = regmap_init_mem(dev, &plat->map);
if (ret)
printf("%s: regmap failed %d\n", __func__, ret);
#endif
return 0;
}
#endif
static int rk3328_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_TPL_BUILD
if (rk3328_dmc_init(dev))
return 0;
#else
struct dram_info *priv = dev_get_priv(dev);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
debug("%s: grf=%p\n", __func__, priv->grf);
priv->info.base = CONFIG_SYS_SDRAM_BASE;
priv->info.size = rockchip_sdram_size(
(phys_addr_t)&priv->grf->os_reg[2]);
#endif
return 0;
}
static int rk3328_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3328_dmc_ops = {
.get_info = rk3328_dmc_get_info,
};
static const struct udevice_id rk3328_dmc_ids[] = {
{ .compatible = "rockchip,rk3328-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_rk3328) = {
.name = "rockchip_rk3328_dmc",
.id = UCLASS_RAM,
.of_match = rk3328_dmc_ids,
.ops = &rk3328_dmc_ops,
#ifdef CONFIG_TPL_BUILD
.ofdata_to_platdata = rk3328_dmc_ofdata_to_platdata,
#endif
.probe = rk3328_dmc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
#ifdef CONFIG_TPL_BUILD
.platdata_auto_alloc_size = sizeof(struct rockchip_dmc_plat),
#endif
};