blob: dc724f9c2b8318c7189d9fa8a58752c08009a2dd [file] [log] [blame]
Dan Handley610e7e12018-03-01 18:44:00 +00001Trusted Firmware-A User Guide
2=============================
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
Dan Handley610e7e12018-03-01 18:44:00 +000010This document describes how to build Trusted Firmware-A (TF-A) and run it with a
Douglas Raillardd7c21b72017-06-28 15:23:03 +010011tested set of other software components using defined configurations on the Juno
Dan Handley610e7e12018-03-01 18:44:00 +000012Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is
Douglas Raillardd7c21b72017-06-28 15:23:03 +010013possible to use other software components, configurations and platforms but that
14is outside the scope of this document.
15
16This document assumes that the reader has previous experience running a fully
17bootable Linux software stack on Juno or FVP using the prebuilt binaries and
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010018filesystems provided by `Linaro`_. Further information may be found in the
19`Linaro instructions`_. It also assumes that the user understands the role of
20the different software components required to boot a Linux system:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
22- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
23- Normal world bootloader (e.g. UEFI or U-Boot)
24- Device tree
25- Linux kernel image
26- Root filesystem
27
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010028This document also assumes that the user is familiar with the `FVP models`_ and
Douglas Raillardd7c21b72017-06-28 15:23:03 +010029the different command line options available to launch the model.
30
31This document should be used in conjunction with the `Firmware Design`_.
32
33Host machine requirements
34-------------------------
35
36The minimum recommended machine specification for building the software and
37running the FVP models is a dual-core processor running at 2GHz with 12GB of
38RAM. For best performance, use a machine with a quad-core processor running at
392.6GHz with 16GB of RAM.
40
41The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
42building the software were installed from that distribution unless otherwise
43specified.
44
45The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
David Cunadob2de0992017-06-29 12:01:33 +010046Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010047
48Tools
49-----
50
Dan Handley610e7e12018-03-01 18:44:00 +000051Install the required packages to build TF-A with the following command:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010052
53::
54
55 sudo apt-get install build-essential gcc make git libssl-dev
56
Dan Handley610e7e12018-03-01 18:44:00 +000057TF-A has been tested with `Linaro Release 17.10`_.
David Cunadob2de0992017-06-29 12:01:33 +010058
Douglas Raillardd7c21b72017-06-28 15:23:03 +010059Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010060The `Linaro Release Notes`_ documents which version of the compiler to use for a
61given Linaro Release. Also, these `Linaro instructions`_ provide further
62guidance and a script, which can be used to download Linaro deliverables
63automatically.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010064
Dan Handley610e7e12018-03-01 18:44:00 +000065Optionally, TF-A can be built using clang or Arm Compiler 6.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010066See instructions below on how to switch the default compiler.
67
68In addition, the following optional packages and tools may be needed:
69
70- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
71 Tree (FDT) source files (``.dts`` files) provided with this software.
72
Dan Handley610e7e12018-03-01 18:44:00 +000073- For debugging, Arm `Development Studio 5 (DS-5)`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010074
Antonio Nino Diazb5d68092017-05-23 11:49:22 +010075- To create and modify the diagram files included in the documentation, `Dia`_.
76 This tool can be found in most Linux distributions. Inkscape is needed to
77 generate the actual *.png files.
78
Dan Handley610e7e12018-03-01 18:44:00 +000079Getting the TF-A source code
80----------------------------
Douglas Raillardd7c21b72017-06-28 15:23:03 +010081
Dan Handley610e7e12018-03-01 18:44:00 +000082Download the TF-A source code from Github:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010083
84::
85
86 git clone https://github.com/ARM-software/arm-trusted-firmware.git
87
Dan Handley610e7e12018-03-01 18:44:00 +000088Building TF-A
89-------------
Douglas Raillardd7c21b72017-06-28 15:23:03 +010090
Dan Handley610e7e12018-03-01 18:44:00 +000091- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
92 to the Linaro cross compiler.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010093
94 For AArch64:
95
96 ::
97
98 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
99
100 For AArch32:
101
102 ::
103
104 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
105
Dan Handley610e7e12018-03-01 18:44:00 +0000106 It is possible to build TF-A using clang or Arm Compiler 6. To do so
107 ``CC`` needs to point to the clang or armclang binary. Only the compiler
108 is switched; the assembler and linker need to be provided by the GNU
109 toolchain, thus ``CROSS_COMPILE`` should be set as described above.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100110
Dan Handley610e7e12018-03-01 18:44:00 +0000111 Arm Compiler 6 will be selected when the base name of the path assigned
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100112 to ``CC`` matches the string 'armclang'.
113
Dan Handley610e7e12018-03-01 18:44:00 +0000114 For AArch64 using Arm Compiler 6:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100115
116 ::
117
118 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
119 make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
120
121 Clang will be selected when the base name of the path assigned to ``CC``
122 contains the string 'clang'. This is to allow both clang and clang-X.Y
123 to work.
124
125 For AArch64 using clang:
126
127 ::
128
129 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
130 make CC=<path-to-clang>/bin/clang PLAT=<platform> all
131
Dan Handley610e7e12018-03-01 18:44:00 +0000132- Change to the root directory of the TF-A source tree and build.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100133
134 For AArch64:
135
136 ::
137
138 make PLAT=<platform> all
139
140 For AArch32:
141
142 ::
143
144 make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
145
146 Notes:
147
148 - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
149 `Summary of build options`_ for more information on available build
150 options.
151
152 - (AArch32 only) Currently only ``PLAT=fvp`` is supported.
153
154 - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
155 corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
Dan Handley610e7e12018-03-01 18:44:00 +0000156 provided by TF-A to demonstrate how PSCI Library can be integrated with
157 an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
158 include other runtime services, for example Trusted OS services. A guide
159 to integrate PSCI library with AArch32 EL3 Runtime Software can be found
160 `here`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
163 image, is not compiled in by default. Refer to the
164 `Building the Test Secure Payload`_ section below.
165
166 - By default this produces a release version of the build. To produce a
167 debug version instead, refer to the "Debugging options" section below.
168
169 - The build process creates products in a ``build`` directory tree, building
170 the objects and binaries for each boot loader stage in separate
171 sub-directories. The following boot loader binary files are created
172 from the corresponding ELF files:
173
174 - ``build/<platform>/<build-type>/bl1.bin``
175 - ``build/<platform>/<build-type>/bl2.bin``
176 - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
177 - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
178
179 where ``<platform>`` is the name of the chosen platform and ``<build-type>``
180 is either ``debug`` or ``release``. The actual number of images might differ
181 depending on the platform.
182
183- Build products for a specific build variant can be removed using:
184
185 ::
186
187 make DEBUG=<D> PLAT=<platform> clean
188
189 ... where ``<D>`` is ``0`` or ``1``, as specified when building.
190
191 The build tree can be removed completely using:
192
193 ::
194
195 make realclean
196
197Summary of build options
198~~~~~~~~~~~~~~~~~~~~~~~~
199
Dan Handley610e7e12018-03-01 18:44:00 +0000200The TF-A build system supports the following build options. Unless mentioned
201otherwise, these options are expected to be specified at the build command
202line and are not to be modified in any component makefiles. Note that the
203build system doesn't track dependency for build options. Therefore, if any of
204the build options are changed from a previous build, a clean build must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100205performed.
206
207Common build options
208^^^^^^^^^^^^^^^^^^^^
209
210- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
211 as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
212 directory containing the SP source, relative to the ``bl32/``; the directory
213 is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
214
Dan Handley610e7e12018-03-01 18:44:00 +0000215- ``ARCH`` : Choose the target build architecture for TF-A. It can take either
216 ``aarch64`` or ``aarch32`` as values. By default, it is defined to
217 ``aarch64``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100218
Dan Handley610e7e12018-03-01 18:44:00 +0000219- ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when
220 compiling TF-A. Its value must be numeric, and defaults to 8 . See also,
221 *Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in
222 `Firmware Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100223
Dan Handley610e7e12018-03-01 18:44:00 +0000224- ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when
225 compiling TF-A. Its value must be a numeric, and defaults to 0. See also,
226 *Armv8 Architecture Extensions* in `Firmware Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100227
Dan Handley610e7e12018-03-01 18:44:00 +0000228- ``ARM_GIC_ARCH``: Choice of Arm GIC architecture version used by the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100229 Legacy GIC driver for implementing the platform GIC API. This API is used
230 by the interrupt management framework. Default is 2 (that is, version 2.0).
231 This build option is deprecated.
232
Dan Handley610e7e12018-03-01 18:44:00 +0000233- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
Jeenu Viswambharan528d21b2016-11-15 13:53:57 +0000234 cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
235 is set, the functions which deal with MPIDR assume that the ``MT`` bit in
236 MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
237 this flag is 0. Note that this option is not used on FVP platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100238
239- ``BL2``: This is an optional build option which specifies the path to BL2
Dan Handley610e7e12018-03-01 18:44:00 +0000240 image for the ``fip`` target. In this case, the BL2 in the TF-A will not be
241 built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
243- ``BL2U``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000244 BL2U image. In this case, the BL2U in TF-A will not be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100245
Roberto Vargasb1584272017-11-20 13:36:10 +0000246- ``BL2_AT_EL3``: This is an optional build option that enables the use of
247 BL2 at EL3 execution level.
248
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249- ``BL31``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000250 BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
251 be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
254 file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
255 this file name will be used to save the key.
256
257- ``BL32``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000258 BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not
259 be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
Summer Qin80726782017-04-20 16:28:39 +0100261- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
262 Trusted OS Extra1 image for the ``fip`` target.
263
264- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
265 Trusted OS Extra2 image for the ``fip`` target.
266
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
268 file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
269 this file name will be used to save the key.
270
271- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
Dan Handley610e7e12018-03-01 18:44:00 +0000272 ``fip`` target in case TF-A BL2 is used.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100273
274- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
275 file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
276 this file name will be used to save the key.
277
278- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
279 compilation of each build. It must be set to a C string (including quotes
280 where applicable). Defaults to a string that contains the time and date of
281 the compilation.
282
Dan Handley610e7e12018-03-01 18:44:00 +0000283- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF-A
284 build to be uniquely identified. Defaults to the current git commit id.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100285
286- ``CFLAGS``: Extra user options appended on the compiler's command line in
287 addition to the options set by the build system.
288
289- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
290 release several CPUs out of reset. It can take either 0 (several CPUs may be
291 brought up) or 1 (only one CPU will ever be brought up during cold reset).
292 Default is 0. If the platform always brings up a single CPU, there is no
293 need to distinguish between primary and secondary CPUs and the boot path can
294 be optimised. The ``plat_is_my_cpu_primary()`` and
295 ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
296 to be implemented in this case.
297
298- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
299 register state when an unexpected exception occurs during execution of
300 BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
301 this is only enabled for a debug build of the firmware.
302
303- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
304 certificate generation tool to create new keys in case no valid keys are
305 present or specified. Allowed options are '0' or '1'. Default is '1'.
306
307- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
308 the AArch32 system registers to be included when saving and restoring the
309 CPU context. The option must be set to 0 for AArch64-only platforms (that
310 is on hardware that does not implement AArch32, or at least not at EL1 and
311 higher ELs). Default value is 1.
312
313- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
314 registers to be included when saving and restoring the CPU context. Default
315 is 0.
316
317- ``DEBUG``: Chooses between a debug and release build. It can take either 0
318 (release) or 1 (debug) as values. 0 is the default.
319
320- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
321 the normal boot flow. It must specify the entry point address of the EL3
322 payload. Please refer to the "Booting an EL3 payload" section for more
323 details.
324
Dimitris Papastamosfcedb692017-10-16 11:40:10 +0100325- ``ENABLE_AMU``: Boolean option to enable Activity Monitor Unit extensions.
Dimitris Papastamose08005a2017-10-12 13:02:29 +0100326 This is an optional architectural feature available on v8.4 onwards. Some
327 v8.2 implementations also implement an AMU and this option can be used to
328 enable this feature on those systems as well. Default is 0.
Dimitris Papastamosfcedb692017-10-16 11:40:10 +0100329
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100330- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
331 are compiled out. For debug builds, this option defaults to 1, and calls to
332 ``assert()`` are left in place. For release builds, this option defaults to 0
333 and calls to ``assert()`` function are compiled out. This option can be set
334 independently of ``DEBUG``. It can also be used to hide any auxiliary code
335 that is only required for the assertion and does not fit in the assertion
336 itself.
337
338- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
339 Measurement Framework(PMF). Default is 0.
340
341- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
342 functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
343 In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
344 be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
345 software.
346
347- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
Dan Handley610e7e12018-03-01 18:44:00 +0000348 instrumentation which injects timestamp collection points into TF-A to
349 allow runtime performance to be measured. Currently, only PSCI is
350 instrumented. Enabling this option enables the ``ENABLE_PMF`` build option
351 as well. Default is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100352
Jeenu Viswambharand73dcf32017-07-19 13:52:12 +0100353- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
Dimitris Papastamos9da09cd2017-10-13 15:07:45 +0100354 extensions. This is an optional architectural feature for AArch64.
355 The default is 1 but is automatically disabled when the target architecture
356 is AArch32.
Jeenu Viswambharand73dcf32017-07-19 13:52:12 +0100357
David Cunadoce88eee2017-10-20 11:30:57 +0100358- ``ENABLE_SVE_FOR_NS``: Boolean option to enable Scalable Vector Extension
359 (SVE) for the Non-secure world only. SVE is an optional architectural feature
360 for AArch64. Note that when SVE is enabled for the Non-secure world, access
361 to SIMD and floating-point functionality from the Secure world is disabled.
362 This is to avoid corruption of the Non-secure world data in the Z-registers
363 which are aliased by the SIMD and FP registers. The build option is not
364 compatible with the ``CTX_INCLUDE_FPREGS`` build option, and will raise an
365 assert on platforms where SVE is implemented and ``ENABLE_SVE_FOR_NS`` set to
366 1. The default is 1 but is automatically disabled when the target
367 architecture is AArch32.
368
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100369- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
370 checks in GCC. Allowed values are "all", "strong" and "0" (default).
371 "strong" is the recommended stack protection level if this feature is
372 desired. 0 disables the stack protection. For all values other than 0, the
373 ``plat_get_stack_protector_canary()`` platform hook needs to be implemented.
374 The value is passed as the last component of the option
375 ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
376
377- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
378 deprecated platform APIs, helper functions or drivers within Trusted
379 Firmware as error. It can take the value 1 (flag the use of deprecated
380 APIs as error) or 0. The default is 0.
381
Jeenu Viswambharan10a67272017-09-22 08:32:10 +0100382- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
383 targeted at EL3. When set ``0`` (default), no exceptions are expected or
384 handled at EL3, and a panic will result. This is supported only for AArch64
385 builds.
386
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387- ``FIP_NAME``: This is an optional build option which specifies the FIP
388 filename for the ``fip`` target. Default is ``fip.bin``.
389
390- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
391 FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
392
393- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
394 tool to create certificates as per the Chain of Trust described in
395 `Trusted Board Boot`_. The build system then calls ``fiptool`` to
396 include the certificates in the FIP and FWU\_FIP. Default value is '0'.
397
398 Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
399 for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
400 the corresponding certificates, and to include those certificates in the
401 FIP and FWU\_FIP.
402
403 Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
404 images will not include support for Trusted Board Boot. The FIP will still
405 include the corresponding certificates. This FIP can be used to verify the
406 Chain of Trust on the host machine through other mechanisms.
407
408 Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
409 images will include support for Trusted Board Boot, but the FIP and FWU\_FIP
410 will not include the corresponding certificates, causing a boot failure.
411
Jeenu Viswambharanc06f05c2017-09-22 08:32:09 +0100412- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
413 inherent support for specific EL3 type interrupts. Setting this build option
414 to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
415 by `platform abstraction layer`__ and `Interrupt Management Framework`__.
416 This allows GICv2 platforms to enable features requiring EL3 interrupt type.
417 This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
418 the Secure Payload interrupts needs to be synchronously handed over to Secure
419 EL1 for handling. The default value of this option is ``0``, which means the
420 Group 0 interrupts are assumed to be handled by Secure EL1.
421
422 .. __: `platform-interrupt-controller-API.rst`
423 .. __: `interrupt-framework-design.rst`
424
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100425- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
426 will be always trapped in EL3 i.e. in BL31 at runtime.
427
Dan Handley610e7e12018-03-01 18:44:00 +0000428- ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429 software operations are required for CPUs to enter and exit coherency.
430 However, there exists newer systems where CPUs' entry to and exit from
431 coherency is managed in hardware. Such systems require software to only
432 initiate the operations, and the rest is managed in hardware, minimizing
Dan Handley610e7e12018-03-01 18:44:00 +0000433 active software management. In such systems, this boolean option enables
434 TF-A to carry out build and run-time optimizations during boot and power
435 management operations. This option defaults to 0 and if it is enabled,
436 then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100437
438- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
439 runtime software in AArch32 mode, which is required to run AArch32 on Juno.
440 By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
441 AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
442 images.
443
Soby Mathew13b16052017-08-31 11:49:32 +0100444- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
445 used for generating the PKCS keys and subsequent signing of the certificate.
Qixiang Xu1a1f2912017-11-09 13:56:29 +0800446 It accepts 3 values viz. ``rsa``, ``rsa_1_5``, ``ecdsa``. The ``rsa_1_5`` is
Soby Mathew2fd70f62017-08-31 11:50:29 +0100447 the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is
448 retained only for compatibility. The default value of this flag is ``rsa``
449 which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
Soby Mathew13b16052017-08-31 11:49:32 +0100450
Qixiang Xu1a1f2912017-11-09 13:56:29 +0800451- ``HASH_ALG``: This build flag enables the user to select the secure hash
452 algorithm. It accepts 3 values viz. ``sha256``, ``sha384``, ``sha512``.
453 The default value of this flag is ``sha256``.
454
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100455- ``LDFLAGS``: Extra user options appended to the linkers' command line in
456 addition to the one set by the build system.
457
458- ``LOAD_IMAGE_V2``: Boolean option to enable support for new version (v2) of
459 image loading, which provides more flexibility and scalability around what
460 images are loaded and executed during boot. Default is 0.
461 Note: ``TRUSTED_BOARD_BOOT`` is currently only supported for AArch64 when
462 ``LOAD_IMAGE_V2`` is enabled.
463
464- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
465 output compiled into the build. This should be one of the following:
466
467 ::
468
469 0 (LOG_LEVEL_NONE)
470 10 (LOG_LEVEL_NOTICE)
471 20 (LOG_LEVEL_ERROR)
472 30 (LOG_LEVEL_WARNING)
473 40 (LOG_LEVEL_INFO)
474 50 (LOG_LEVEL_VERBOSE)
475
476 All log output up to and including the log level is compiled into the build.
477 The default value is 40 in debug builds and 20 in release builds.
478
479- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
480 specifies the file that contains the Non-Trusted World private key in PEM
481 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
482
483- ``NS_BL2U``: Path to NS\_BL2U image in the host file system. This image is
484 optional. It is only needed if the platform makefile specifies that it
485 is required in order to build the ``fwu_fip`` target.
486
487- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
488 contents upon world switch. It can take either 0 (don't save and restore) or
489 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
490 wants the timer registers to be saved and restored.
491
492- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
493 the underlying hardware is not a full PL011 UART but a minimally compliant
494 generic UART, which is a subset of the PL011. The driver will not access
495 any register that is not part of the SBSA generic UART specification.
496 Default value is 0 (a full PL011 compliant UART is present).
497
Dan Handley610e7e12018-03-01 18:44:00 +0000498- ``PLAT``: Choose a platform to build TF-A for. The chosen platform name
499 must be subdirectory of any depth under ``plat/``, and must contain a
500 platform makefile named ``platform.mk``. For example, to build TF-A for the
501 Arm Juno board, select PLAT=juno.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100502
503- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
504 instead of the normal boot flow. When defined, it must specify the entry
505 point address for the preloaded BL33 image. This option is incompatible with
506 ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
507 over ``PRELOADED_BL33_BASE``.
508
509- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
510 vector address can be programmed or is fixed on the platform. It can take
511 either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
512 programmable reset address, it is expected that a CPU will start executing
513 code directly at the right address, both on a cold and warm reset. In this
514 case, there is no need to identify the entrypoint on boot and the boot path
515 can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
516 does not need to be implemented in this case.
517
518- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
519 possible for the PSCI power-state parameter viz original and extended
520 State-ID formats. This flag if set to 1, configures the generic PSCI layer
521 to use the extended format. The default value of this flag is 0, which
522 means by default the original power-state format is used by the PSCI
523 implementation. This flag should be specified by the platform makefile
524 and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
Dan Handley610e7e12018-03-01 18:44:00 +0000525 smc function id. When this option is enabled on Arm platforms, the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100526 option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
527
528- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
529 of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
530 entrypoint) or 1 (CPU reset to BL31 entrypoint).
531 The default value is 0.
532
Dan Handley610e7e12018-03-01 18:44:00 +0000533- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided
534 in TF-A. This flag configures SP\_MIN entrypoint as the CPU reset vector
535 instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
536 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default value is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100537
538- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
539 file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
540 file name will be used to save the key.
541
542- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
543 certificate generation tool to save the keys used to establish the Chain of
544 Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
545
546- ``SCP_BL2``: Path to SCP\_BL2 image in the host file system. This image is optional.
547 If a SCP\_BL2 image is present then this option must be passed for the ``fip``
548 target.
549
550- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
551 file that contains the SCP\_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
552 this file name will be used to save the key.
553
554- ``SCP_BL2U``: Path to SCP\_BL2U image in the host file system. This image is
555 optional. It is only needed if the platform makefile specifies that it
556 is required in order to build the ``fwu_fip`` target.
557
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +0100558- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
559 Delegated Exception Interface to BL31 image. This defaults to ``0``.
560
561 When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
562 set to ``1``.
563
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100564- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
565 isolated on separate memory pages. This is a trade-off between security and
566 memory usage. See "Isolating code and read-only data on separate memory
567 pages" section in `Firmware Design`_. This flag is disabled by default and
568 affects all BL images.
569
Dan Handley610e7e12018-03-01 18:44:00 +0000570- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
571 This build option is only valid if ``ARCH=aarch64``. The value should be
572 the path to the directory containing the SPD source, relative to
573 ``services/spd/``; the directory is expected to contain a makefile called
574 ``<spd-value>.mk``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100575
576- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
577 take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
578 execution in BL1 just before handing over to BL31. At this point, all
579 firmware images have been loaded in memory, and the MMU and caches are
580 turned off. Refer to the "Debugging options" section for more details.
581
Etienne Carrieredc0fea72017-08-09 15:48:53 +0200582- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
583 secure interrupts (caught through the FIQ line). Platforms can enable
584 this directive if they need to handle such interruption. When enabled,
585 the FIQ are handled in monitor mode and non secure world is not allowed
586 to mask these events. Platforms that enable FIQ handling in SP_MIN shall
587 implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
588
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100589- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
590 Boot feature. When set to '1', BL1 and BL2 images include support to load
591 and verify the certificates and images in a FIP, and BL1 includes support
592 for the Firmware Update. The default value is '0'. Generation and inclusion
593 of certificates in the FIP and FWU\_FIP depends upon the value of the
594 ``GENERATE_COT`` option.
595
596 Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
597 already exist in disk, they will be overwritten without further notice.
598
599- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
600 specifies the file that contains the Trusted World private key in PEM
601 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
602
603- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
604 synchronous, (see "Initializing a BL32 Image" section in
605 `Firmware Design`_). It can take the value 0 (BL32 is initialized using
606 synchronous method) or 1 (BL32 is initialized using asynchronous method).
607 Default is 0.
608
609- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
610 routing model which routes non-secure interrupts asynchronously from TSP
611 to EL3 causing immediate preemption of TSP. The EL3 is responsible
612 for saving and restoring the TSP context in this routing model. The
613 default routing model (when the value is 0) is to route non-secure
614 interrupts to TSP allowing it to save its context and hand over
615 synchronously to EL3 via an SMC.
616
Jeenu Viswambharan2f40f322018-01-11 14:30:22 +0000617 Note: when ``EL3_EXCEPTION_HANDLING`` is ``1``, ``TSP_NS_INTR_ASYNC_PREEMPT``
618 must also be set to ``1``.
619
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100620- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
621 memory region in the BL memory map or not (see "Use of Coherent memory in
Dan Handley610e7e12018-03-01 18:44:00 +0000622 TF-A" section in `Firmware Design`_). It can take the value 1
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100623 (Coherent memory region is included) or 0 (Coherent memory region is
624 excluded). Default is 1.
625
626- ``V``: Verbose build. If assigned anything other than 0, the build commands
627 are printed. Default is 0.
628
Dan Handley610e7e12018-03-01 18:44:00 +0000629- ``VERSION_STRING``: String used in the log output for each TF-A image.
630 Defaults to a string formed by concatenating the version number, build type
631 and build string.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100632
633- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
634 the CPU after warm boot. This is applicable for platforms which do not
635 require interconnect programming to enable cache coherency (eg: single
636 cluster platforms). If this option is enabled, then warm boot path
637 enables D-caches immediately after enabling MMU. This option defaults to 0.
638
Dan Handley610e7e12018-03-01 18:44:00 +0000639Arm development platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
641
642- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
643 DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
644 BL31 in TZC secured DRAM. If TSP is present, then setting this option also
645 sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
646 flag.
647
648- ``ARM_BOARD_OPTIMISE_MEM``: Boolean option to enable or disable optimisation
649 of the memory reserved for each image. This affects the maximum size of each
650 BL image as well as the number of allocated memory regions and translation
651 tables. By default this flag is 0, which means it uses the default
Dan Handley610e7e12018-03-01 18:44:00 +0000652 unoptimised values for these macros. Arm development platforms that wish to
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100653 optimise memory usage need to set this flag to 1 and must override the
654 related macros.
655
656- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
657 frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
658 frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
659 match the frame used by the Non-Secure image (normally the Linux kernel).
660 Default is true (access to the frame is allowed).
661
662- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
Dan Handley610e7e12018-03-01 18:44:00 +0000663 By default, Arm platforms use a watchdog to trigger a system reset in case
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100664 an error is encountered during the boot process (for example, when an image
665 could not be loaded or authenticated). The watchdog is enabled in the early
666 platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
667 Trusted Watchdog may be disabled at build time for testing or development
668 purposes.
669
670- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
671 for the construction of composite state-ID in the power-state parameter.
672 The existing PSCI clients currently do not support this encoding of
673 State-ID yet. Hence this flag is used to configure whether to use the
674 recommended State-ID encoding or not. The default value of this flag is 0,
675 in which case the platform is configured to expect NULL in the State-ID
676 field of power-state parameter.
677
678- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
679 location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
Dan Handley610e7e12018-03-01 18:44:00 +0000680 for Arm platforms. Depending on the selected option, the proper private key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100681 must be specified using the ``ROT_KEY`` option when building the Trusted
682 Firmware. This private key will be used by the certificate generation tool
683 to sign the BL2 and Trusted Key certificates. Available options for
684 ``ARM_ROTPK_LOCATION`` are:
685
686 - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
687 registers. The private key corresponding to this ROTPK hash is not
688 currently available.
689 - ``devel_rsa`` : return a development public key hash embedded in the BL1
690 and BL2 binaries. This hash has been obtained from the RSA public key
691 ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
692 this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
693 creating the certificates.
Qixiang Xu1c2aef12017-08-24 15:12:20 +0800694 - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
695 and BL2 binaries. This hash has been obtained from the ECDSA public key
696 ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
697 this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
698 when creating the certificates.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100699
700- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
701
Qixiang Xuc7b12c52017-10-13 09:04:12 +0800702 - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100703 - ``tdram`` : Trusted DRAM (if available)
Qixiang Xuc7b12c52017-10-13 09:04:12 +0800704 - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
705 configured by the TrustZone controller)
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100706
Dan Handley610e7e12018-03-01 18:44:00 +0000707- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
708 of the translation tables library instead of version 2. It is set to 0 by
709 default, which selects version 2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100710
Dan Handley610e7e12018-03-01 18:44:00 +0000711- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
712 TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
713 platforms. If this option is specified, then the path to the CryptoCell
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100714 SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
715
Dan Handley610e7e12018-03-01 18:44:00 +0000716For a better understanding of these options, the Arm development platform memory
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100717map is explained in the `Firmware Design`_.
718
Dan Handley610e7e12018-03-01 18:44:00 +0000719Arm CSS platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
721
722- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
723 incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
724 compatible change to the MTL protocol, used for AP/SCP communication.
Dan Handley610e7e12018-03-01 18:44:00 +0000725 TF-A no longer supports earlier SCP versions. If this option is set to 1
726 then TF-A will detect if an earlier version is in use. Default is 1.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100727
728- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
729 SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
730 during boot. Default is 1.
731
Soby Mathew1ced6b82017-06-12 12:37:10 +0100732- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
733 instead of SCPI/BOM driver for communicating with the SCP during power
734 management operations and for SCP RAM Firmware transfer. If this option
735 is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100736
Dan Handley610e7e12018-03-01 18:44:00 +0000737Arm FVP platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
739
740- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
Dan Handley610e7e12018-03-01 18:44:00 +0000741 build the topology tree within TF-A. By default TF-A is configured for dual
742 cluster topology and this option can be used to override the default value.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100743
744- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
745 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
746 explained in the options below:
747
748 - ``FVP_CCI`` : The CCI driver is selected. This is the default
749 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
750 - ``FVP_CCN`` : The CCN driver is selected. This is the default
751 if ``FVP_CLUSTER_COUNT`` > 2.
752
Jeenu Viswambharan75421132018-01-31 14:52:08 +0000753- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
754 a single cluster. This option defaults to 4.
755
Jeenu Viswambharan528d21b2016-11-15 13:53:57 +0000756- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
757 in the system. This option defaults to 1. Note that the build option
758 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
759
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100760- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
761
762 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
763 - ``FVP_GICV2`` : The GICv2 only driver is selected
764 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
765 - ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
Dan Handley610e7e12018-03-01 18:44:00 +0000766 Note: If TF-A is compiled with this option on FVPs with GICv3 hardware,
767 then it configures the hardware to run in GICv2 emulation mode
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100768
769- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
770 for functions that wait for an arbitrary time length (udelay and mdelay).
771 The default value is 0.
772
Soby Mathewb1bf0442018-02-16 14:52:52 +0000773- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
774 to DTB and packaged in FIP as the HW_CONFIG. See `Firmware Design`_ for
775 details on HW_CONFIG. By default, this is initialized to a sensible DTS
776 file in ``fdts/`` folder depending on other build options. But some cases,
777 like shifted affinity format for MPIDR, cannot be detected at build time
778 and this option is needed to specify the appropriate DTS file.
779
780- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
781 FIP. See `Firmware Design`_ for details on HW_CONFIG. This option is
782 similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
783 HW_CONFIG blob instead of the DTS file. This option is useful to override
784 the default HW_CONFIG selected by the build system.
785
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100786Debugging options
787~~~~~~~~~~~~~~~~~
788
789To compile a debug version and make the build more verbose use
790
791::
792
793 make PLAT=<platform> DEBUG=1 V=1 all
794
795AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
796example DS-5) might not support this and may need an older version of DWARF
797symbols to be emitted by GCC. This can be achieved by using the
798``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
799version to 2 is recommended for DS-5 versions older than 5.16.
800
801When debugging logic problems it might also be useful to disable all compiler
802optimizations by using ``-O0``.
803
804NOTE: Using ``-O0`` could cause output images to be larger and base addresses
Dan Handley610e7e12018-03-01 18:44:00 +0000805might need to be recalculated (see the **Memory layout on Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100806platforms** section in the `Firmware Design`_).
807
808Extra debug options can be passed to the build system by setting ``CFLAGS`` or
809``LDFLAGS``:
810
811.. code:: makefile
812
813 CFLAGS='-O0 -gdwarf-2' \
814 make PLAT=<platform> DEBUG=1 V=1 all
815
816Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
817ignored as the linker is called directly.
818
819It is also possible to introduce an infinite loop to help in debugging the
Dan Handley610e7e12018-03-01 18:44:00 +0000820post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
821``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100822section. In this case, the developer may take control of the target using a
823debugger when indicated by the console output. When using DS-5, the following
824commands can be used:
825
826::
827
828 # Stop target execution
829 interrupt
830
831 #
832 # Prepare your debugging environment, e.g. set breakpoints
833 #
834
835 # Jump over the debug loop
836 set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
837
838 # Resume execution
839 continue
840
841Building the Test Secure Payload
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844The TSP is coupled with a companion runtime service in the BL31 firmware,
845called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
846must be recompiled as well. For more information on SPs and SPDs, see the
847`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
848
Dan Handley610e7e12018-03-01 18:44:00 +0000849First clean the TF-A build directory to get rid of any previous BL31 binary.
850Then to build the TSP image use:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100851
852::
853
854 make PLAT=<platform> SPD=tspd all
855
856An additional boot loader binary file is created in the ``build`` directory:
857
858::
859
860 build/<platform>/<build-type>/bl32.bin
861
862Checking source code style
863~~~~~~~~~~~~~~~~~~~~~~~~~~
864
865When making changes to the source for submission to the project, the source
866must be in compliance with the Linux style guide, and to assist with this check
867the project Makefile contains two targets, which both utilise the
868``checkpatch.pl`` script that ships with the Linux source tree.
869
870To check the entire source tree, you must first download a copy of
871``checkpatch.pl`` (or the full Linux source), set the ``CHECKPATCH`` environment
872variable to point to the script and build the target checkcodebase:
873
874::
875
876 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
877
878To just check the style on the files that differ between your local branch and
879the remote master, use:
880
881::
882
883 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
884
885If you wish to check your patch against something other than the remote master,
886set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
887is set to ``origin/master``.
888
889Building and using the FIP tool
890~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
891
Dan Handley610e7e12018-03-01 18:44:00 +0000892Firmware Image Package (FIP) is a packaging format used by TF-A to package
893firmware images in a single binary. The number and type of images that should
894be packed in a FIP is platform specific and may include TF-A images and other
895firmware images required by the platform. For example, most platforms require
896a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
897U-Boot).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100898
Dan Handley610e7e12018-03-01 18:44:00 +0000899The TF-A build system provides the make target ``fip`` to create a FIP file
900for the specified platform using the FIP creation tool included in the TF-A
901project. Examples below show how to build a FIP file for FVP, packaging TF-A
902and BL33 images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100903
904For AArch64:
905
906::
907
908 make PLAT=fvp BL33=<path/to/bl33.bin> fip
909
910For AArch32:
911
912::
913
914 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path/to/bl33.bin> fip
915
916Note that AArch32 support for Normal world boot loader (BL33), like U-boot or
917UEFI, on FVP is not available upstream. Hence custom solutions are required to
918allow Linux boot on FVP. These instructions assume such a custom boot loader
919(BL33) is available.
920
921The resulting FIP may be found in:
922
923::
924
925 build/fvp/<build-type>/fip.bin
926
927For advanced operations on FIP files, it is also possible to independently build
928the tool and create or modify FIPs using this tool. To do this, follow these
929steps:
930
931It is recommended to remove old artifacts before building the tool:
932
933::
934
935 make -C tools/fiptool clean
936
937Build the tool:
938
939::
940
941 make [DEBUG=1] [V=1] fiptool
942
943The tool binary can be located in:
944
945::
946
947 ./tools/fiptool/fiptool
948
949Invoking the tool with ``--help`` will print a help message with all available
950options.
951
952Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
953
954::
955
956 ./tools/fiptool/fiptool create \
957 --tb-fw build/<platform>/<build-type>/bl2.bin \
958 --soc-fw build/<platform>/<build-type>/bl31.bin \
959 fip.bin
960
961Example 2: view the contents of an existing Firmware package:
962
963::
964
965 ./tools/fiptool/fiptool info <path-to>/fip.bin
966
967Example 3: update the entries of an existing Firmware package:
968
969::
970
971 # Change the BL2 from Debug to Release version
972 ./tools/fiptool/fiptool update \
973 --tb-fw build/<platform>/release/bl2.bin \
974 build/<platform>/debug/fip.bin
975
976Example 4: unpack all entries from an existing Firmware package:
977
978::
979
980 # Images will be unpacked to the working directory
981 ./tools/fiptool/fiptool unpack <path-to>/fip.bin
982
983Example 5: remove an entry from an existing Firmware package:
984
985::
986
987 ./tools/fiptool/fiptool remove \
988 --tb-fw build/<platform>/debug/fip.bin
989
990Note that if the destination FIP file exists, the create, update and
991remove operations will automatically overwrite it.
992
993The unpack operation will fail if the images already exist at the
994destination. In that case, use -f or --force to continue.
995
996More information about FIP can be found in the `Firmware Design`_ document.
997
998Migrating from fip\_create to fiptool
999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1000
1001The previous version of fiptool was called fip\_create. A compatibility script
1002that emulates the basic functionality of the previous fip\_create is provided.
1003However, users are strongly encouraged to migrate to fiptool.
1004
1005- To create a new FIP file, replace "fip\_create" with "fiptool create".
1006- To update a FIP file, replace "fip\_create" with "fiptool update".
1007- To dump the contents of a FIP file, replace "fip\_create --dump"
1008 with "fiptool info".
1009
1010Building FIP images with support for Trusted Board Boot
1011~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1012
1013Trusted Board Boot primarily consists of the following two features:
1014
1015- Image Authentication, described in `Trusted Board Boot`_, and
1016- Firmware Update, described in `Firmware Update`_
1017
1018The following steps should be followed to build FIP and (optionally) FWU\_FIP
1019images with support for these features:
1020
1021#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
1022 modules by checking out a recent version of the `mbed TLS Repository`_. It
Dan Handley610e7e12018-03-01 18:44:00 +00001023 is important to use a version that is compatible with TF-A and fixes any
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001024 known security vulnerabilities. See `mbed TLS Security Center`_ for more
Dan Handley610e7e12018-03-01 18:44:00 +00001025 information. The latest version of TF-A is tested with tag
1026 ``mbedtls-2.6.0``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001027
1028 The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
1029 source files the modules depend upon.
1030 ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
1031 options required to build the mbed TLS sources.
1032
1033 Note that the mbed TLS library is licensed under the Apache version 2.0
Dan Handley610e7e12018-03-01 18:44:00 +00001034 license. Using mbed TLS source code will affect the licensing of TF-A
1035 binaries that are built using this library.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001036
1037#. To build the FIP image, ensure the following command line variables are set
Dan Handley610e7e12018-03-01 18:44:00 +00001038 while invoking ``make`` to build TF-A:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001039
1040 - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
1041 - ``TRUSTED_BOARD_BOOT=1``
1042 - ``GENERATE_COT=1``
1043
Dan Handley610e7e12018-03-01 18:44:00 +00001044 In the case of Arm platforms, the location of the ROTPK hash must also be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001045 specified at build time. Two locations are currently supported (see
1046 ``ARM_ROTPK_LOCATION`` build option):
1047
1048 - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
1049 root-key storage registers present in the platform. On Juno, this
1050 registers are read-only. On FVP Base and Cortex models, the registers
1051 are read-only, but the value can be specified using the command line
1052 option ``bp.trusted_key_storage.public_key`` when launching the model.
1053 On both Juno and FVP models, the default value corresponds to an
1054 ECDSA-SECP256R1 public key hash, whose private part is not currently
1055 available.
1056
1057 - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
Dan Handley610e7e12018-03-01 18:44:00 +00001058 in the Arm platform port. The private/public RSA key pair may be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001059 found in ``plat/arm/board/common/rotpk``.
1060
Qixiang Xu1c2aef12017-08-24 15:12:20 +08001061 - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
Dan Handley610e7e12018-03-01 18:44:00 +00001062 in the Arm platform port. The private/public ECDSA key pair may be
Qixiang Xu1c2aef12017-08-24 15:12:20 +08001063 found in ``plat/arm/board/common/rotpk``.
1064
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001065 Example of command line using RSA development keys:
1066
1067 ::
1068
1069 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1070 make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1071 ARM_ROTPK_LOCATION=devel_rsa \
1072 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1073 BL33=<path-to>/<bl33_image> \
1074 all fip
1075
1076 The result of this build will be the bl1.bin and the fip.bin binaries. This
1077 FIP will include the certificates corresponding to the Chain of Trust
1078 described in the TBBR-client document. These certificates can also be found
1079 in the output build directory.
1080
1081#. The optional FWU\_FIP contains any additional images to be loaded from
1082 Non-Volatile storage during the `Firmware Update`_ process. To build the
1083 FWU\_FIP, any FWU images required by the platform must be specified on the
Dan Handley610e7e12018-03-01 18:44:00 +00001084 command line. On Arm development platforms like Juno, these are:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001085
1086 - NS\_BL2U. The AP non-secure Firmware Updater image.
1087 - SCP\_BL2U. The SCP Firmware Update Configuration image.
1088
1089 Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
1090 targets using RSA development:
1091
1092 ::
1093
1094 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1095 make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1096 ARM_ROTPK_LOCATION=devel_rsa \
1097 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1098 BL33=<path-to>/<bl33_image> \
1099 SCP_BL2=<path-to>/<scp_bl2_image> \
1100 SCP_BL2U=<path-to>/<scp_bl2u_image> \
1101 NS_BL2U=<path-to>/<ns_bl2u_image> \
1102 all fip fwu_fip
1103
1104 Note: The BL2U image will be built by default and added to the FWU\_FIP.
1105 The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
1106 to the command line above.
1107
1108 Note: Building and installing the non-secure and SCP FWU images (NS\_BL1U,
1109 NS\_BL2U and SCP\_BL2U) is outside the scope of this document.
1110
1111 The result of this build will be bl1.bin, fip.bin and fwu\_fip.bin binaries.
1112 Both the FIP and FWU\_FIP will include the certificates corresponding to the
1113 Chain of Trust described in the TBBR-client document. These certificates
1114 can also be found in the output build directory.
1115
1116Building the Certificate Generation Tool
1117~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1118
Dan Handley610e7e12018-03-01 18:44:00 +00001119The ``cert_create`` tool is built as part of the TF-A build process when the
1120``fip`` make target is specified and TBB is enabled (as described in the
1121previous section), but it can also be built separately with the following
1122command:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001123
1124::
1125
1126 make PLAT=<platform> [DEBUG=1] [V=1] certtool
1127
1128For platforms that do not require their own IDs in certificate files,
1129the generic 'cert\_create' tool can be built with the following command:
1130
1131::
1132
1133 make USE_TBBR_DEFS=1 [DEBUG=1] [V=1] certtool
1134
1135``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
1136verbose. The following command should be used to obtain help about the tool:
1137
1138::
1139
1140 ./tools/cert_create/cert_create -h
1141
1142Building a FIP for Juno and FVP
1143-------------------------------
1144
1145This section provides Juno and FVP specific instructions to build Trusted
1146Firmware, obtain the additional required firmware, and pack it all together in
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001147a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001148
David Cunadob2de0992017-06-29 12:01:33 +01001149Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
1150onwards. Before that release, pre-built binaries are only available for AArch64.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001151
1152Note: follow the full instructions for one platform before switching to a
1153different one. Mixing instructions for different platforms may result in
1154corrupted binaries.
1155
1156#. Clean the working directory
1157
1158 ::
1159
1160 make realclean
1161
1162#. Obtain SCP\_BL2 (Juno) and BL33 (all platforms)
1163
1164 Use the fiptool to extract the SCP\_BL2 and BL33 images from the FIP
1165 package included in the Linaro release:
1166
1167 ::
1168
1169 # Build the fiptool
1170 make [DEBUG=1] [V=1] fiptool
1171
1172 # Unpack firmware images from Linaro FIP
1173 ./tools/fiptool/fiptool unpack \
1174 <path/to/linaro/release>/fip.bin
1175
1176 The unpack operation will result in a set of binary images extracted to the
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001177 current working directory. The SCP\_BL2 image corresponds to
1178 ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001179
1180 Note: the fiptool will complain if the images to be unpacked already
1181 exist in the current directory. If that is the case, either delete those
1182 files or use the ``--force`` option to overwrite.
1183
1184 Note for AArch32, the instructions below assume that nt-fw.bin is a custom
1185 Normal world boot loader that supports AArch32.
1186
Dan Handley610e7e12018-03-01 18:44:00 +00001187#. Build TF-A images and create a new FIP for FVP
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001188
1189 ::
1190
1191 # AArch64
1192 make PLAT=fvp BL33=nt-fw.bin all fip
1193
1194 # AArch32
1195 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
1196
Dan Handley610e7e12018-03-01 18:44:00 +00001197#. Build TF-A images and create a new FIP for Juno
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001198
1199 For AArch64:
1200
1201 Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
1202 as a build parameter.
1203
1204 ::
1205
1206 make PLAT=juno all fip \
1207 BL33=<path-to-juno-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1208 SCP_BL2=<path-to-juno-busybox-uboot>/SOFTWARE/scp_bl2.bin
1209
1210 For AArch32:
1211
1212 Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
1213 therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
1214 separately for AArch32.
1215
1216 - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
1217 to the AArch32 Linaro cross compiler.
1218
1219 ::
1220
1221 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
1222
1223 - Build BL32 in AArch32.
1224
1225 ::
1226
1227 make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
1228 RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
1229
1230 - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
1231 must point to the AArch64 Linaro cross compiler.
1232
1233 ::
1234
1235 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
1236
1237 - The following parameters should be used to build BL1 and BL2 in AArch64
1238 and point to the BL32 file.
1239
1240 ::
1241
1242 make ARCH=aarch64 PLAT=juno LOAD_IMAGE_V2=1 JUNO_AARCH32_EL3_RUNTIME=1 \
1243 BL33=<path-to-juno32-oe-uboot>/SOFTWARE/bl33-uboot.bin \
Soby Mathewbf169232017-11-14 14:10:10 +00001244 SCP_BL2=<path-to-juno32-oe-uboot>/SOFTWARE/scp_bl2.bin \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001245 BL32=<path-to-bl32>/bl32.bin all fip
1246
1247The resulting BL1 and FIP images may be found in:
1248
1249::
1250
1251 # Juno
1252 ./build/juno/release/bl1.bin
1253 ./build/juno/release/fip.bin
1254
1255 # FVP
1256 ./build/fvp/release/bl1.bin
1257 ./build/fvp/release/fip.bin
1258
Roberto Vargas096f3a02017-10-17 10:19:00 +01001259
1260Booting Firmware Update images
1261-------------------------------------
1262
1263When Firmware Update (FWU) is enabled there are at least 2 new images
1264that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
1265FWU FIP.
1266
1267Juno
1268~~~~
1269
1270The new images must be programmed in flash memory by adding
1271an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1272on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1273Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1274programming" for more information. User should ensure these do not
1275overlap with any other entries in the file.
1276
1277::
1278
1279 NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1280 NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
1281 NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
1282 NOR10LOAD: 00000000 ;Image Load Address
1283 NOR10ENTRY: 00000000 ;Image Entry Point
1284
1285 NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1286 NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
1287 NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
1288 NOR11LOAD: 00000000 ;Image Load Address
1289
1290The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
1291In the same way, the address ns_bl2u_base_address is the value of
1292NS_BL2U_BASE - 0x8000000.
1293
1294FVP
1295~~~
1296
1297The additional fip images must be loaded with:
1298
1299::
1300
1301 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
1302 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
1303
1304The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
1305In the same way, the address ns_bl2u_base_address is the value of
1306NS_BL2U_BASE.
1307
1308
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001309EL3 payloads alternative boot flow
1310----------------------------------
1311
1312On a pre-production system, the ability to execute arbitrary, bare-metal code at
1313the highest exception level is required. It allows full, direct access to the
1314hardware, for example to run silicon soak tests.
1315
1316Although it is possible to implement some baremetal secure firmware from
1317scratch, this is a complex task on some platforms, depending on the level of
1318configuration required to put the system in the expected state.
1319
1320Rather than booting a baremetal application, a possible compromise is to boot
Dan Handley610e7e12018-03-01 18:44:00 +00001321``EL3 payloads`` through TF-A instead. This is implemented as an alternative
1322boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
1323other BL images and passing control to BL31. It reduces the complexity of
1324developing EL3 baremetal code by:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001325
1326- putting the system into a known architectural state;
1327- taking care of platform secure world initialization;
1328- loading the SCP\_BL2 image if required by the platform.
1329
Dan Handley610e7e12018-03-01 18:44:00 +00001330When booting an EL3 payload on Arm standard platforms, the configuration of the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001331TrustZone controller is simplified such that only region 0 is enabled and is
1332configured to permit secure access only. This gives full access to the whole
1333DRAM to the EL3 payload.
1334
1335The system is left in the same state as when entering BL31 in the default boot
1336flow. In particular:
1337
1338- Running in EL3;
1339- Current state is AArch64;
1340- Little-endian data access;
1341- All exceptions disabled;
1342- MMU disabled;
1343- Caches disabled.
1344
1345Booting an EL3 payload
1346~~~~~~~~~~~~~~~~~~~~~~
1347
1348The EL3 payload image is a standalone image and is not part of the FIP. It is
Dan Handley610e7e12018-03-01 18:44:00 +00001349not loaded by TF-A. Therefore, there are 2 possible scenarios:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001350
1351- The EL3 payload may reside in non-volatile memory (NVM) and execute in
1352 place. In this case, booting it is just a matter of specifying the right
Dan Handley610e7e12018-03-01 18:44:00 +00001353 address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001354
1355- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
1356 run-time.
1357
1358To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
1359used. The infinite loop that it introduces in BL1 stops execution at the right
1360moment for a debugger to take control of the target and load the payload (for
1361example, over JTAG).
1362
1363It is expected that this loading method will work in most cases, as a debugger
1364connection is usually available in a pre-production system. The user is free to
1365use any other platform-specific mechanism to load the EL3 payload, though.
1366
1367Booting an EL3 payload on FVP
1368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1369
1370The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
1371the secondary CPUs holding pen to work properly. Unfortunately, its reset value
1372is undefined on the FVP platform and the FVP platform code doesn't clear it.
1373Therefore, one must modify the way the model is normally invoked in order to
1374clear the mailbox at start-up.
1375
1376One way to do that is to create an 8-byte file containing all zero bytes using
1377the following command:
1378
1379::
1380
1381 dd if=/dev/zero of=mailbox.dat bs=1 count=8
1382
1383and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
1384using the following model parameters:
1385
1386::
1387
1388 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
1389 --data=mailbox.dat@0x04000000 [Foundation FVP]
1390
1391To provide the model with the EL3 payload image, the following methods may be
1392used:
1393
1394#. If the EL3 payload is able to execute in place, it may be programmed into
1395 flash memory. On Base Cortex and AEM FVPs, the following model parameter
1396 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
1397 used for the FIP):
1398
1399 ::
1400
1401 -C bp.flashloader1.fname="/path/to/el3-payload"
1402
1403 On Foundation FVP, there is no flash loader component and the EL3 payload
1404 may be programmed anywhere in flash using method 3 below.
1405
1406#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
1407 command may be used to load the EL3 payload ELF image over JTAG:
1408
1409 ::
1410
1411 load /path/to/el3-payload.elf
1412
1413#. The EL3 payload may be pre-loaded in volatile memory using the following
1414 model parameters:
1415
1416 ::
1417
1418 --data cluster0.cpu0="/path/to/el3-payload"@address [Base FVPs]
1419 --data="/path/to/el3-payload"@address [Foundation FVP]
1420
1421 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
Dan Handley610e7e12018-03-01 18:44:00 +00001422 used when building TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001423
1424Booting an EL3 payload on Juno
1425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1426
1427If the EL3 payload is able to execute in place, it may be programmed in flash
1428memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1429on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1430Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1431programming" for more information.
1432
1433Alternatively, the same DS-5 command mentioned in the FVP section above can
1434be used to load the EL3 payload's ELF file over JTAG on Juno.
1435
1436Preloaded BL33 alternative boot flow
1437------------------------------------
1438
1439Some platforms have the ability to preload BL33 into memory instead of relying
Dan Handley610e7e12018-03-01 18:44:00 +00001440on TF-A to load it. This may simplify packaging of the normal world code and
1441improve performance in a development environment. When secure world cold boot
1442is complete, TF-A simply jumps to a BL33 base address provided at build time.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001443
1444For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
Dan Handley610e7e12018-03-01 18:44:00 +00001445used when compiling TF-A. For example, the following command will create a FIP
1446without a BL33 and prepare to jump to a BL33 image loaded at address
14470x80000000:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001448
1449::
1450
1451 make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
1452
1453Boot of a preloaded bootwrapped kernel image on Base FVP
1454~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1455
1456The following example uses the AArch64 boot wrapper. This simplifies normal
Dan Handley610e7e12018-03-01 18:44:00 +00001457world booting while also making use of TF-A features. It can be obtained from
1458its repository with:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001459
1460::
1461
1462 git clone git://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git
1463
1464After compiling it, an ELF file is generated. It can be loaded with the
1465following command:
1466
1467::
1468
1469 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1470 -C bp.secureflashloader.fname=bl1.bin \
1471 -C bp.flashloader0.fname=fip.bin \
1472 -a cluster0.cpu0=<bootwrapped-kernel.elf> \
1473 --start cluster0.cpu0=0x0
1474
1475The ``-a cluster0.cpu0=<bootwrapped-kernel.elf>`` option loads the ELF file. It
1476also sets the PC register to the ELF entry point address, which is not the
1477desired behaviour, so the ``--start cluster0.cpu0=0x0`` option forces the PC back
1478to 0x0 (the BL1 entry point address) on CPU #0. The ``PRELOADED_BL33_BASE`` define
1479used when compiling the FIP must match the ELF entry point.
1480
1481Boot of a preloaded bootwrapped kernel image on Juno
1482~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1483
1484The procedure to obtain and compile the boot wrapper is very similar to the case
1485of the FVP. The execution must be stopped at the end of bl2\_main(), and the
1486loading method explained above in the EL3 payload boot flow section may be used
1487to load the ELF file over JTAG on Juno.
1488
1489Running the software on FVP
1490---------------------------
1491
Dan Handley610e7e12018-03-01 18:44:00 +00001492The latest version of the AArch64 build of TF-A has been tested on the
1493following Arm FVPs (64-bit host machine only).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001494
David Cunado82509be2017-12-19 16:33:25 +00001495NOTE: Unless otherwise stated, the model version is Version 11.2 Build 11.2.33.
David Cunado124415e2017-06-27 17:31:12 +01001496
1497- ``Foundation_Platform``
David Cunado82509be2017-12-19 16:33:25 +00001498- ``FVP_Base_AEMv8A-AEMv8A`` (Version 9.0, Build 0.8.9005)
David Cunado124415e2017-06-27 17:31:12 +01001499- ``FVP_Base_Cortex-A35x4``
1500- ``FVP_Base_Cortex-A53x4``
1501- ``FVP_Base_Cortex-A57x4-A53x4``
1502- ``FVP_Base_Cortex-A57x4``
1503- ``FVP_Base_Cortex-A72x4-A53x4``
1504- ``FVP_Base_Cortex-A72x4``
1505- ``FVP_Base_Cortex-A73x4-A53x4``
1506- ``FVP_Base_Cortex-A73x4``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001507
Dan Handley610e7e12018-03-01 18:44:00 +00001508The latest version of the AArch32 build of TF-A has been tested on the
1509following Arm FVPs (64-bit host machine only).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001510
David Cunado82509be2017-12-19 16:33:25 +00001511- ``FVP_Base_AEMv8A-AEMv8A`` (Version 9.0, Build 0.8.9005)
David Cunado124415e2017-06-27 17:31:12 +01001512- ``FVP_Base_Cortex-A32x4``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001513
1514NOTE: The build numbers quoted above are those reported by launching the FVP
1515with the ``--version`` parameter.
1516
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001517NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
1518file systems that can be downloaded separately. To run an FVP with a virtio
1519file system image an additional FVP configuration option
1520``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
1521used.
1522
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001523NOTE: The software will not work on Version 1.0 of the Foundation FVP.
1524The commands below would report an ``unhandled argument`` error in this case.
1525
1526NOTE: FVPs can be launched with ``--cadi-server`` option such that a
Dan Handley610e7e12018-03-01 18:44:00 +00001527CADI-compliant debugger (for example, Arm DS-5) can connect to and control its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001528execution.
1529
Eleanor Bonnicie124dc42017-10-04 15:03:33 +01001530NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
David Cunado97309462017-07-31 12:24:51 +01001531the internal synchronisation timings changed compared to older versions of the
1532models. The models can be launched with ``-Q 100`` option if they are required
1533to match the run time characteristics of the older versions.
1534
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001535The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
Dan Handley610e7e12018-03-01 18:44:00 +00001536downloaded for free from `Arm's website`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001537
David Cunado124415e2017-06-27 17:31:12 +01001538The Cortex-A models listed above are also available to download from
Dan Handley610e7e12018-03-01 18:44:00 +00001539`Arm's website`_.
David Cunado124415e2017-06-27 17:31:12 +01001540
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001541Please refer to the FVP documentation for a detailed description of the model
Dan Handley610e7e12018-03-01 18:44:00 +00001542parameter options. A brief description of the important ones that affect TF-A
1543and normal world software behavior is provided below.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001544
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001545Obtaining the Flattened Device Trees
1546~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1547
1548Depending on the FVP configuration and Linux configuration used, different
1549FDT files are required. FDTs for the Foundation and Base FVPs can be found in
Dan Handley610e7e12018-03-01 18:44:00 +00001550the TF-A source directory under ``fdts/``. The Foundation FVP has a subset of
1551the Base FVP components. For example, the Foundation FVP lacks CLCD and MMC
1552support, and has only one CPU cluster.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001553
1554Note: It is not recommended to use the FDTs built along the kernel because not
1555all FDTs are available from there.
1556
1557- ``fvp-base-gicv2-psci.dtb``
1558
1559 For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
1560 Base memory map configuration.
1561
1562- ``fvp-base-gicv2-psci-aarch32.dtb``
1563
1564 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1565 with Base memory map configuration.
1566
1567- ``fvp-base-gicv3-psci.dtb``
1568
1569 (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base
1570 memory map configuration and Linux GICv3 support.
1571
1572- ``fvp-base-gicv3-psci-aarch32.dtb``
1573
1574 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1575 with Base memory map configuration and Linux GICv3 support.
1576
1577- ``fvp-foundation-gicv2-psci.dtb``
1578
1579 For use with Foundation FVP with Base memory map configuration.
1580
1581- ``fvp-foundation-gicv3-psci.dtb``
1582
1583 (Default) For use with Foundation FVP with Base memory map configuration
1584 and Linux GICv3 support.
1585
1586Running on the Foundation FVP with reset to BL1 entrypoint
1587~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1588
1589The following ``Foundation_Platform`` parameters should be used to boot Linux with
Dan Handley610e7e12018-03-01 18:44:00 +000015904 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001591
1592::
1593
1594 <path-to>/Foundation_Platform \
1595 --cores=4 \
Antonio Nino Diazb44eda52018-02-23 11:01:31 +00001596 --arm-v8.0 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001597 --secure-memory \
1598 --visualization \
1599 --gicv3 \
1600 --data="<path-to>/<bl1-binary>"@0x0 \
1601 --data="<path-to>/<FIP-binary>"@0x08000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001602 --data="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001603 --data="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001604 --data="<path-to>/<ramdisk-binary>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001605
1606Notes:
1607
1608- BL1 is loaded at the start of the Trusted ROM.
1609- The Firmware Image Package is loaded at the start of NOR FLASH0.
1610- The Linux kernel image and device tree are loaded in DRAM.
1611- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
1612 and enable the GICv3 device in the model. Note that without this option,
1613 the Foundation FVP defaults to legacy (Versatile Express) memory map which
Dan Handley610e7e12018-03-01 18:44:00 +00001614 is not supported by TF-A.
1615- In order for TF-A to run correctly on the Foundation FVP, the architecture
1616 versions must match. The Foundation FVP defaults to the highest v8.x
1617 version it supports but the default build for TF-A is for v8.0. To avoid
1618 issues either start the Foundation FVP to use v8.0 architecture using the
1619 ``--arm-v8.0`` option, or build TF-A with an appropriate value for
1620 ``ARM_ARCH_MINOR``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001621
1622Running on the AEMv8 Base FVP with reset to BL1 entrypoint
1623~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1624
1625The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001626with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001627
1628::
1629
1630 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1631 -C pctl.startup=0.0.0.0 \
1632 -C bp.secure_memory=1 \
1633 -C bp.tzc_400.diagnostics=1 \
1634 -C cluster0.NUM_CORES=4 \
1635 -C cluster1.NUM_CORES=4 \
1636 -C cache_state_modelled=1 \
1637 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1638 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001639 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001640 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001641 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001642
1643Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
1644~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1645
1646The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001647with 8 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001648
1649::
1650
1651 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1652 -C pctl.startup=0.0.0.0 \
1653 -C bp.secure_memory=1 \
1654 -C bp.tzc_400.diagnostics=1 \
1655 -C cluster0.NUM_CORES=4 \
1656 -C cluster1.NUM_CORES=4 \
1657 -C cache_state_modelled=1 \
1658 -C cluster0.cpu0.CONFIG64=0 \
1659 -C cluster0.cpu1.CONFIG64=0 \
1660 -C cluster0.cpu2.CONFIG64=0 \
1661 -C cluster0.cpu3.CONFIG64=0 \
1662 -C cluster1.cpu0.CONFIG64=0 \
1663 -C cluster1.cpu1.CONFIG64=0 \
1664 -C cluster1.cpu2.CONFIG64=0 \
1665 -C cluster1.cpu3.CONFIG64=0 \
1666 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1667 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001668 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001669 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001670 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001671
1672Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
1673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1674
1675The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001676boot Linux with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001677
1678::
1679
1680 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1681 -C pctl.startup=0.0.0.0 \
1682 -C bp.secure_memory=1 \
1683 -C bp.tzc_400.diagnostics=1 \
1684 -C cache_state_modelled=1 \
1685 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1686 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001687 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001688 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001689 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001690
1691Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
1692~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1693
1694The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001695boot Linux with 4 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001696
1697::
1698
1699 <path-to>/FVP_Base_Cortex-A32x4 \
1700 -C pctl.startup=0.0.0.0 \
1701 -C bp.secure_memory=1 \
1702 -C bp.tzc_400.diagnostics=1 \
1703 -C cache_state_modelled=1 \
1704 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1705 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001706 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001707 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001708 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001709
1710Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1711~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1712
1713The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001714with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001715
1716::
1717
1718 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1719 -C pctl.startup=0.0.0.0 \
1720 -C bp.secure_memory=1 \
1721 -C bp.tzc_400.diagnostics=1 \
1722 -C cluster0.NUM_CORES=4 \
1723 -C cluster1.NUM_CORES=4 \
1724 -C cache_state_modelled=1 \
Qixiang Xua5f72812017-08-31 11:45:32 +08001725 -C cluster0.cpu0.RVBAR=0x04020000 \
1726 -C cluster0.cpu1.RVBAR=0x04020000 \
1727 -C cluster0.cpu2.RVBAR=0x04020000 \
1728 -C cluster0.cpu3.RVBAR=0x04020000 \
1729 -C cluster1.cpu0.RVBAR=0x04020000 \
1730 -C cluster1.cpu1.RVBAR=0x04020000 \
1731 -C cluster1.cpu2.RVBAR=0x04020000 \
1732 -C cluster1.cpu3.RVBAR=0x04020000 \
1733 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001734 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1735 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001736 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001737 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001738 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001739
1740Notes:
1741
1742- Since a FIP is not loaded when using BL31 as reset entrypoint, the
1743 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
1744 parameter is needed to load the individual bootloader images in memory.
1745 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
1746 Payload.
1747
1748- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
1749 X and Y are the cluster and CPU numbers respectively, is used to set the
1750 reset vector for each core.
1751
1752- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
1753 changing the value of
1754 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
1755 ``BL32_BASE``.
1756
1757Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1758~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1759
1760The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001761with 8 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001762
1763::
1764
1765 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1766 -C pctl.startup=0.0.0.0 \
1767 -C bp.secure_memory=1 \
1768 -C bp.tzc_400.diagnostics=1 \
1769 -C cluster0.NUM_CORES=4 \
1770 -C cluster1.NUM_CORES=4 \
1771 -C cache_state_modelled=1 \
1772 -C cluster0.cpu0.CONFIG64=0 \
1773 -C cluster0.cpu1.CONFIG64=0 \
1774 -C cluster0.cpu2.CONFIG64=0 \
1775 -C cluster0.cpu3.CONFIG64=0 \
1776 -C cluster1.cpu0.CONFIG64=0 \
1777 -C cluster1.cpu1.CONFIG64=0 \
1778 -C cluster1.cpu2.CONFIG64=0 \
1779 -C cluster1.cpu3.CONFIG64=0 \
1780 -C cluster0.cpu0.RVBAR=0x04001000 \
1781 -C cluster0.cpu1.RVBAR=0x04001000 \
1782 -C cluster0.cpu2.RVBAR=0x04001000 \
1783 -C cluster0.cpu3.RVBAR=0x04001000 \
1784 -C cluster1.cpu0.RVBAR=0x04001000 \
1785 -C cluster1.cpu1.RVBAR=0x04001000 \
1786 -C cluster1.cpu2.RVBAR=0x04001000 \
1787 -C cluster1.cpu3.RVBAR=0x04001000 \
1788 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1789 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001790 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001791 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001792 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001793
1794Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
1795It should match the address programmed into the RVBAR register as well.
1796
1797Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1798~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1799
1800The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001801boot Linux with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001802
1803::
1804
1805 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1806 -C pctl.startup=0.0.0.0 \
1807 -C bp.secure_memory=1 \
1808 -C bp.tzc_400.diagnostics=1 \
1809 -C cache_state_modelled=1 \
Qixiang Xua5f72812017-08-31 11:45:32 +08001810 -C cluster0.cpu0.RVBARADDR=0x04020000 \
1811 -C cluster0.cpu1.RVBARADDR=0x04020000 \
1812 -C cluster0.cpu2.RVBARADDR=0x04020000 \
1813 -C cluster0.cpu3.RVBARADDR=0x04020000 \
1814 -C cluster1.cpu0.RVBARADDR=0x04020000 \
1815 -C cluster1.cpu1.RVBARADDR=0x04020000 \
1816 -C cluster1.cpu2.RVBARADDR=0x04020000 \
1817 -C cluster1.cpu3.RVBARADDR=0x04020000 \
1818 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001819 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1820 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001821 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001822 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001823 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001824
1825Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1827
1828The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001829boot Linux with 4 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001830
1831::
1832
1833 <path-to>/FVP_Base_Cortex-A32x4 \
1834 -C pctl.startup=0.0.0.0 \
1835 -C bp.secure_memory=1 \
1836 -C bp.tzc_400.diagnostics=1 \
1837 -C cache_state_modelled=1 \
1838 -C cluster0.cpu0.RVBARADDR=0x04001000 \
1839 -C cluster0.cpu1.RVBARADDR=0x04001000 \
1840 -C cluster0.cpu2.RVBARADDR=0x04001000 \
1841 -C cluster0.cpu3.RVBARADDR=0x04001000 \
1842 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1843 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001844 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001845 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001846 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001847
1848Running the software on Juno
1849----------------------------
1850
Dan Handley610e7e12018-03-01 18:44:00 +00001851This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001852
1853To execute the software stack on Juno, the version of the Juno board recovery
1854image indicated in the `Linaro Release Notes`_ must be installed. If you have an
1855earlier version installed or are unsure which version is installed, please
1856re-install the recovery image by following the
1857`Instructions for using Linaro's deliverables on Juno`_.
1858
Dan Handley610e7e12018-03-01 18:44:00 +00001859Preparing TF-A images
1860~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001861
Dan Handley610e7e12018-03-01 18:44:00 +00001862After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the
1863``SOFTWARE/`` directory of the Juno SD card.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001864
1865Other Juno software information
1866~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1867
Dan Handley610e7e12018-03-01 18:44:00 +00001868Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001869software information. Please also refer to the `Juno Getting Started Guide`_ to
Dan Handley610e7e12018-03-01 18:44:00 +00001870get more detailed information about the Juno Arm development platform and how to
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001871configure it.
1872
1873Testing SYSTEM SUSPEND on Juno
1874~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1875
1876The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1877to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
1878on Juno, at the linux shell prompt, issue the following command:
1879
1880::
1881
1882 echo +10 > /sys/class/rtc/rtc0/wakealarm
1883 echo -n mem > /sys/power/state
1884
1885The Juno board should suspend to RAM and then wakeup after 10 seconds due to
1886wakeup interrupt from RTC.
1887
1888--------------
1889
Dan Handley610e7e12018-03-01 18:44:00 +00001890*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001891
David Cunadob2de0992017-06-29 12:01:33 +01001892.. _Linaro: `Linaro Release Notes`_
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001893.. _Linaro Release: `Linaro Release Notes`_
David Cunado82509be2017-12-19 16:33:25 +00001894.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-linaro-release-notes
1895.. _Linaro Release 17.10: https://community.arm.com/dev-platforms/w/docs/226/old-linaro-release-notes#1710
1896.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/linaro-software-deliverables
1897.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno
Dan Handley610e7e12018-03-01 18:44:00 +00001898.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001899.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
Antonio Nino Diazb5d68092017-05-23 11:49:22 +01001900.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001901.. _here: psci-lib-integration-guide.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001902.. _Trusted Board Boot: trusted-board-boot.rst
1903.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001904.. _Firmware Update: firmware-update.rst
1905.. _Firmware Design: firmware-design.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001906.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
1907.. _mbed TLS Security Center: https://tls.mbed.org/security
Dan Handley610e7e12018-03-01 18:44:00 +00001908.. _Arm's website: `FVP models`_
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001909.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001910.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
David Cunadob2de0992017-06-29 12:01:33 +01001911.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf