blob: b3031e4020caf2d455f09bc28ec974e5a6ca1aa7 [file] [log] [blame]
Jens Wiklanderc2888862014-08-04 15:39:58 +02001/*
David Cunadoc8833ea2017-04-16 17:15:08 +01002 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
Jens Wiklanderc2888862014-08-04 15:39:58 +02003 *
dp-armfa3cf0b2017-05-03 09:38:09 +01004 * SPDX-License-Identifier: BSD-3-Clause
Jens Wiklanderc2888862014-08-04 15:39:58 +02005 */
6
7
8/*******************************************************************************
9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10 * plug-in component to the Secure Monitor, registered as a runtime service. The
11 * SPD is expected to be a functional extension of the Secure Payload (SP) that
12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13 * the Trusted OS/Applications range to the dispatcher. The SPD will either
14 * handle the request locally or delegate it to the Secure Payload. It is also
15 * responsible for initialising and maintaining communication with the SP.
16 ******************************************************************************/
17#include <arch_helpers.h>
18#include <assert.h>
Jens Wiklanderc2888862014-08-04 15:39:58 +020019#include <bl31.h>
Isla Mitchell99305012017-07-11 14:54:08 +010020#include <bl_common.h>
Jens Wiklanderc2888862014-08-04 15:39:58 +020021#include <context_mgmt.h>
22#include <debug.h>
23#include <errno.h>
24#include <platform.h>
25#include <runtime_svc.h>
26#include <stddef.h>
27#include <uuid.h>
28#include "opteed_private.h"
Jens Wiklanderc2888862014-08-04 15:39:58 +020029#include "teesmc_opteed.h"
Isla Mitchell99305012017-07-11 14:54:08 +010030#include "teesmc_opteed_macros.h"
31
Jens Wiklanderc2888862014-08-04 15:39:58 +020032
33/*******************************************************************************
34 * Address of the entrypoint vector table in OPTEE. It is
35 * initialised once on the primary core after a cold boot.
36 ******************************************************************************/
37optee_vectors_t *optee_vectors;
38
39/*******************************************************************************
40 * Array to keep track of per-cpu OPTEE state
41 ******************************************************************************/
42optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
43uint32_t opteed_rw;
44
Jens Wiklanderc2888862014-08-04 15:39:58 +020045static int32_t opteed_init(void);
46
47/*******************************************************************************
48 * This function is the handler registered for S-EL1 interrupts by the
49 * OPTEED. It validates the interrupt and upon success arranges entry into
50 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
51 ******************************************************************************/
52static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
53 uint32_t flags,
54 void *handle,
55 void *cookie)
56{
57 uint32_t linear_id;
Jens Wiklanderc2888862014-08-04 15:39:58 +020058 optee_context_t *optee_ctx;
59
60 /* Check the security state when the exception was generated */
61 assert(get_interrupt_src_ss(flags) == NON_SECURE);
62
Jens Wiklanderc2888862014-08-04 15:39:58 +020063 /* Sanity check the pointer to this cpu's context */
Jens Wiklanderc2888862014-08-04 15:39:58 +020064 assert(handle == cm_get_context(NON_SECURE));
65
66 /* Save the non-secure context before entering the OPTEE */
67 cm_el1_sysregs_context_save(NON_SECURE);
68
69 /* Get a reference to this cpu's OPTEE context */
Soby Mathewda43b662015-07-08 21:45:46 +010070 linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +020071 optee_ctx = &opteed_sp_context[linear_id];
72 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
73
74 cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
75 cm_el1_sysregs_context_restore(SECURE);
76 cm_set_next_eret_context(SECURE);
77
78 /*
79 * Tell the OPTEE that it has to handle an FIQ (synchronously).
80 * Also the instruction in normal world where the interrupt was
81 * generated is passed for debugging purposes. It is safe to
82 * retrieve this address from ELR_EL3 as the secure context will
83 * not take effect until el3_exit().
84 */
85 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
86}
87
88/*******************************************************************************
89 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
90 * (aarch32/aarch64) if not already known and initialises the context for entry
91 * into OPTEE for its initialization.
92 ******************************************************************************/
93int32_t opteed_setup(void)
94{
95 entry_point_info_t *optee_ep_info;
Jens Wiklanderc2888862014-08-04 15:39:58 +020096 uint32_t linear_id;
Edison Ai5d685d32017-07-18 16:52:26 +080097 uint64_t opteed_pageable_part;
98 uint64_t opteed_mem_limit;
Jens Wiklanderc2888862014-08-04 15:39:58 +020099
Soby Mathewda43b662015-07-08 21:45:46 +0100100 linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200101
102 /*
103 * Get information about the Secure Payload (BL32) image. Its
104 * absence is a critical failure. TODO: Add support to
105 * conditionally include the SPD service
106 */
107 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
108 if (!optee_ep_info) {
109 WARN("No OPTEE provided by BL2 boot loader, Booting device"
110 " without OPTEE initialization. SMC`s destined for OPTEE"
111 " will return SMC_UNK\n");
112 return 1;
113 }
114
115 /*
116 * If there's no valid entry point for SP, we return a non-zero value
117 * signalling failure initializing the service. We bail out without
118 * registering any handlers
119 */
120 if (!optee_ep_info->pc)
121 return 1;
122
123 /*
124 * We could inspect the SP image and determine it's execution
Edison Ai5d685d32017-07-18 16:52:26 +0800125 * state i.e whether AArch32 or AArch64.
Jens Wiklanderc2888862014-08-04 15:39:58 +0200126 */
Edison Ai5d685d32017-07-18 16:52:26 +0800127 opteed_rw = optee_ep_info->args.arg0;
128 opteed_pageable_part = optee_ep_info->args.arg1;
129 opteed_mem_limit = optee_ep_info->args.arg2;
130
Jens Wiklanderc2888862014-08-04 15:39:58 +0200131 opteed_init_optee_ep_state(optee_ep_info,
132 opteed_rw,
133 optee_ep_info->pc,
Edison Ai5d685d32017-07-18 16:52:26 +0800134 opteed_pageable_part,
135 opteed_mem_limit,
Jens Wiklanderc2888862014-08-04 15:39:58 +0200136 &opteed_sp_context[linear_id]);
137
138 /*
139 * All OPTEED initialization done. Now register our init function with
140 * BL31 for deferred invocation
141 */
142 bl31_register_bl32_init(&opteed_init);
143
144 return 0;
145}
146
147/*******************************************************************************
148 * This function passes control to the OPTEE image (BL32) for the first time
149 * on the primary cpu after a cold boot. It assumes that a valid secure
150 * context has already been created by opteed_setup() which can be directly
151 * used. It also assumes that a valid non-secure context has been
152 * initialised by PSCI so it does not need to save and restore any
153 * non-secure state. This function performs a synchronous entry into
154 * OPTEE. OPTEE passes control back to this routine through a SMC.
155 ******************************************************************************/
156static int32_t opteed_init(void)
157{
Soby Mathewda43b662015-07-08 21:45:46 +0100158 uint32_t linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200159 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
160 entry_point_info_t *optee_entry_point;
161 uint64_t rc;
162
163 /*
164 * Get information about the OPTEE (BL32) image. Its
165 * absence is a critical failure.
166 */
167 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
168 assert(optee_entry_point);
169
Soby Mathewda43b662015-07-08 21:45:46 +0100170 cm_init_my_context(optee_entry_point);
Jens Wiklanderc2888862014-08-04 15:39:58 +0200171
172 /*
173 * Arrange for an entry into OPTEE. It will be returned via
174 * OPTEE_ENTRY_DONE case
175 */
176 rc = opteed_synchronous_sp_entry(optee_ctx);
177 assert(rc != 0);
178
179 return rc;
180}
181
182
183/*******************************************************************************
184 * This function is responsible for handling all SMCs in the Trusted OS/App
185 * range from the non-secure state as defined in the SMC Calling Convention
186 * Document. It is also responsible for communicating with the Secure
187 * payload to delegate work and return results back to the non-secure
188 * state. Lastly it will also return any information that OPTEE needs to do
189 * the work assigned to it.
190 ******************************************************************************/
191uint64_t opteed_smc_handler(uint32_t smc_fid,
192 uint64_t x1,
193 uint64_t x2,
194 uint64_t x3,
195 uint64_t x4,
196 void *cookie,
197 void *handle,
198 uint64_t flags)
199{
200 cpu_context_t *ns_cpu_context;
Soby Mathewda43b662015-07-08 21:45:46 +0100201 uint32_t linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200202 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
203 uint64_t rc;
204
205 /*
206 * Determine which security state this SMC originated from
207 */
208
209 if (is_caller_non_secure(flags)) {
210 /*
211 * This is a fresh request from the non-secure client.
212 * The parameters are in x1 and x2. Figure out which
213 * registers need to be preserved, save the non-secure
214 * state and send the request to the secure payload.
215 */
216 assert(handle == cm_get_context(NON_SECURE));
217
218 cm_el1_sysregs_context_save(NON_SECURE);
219
220 /*
221 * We are done stashing the non-secure context. Ask the
222 * OPTEE to do the work now.
223 */
224
225 /*
226 * Verify if there is a valid context to use, copy the
227 * operation type and parameters to the secure context
228 * and jump to the fast smc entry point in the secure
229 * payload. Entry into S-EL1 will take place upon exit
230 * from this function.
231 */
232 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
233
234 /* Set appropriate entry for SMC.
235 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
236 * flags as appropriate.
237 */
238 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
239 cm_set_elr_el3(SECURE, (uint64_t)
240 &optee_vectors->fast_smc_entry);
241 } else {
242 cm_set_elr_el3(SECURE, (uint64_t)
David Cunadoc8833ea2017-04-16 17:15:08 +0100243 &optee_vectors->yield_smc_entry);
Jens Wiklanderc2888862014-08-04 15:39:58 +0200244 }
245
246 cm_el1_sysregs_context_restore(SECURE);
247 cm_set_next_eret_context(SECURE);
248
Ashutosh Singh3270b842016-03-31 17:18:34 +0100249 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
250 CTX_GPREG_X4,
251 read_ctx_reg(get_gpregs_ctx(handle),
252 CTX_GPREG_X4));
253 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
254 CTX_GPREG_X5,
255 read_ctx_reg(get_gpregs_ctx(handle),
256 CTX_GPREG_X5));
257 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
258 CTX_GPREG_X6,
259 read_ctx_reg(get_gpregs_ctx(handle),
260 CTX_GPREG_X6));
Jens Wiklanderc2888862014-08-04 15:39:58 +0200261 /* Propagate hypervisor client ID */
262 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
263 CTX_GPREG_X7,
264 read_ctx_reg(get_gpregs_ctx(handle),
265 CTX_GPREG_X7));
266
267 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
268 }
269
270 /*
271 * Returning from OPTEE
272 */
273
274 switch (smc_fid) {
275 /*
276 * OPTEE has finished initialising itself after a cold boot
277 */
278 case TEESMC_OPTEED_RETURN_ENTRY_DONE:
279 /*
280 * Stash the OPTEE entry points information. This is done
281 * only once on the primary cpu
282 */
283 assert(optee_vectors == NULL);
284 optee_vectors = (optee_vectors_t *) x1;
285
286 if (optee_vectors) {
287 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
288
289 /*
290 * OPTEE has been successfully initialized.
291 * Register power management hooks with PSCI
292 */
293 psci_register_spd_pm_hook(&opteed_pm);
294
295 /*
296 * Register an interrupt handler for S-EL1 interrupts
297 * when generated during code executing in the
298 * non-secure state.
299 */
300 flags = 0;
301 set_interrupt_rm_flag(flags, NON_SECURE);
302 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
303 opteed_sel1_interrupt_handler,
304 flags);
305 if (rc)
306 panic();
307 }
308
309 /*
310 * OPTEE reports completion. The OPTEED must have initiated
311 * the original request through a synchronous entry into
312 * OPTEE. Jump back to the original C runtime context.
313 */
314 opteed_synchronous_sp_exit(optee_ctx, x1);
315
316
317 /*
318 * These function IDs is used only by OP-TEE to indicate it has
319 * finished:
320 * 1. turning itself on in response to an earlier psci
321 * cpu_on request
322 * 2. resuming itself after an earlier psci cpu_suspend
323 * request.
324 */
325 case TEESMC_OPTEED_RETURN_ON_DONE:
326 case TEESMC_OPTEED_RETURN_RESUME_DONE:
327
328
329 /*
330 * These function IDs is used only by the SP to indicate it has
331 * finished:
332 * 1. suspending itself after an earlier psci cpu_suspend
333 * request.
334 * 2. turning itself off in response to an earlier psci
335 * cpu_off request.
336 */
337 case TEESMC_OPTEED_RETURN_OFF_DONE:
338 case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
339 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
340 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
341
342 /*
343 * OPTEE reports completion. The OPTEED must have initiated the
344 * original request through a synchronous entry into OPTEE.
345 * Jump back to the original C runtime context, and pass x1 as
346 * return value to the caller
347 */
348 opteed_synchronous_sp_exit(optee_ctx, x1);
349
350 /*
351 * OPTEE is returning from a call or being preempted from a call, in
352 * either case execution should resume in the normal world.
353 */
354 case TEESMC_OPTEED_RETURN_CALL_DONE:
355 /*
356 * This is the result from the secure client of an
357 * earlier request. The results are in x0-x3. Copy it
358 * into the non-secure context, save the secure state
359 * and return to the non-secure state.
360 */
361 assert(handle == cm_get_context(SECURE));
362 cm_el1_sysregs_context_save(SECURE);
363
364 /* Get a reference to the non-secure context */
365 ns_cpu_context = cm_get_context(NON_SECURE);
366 assert(ns_cpu_context);
367
368 /* Restore non-secure state */
369 cm_el1_sysregs_context_restore(NON_SECURE);
370 cm_set_next_eret_context(NON_SECURE);
371
372 SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
373
374 /*
375 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
376 * should resume in the normal world.
377 */
378 case TEESMC_OPTEED_RETURN_FIQ_DONE:
379 /* Get a reference to the non-secure context */
380 ns_cpu_context = cm_get_context(NON_SECURE);
381 assert(ns_cpu_context);
382
383 /*
384 * Restore non-secure state. There is no need to save the
385 * secure system register context since OPTEE was supposed
386 * to preserve it during S-EL1 interrupt handling.
387 */
388 cm_el1_sysregs_context_restore(NON_SECURE);
389 cm_set_next_eret_context(NON_SECURE);
390
391 SMC_RET0((uint64_t) ns_cpu_context);
392
393 default:
394 panic();
395 }
396}
397
398/* Define an OPTEED runtime service descriptor for fast SMC calls */
399DECLARE_RT_SVC(
400 opteed_fast,
401
402 OEN_TOS_START,
403 OEN_TOS_END,
404 SMC_TYPE_FAST,
405 opteed_setup,
406 opteed_smc_handler
407);
408
David Cunadoc8833ea2017-04-16 17:15:08 +0100409/* Define an OPTEED runtime service descriptor for yielding SMC calls */
Jens Wiklanderc2888862014-08-04 15:39:58 +0200410DECLARE_RT_SVC(
411 opteed_std,
412
413 OEN_TOS_START,
414 OEN_TOS_END,
David Cunadoc8833ea2017-04-16 17:15:08 +0100415 SMC_TYPE_YIELD,
Jens Wiklanderc2888862014-08-04 15:39:58 +0200416 NULL,
417 opteed_smc_handler
418);