Rename FVP specific files and functions

FVP specific files and functions containing the word "plat" have been
renamed to use the word "fvp" to distinguish them from the common
platform functionality and porting functions.

Change-Id: I39f9673dab3ee9c74bd18b3e62b7c21027232f7d
diff --git a/plat/fvp/fvp_gic.c b/plat/fvp/fvp_gic.c
new file mode 100644
index 0000000..fed2fca
--- /dev/null
+++ b/plat/fvp/fvp_gic.c
@@ -0,0 +1,408 @@
+/*
+ * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of ARM nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl_common.h>
+#include <debug.h>
+#include <gic_v2.h>
+#include <gic_v3.h>
+#include <interrupt_mgmt.h>
+#include <platform.h>
+#include <stdint.h>
+#include "fvp_def.h"
+#include "fvp_private.h"
+
+/*******************************************************************************
+ * This function does some minimal GICv3 configuration. The Firmware itself does
+ * not fully support GICv3 at this time and relies on GICv2 emulation as
+ * provided by GICv3. This function allows software (like Linux) in later stages
+ * to use full GICv3 features.
+ ******************************************************************************/
+void gicv3_cpuif_setup(void)
+{
+	unsigned int scr_val, val;
+	uintptr_t base;
+
+	/*
+	 * When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
+	 * bit set. In order to allow interrupts to get routed to the CPU we
+	 * need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
+	 * to clear (GICv3 Architecture specification 5.4.23).
+	 * GICR_WAKER is NOT banked per CPU, compute the correct base address
+	 * per CPU.
+	 */
+	base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
+	if (base == (uintptr_t)NULL) {
+		/* No re-distributor base address. This interface cannot be
+		 * configured.
+		 */
+		panic();
+	}
+
+	val = gicr_read_waker(base);
+
+	val &= ~WAKER_PS;
+	gicr_write_waker(base, val);
+	dsb();
+
+	/* We need to wait for ChildrenAsleep to clear. */
+	val = gicr_read_waker(base);
+	while (val & WAKER_CA) {
+		val = gicr_read_waker(base);
+	}
+
+	/*
+	 * We need to set SCR_EL3.NS in order to see GICv3 non-secure state.
+	 * Restore SCR_EL3.NS again before exit.
+	 */
+	scr_val = read_scr();
+	write_scr(scr_val | SCR_NS_BIT);
+	isb();	/* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */
+
+	/*
+	 * By default EL2 and NS-EL1 software should be able to enable GICv3
+	 * System register access without any configuration at EL3. But it turns
+	 * out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So
+	 * we need to set it here again. In order to do that we need to enable
+	 * register access. We leave it enabled as it should be fine and might
+	 * prevent problems with later software trying to access GIC System
+	 * Registers.
+	 */
+	val = read_icc_sre_el3();
+	write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
+
+	val = read_icc_sre_el2();
+	write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE);
+
+	write_icc_pmr_el1(GIC_PRI_MASK);
+	isb();	/* commite ICC_* changes before setting NS=0 */
+
+	/* Restore SCR_EL3 */
+	write_scr(scr_val);
+	isb();	/* ensure NS=0 takes effect immediately */
+}
+
+/*******************************************************************************
+ * This function does some minimal GICv3 configuration when cores go
+ * down.
+ ******************************************************************************/
+void gicv3_cpuif_deactivate(void)
+{
+	unsigned int val;
+	uintptr_t base;
+
+	/*
+	 * When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
+	 * wait for GICR_WAKER.ChildrenAsleep to get set.
+	 * (GICv3 Architecture specification 5.4.23).
+	 * GICR_WAKER is NOT banked per CPU, compute the correct base address
+	 * per CPU.
+	 */
+	base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
+	if (base == (uintptr_t)NULL) {
+		/* No re-distributor base address. This interface cannot be
+		 * configured.
+		 */
+		panic();
+	}
+
+	val = gicr_read_waker(base);
+	val |= WAKER_PS;
+	gicr_write_waker(base, val);
+	dsb();
+
+	/* We need to wait for ChildrenAsleep to set. */
+	val = gicr_read_waker(base);
+	while ((val & WAKER_CA) == 0) {
+		val = gicr_read_waker(base);
+	}
+}
+
+
+/*******************************************************************************
+ * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
+ * and set the priority mask register to allow all interrupts to trickle in.
+ ******************************************************************************/
+void gic_cpuif_setup(unsigned int gicc_base)
+{
+	unsigned int val;
+
+	val = gicc_read_iidr(gicc_base);
+
+	/*
+	 * If GICv3 we need to do a bit of additional setup. We want to
+	 * allow default GICv2 behaviour but allow the next stage to
+	 * enable full gicv3 features.
+	 */
+	if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
+		gicv3_cpuif_setup();
+	}
+
+	val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
+	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
+
+	gicc_write_pmr(gicc_base, GIC_PRI_MASK);
+	gicc_write_ctlr(gicc_base, val);
+}
+
+/*******************************************************************************
+ * Place the cpu interface in a state where it can never make a cpu exit wfi as
+ * as result of an asserted interrupt. This is critical for powering down a cpu
+ ******************************************************************************/
+void gic_cpuif_deactivate(unsigned int gicc_base)
+{
+	unsigned int val;
+
+	/* Disable secure, non-secure interrupts and disable their bypass */
+	val = gicc_read_ctlr(gicc_base);
+	val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
+	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
+	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
+	gicc_write_ctlr(gicc_base, val);
+
+	val = gicc_read_iidr(gicc_base);
+
+	/*
+	 * If GICv3 we need to do a bit of additional setup. Make sure the
+	 * RDIST is put to sleep.
+	 */
+	if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
+		gicv3_cpuif_deactivate();
+	}
+}
+
+/*******************************************************************************
+ * Per cpu gic distributor setup which will be done by all cpus after a cold
+ * boot/hotplug. This marks out the secure interrupts & enables them.
+ ******************************************************************************/
+void gic_pcpu_distif_setup(unsigned int gicd_base)
+{
+	gicd_write_igroupr(gicd_base, 0, ~0);
+
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_PHY_TIMER);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_0);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_1);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_2);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_3);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_4);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_5);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_6);
+	gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_7);
+
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY);
+
+	gicd_set_isenabler(gicd_base, IRQ_SEC_PHY_TIMER);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_0);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_1);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_2);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_3);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_4);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_5);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_6);
+	gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_7);
+}
+
+/*******************************************************************************
+ * Global gic distributor setup which will be done by the primary cpu after a
+ * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
+ * then enables the secure GIC distributor interface.
+ ******************************************************************************/
+void gic_distif_setup(unsigned int gicd_base)
+{
+	unsigned int ctr, num_ints, ctlr;
+
+	/* Disable the distributor before going further */
+	ctlr = gicd_read_ctlr(gicd_base);
+	ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
+	gicd_write_ctlr(gicd_base, ctlr);
+
+	/*
+	 * Mark out non-secure interrupts. Calculate number of
+	 * IGROUPR registers to consider. Will be equal to the
+	 * number of IT_LINES
+	 */
+	num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
+	num_ints++;
+	for (ctr = 0; ctr < num_ints; ctr++)
+		gicd_write_igroupr(gicd_base, ctr << IGROUPR_SHIFT, ~0);
+
+	/* Configure secure interrupts now */
+	gicd_clr_igroupr(gicd_base, IRQ_TZ_WDOG);
+	gicd_set_ipriorityr(gicd_base, IRQ_TZ_WDOG, GIC_HIGHEST_SEC_PRIORITY);
+	gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
+			   platform_get_core_pos(read_mpidr()));
+	gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);
+	gic_pcpu_distif_setup(gicd_base);
+
+	gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
+}
+
+void gic_setup(void)
+{
+	unsigned int gicd_base, gicc_base;
+
+	gicd_base = fvp_get_cfgvar(CONFIG_GICD_ADDR);
+	gicc_base = fvp_get_cfgvar(CONFIG_GICC_ADDR);
+
+	gic_cpuif_setup(gicc_base);
+	gic_distif_setup(gicd_base);
+}
+
+/*******************************************************************************
+ * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
+ * The interrupt controller knows which pin/line it uses to signal a type of
+ * interrupt. The platform knows which interrupt controller type is being used
+ * in a particular security state e.g. with an ARM GIC, normal world could use
+ * the GICv2 features while the secure world could use GICv3 features and vice
+ * versa.
+ * This function is exported by the platform to let the interrupt management
+ * framework determine for a type of interrupt and security state, which line
+ * should be used in the SCR_EL3 to control its routing to EL3. The interrupt
+ * line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3.
+ ******************************************************************************/
+uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state)
+{
+	uint32_t gicc_base = fvp_get_cfgvar(CONFIG_GICC_ADDR);
+
+	assert(type == INTR_TYPE_S_EL1 ||
+	       type == INTR_TYPE_EL3 ||
+	       type == INTR_TYPE_NS);
+
+	assert(security_state == NON_SECURE || security_state == SECURE);
+
+	/*
+	 * We ignore the security state parameter under the assumption that
+	 * both normal and secure worlds are using ARM GICv2. This parameter
+	 * will be used when the secure world starts using GICv3.
+	 */
+#if FVP_GIC_ARCH == 2
+	return gicv2_interrupt_type_to_line(gicc_base, type);
+#else
+#error "Invalid GIC architecture version specified for FVP port"
+#endif
+}
+
+#if FVP_GIC_ARCH == 2
+/*******************************************************************************
+ * This function returns the type of the highest priority pending interrupt at
+ * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
+ * interrupt pending.
+ ******************************************************************************/
+uint32_t ic_get_pending_interrupt_type()
+{
+	uint32_t id, gicc_base;
+
+	gicc_base = fvp_get_cfgvar(CONFIG_GICC_ADDR);
+	id = gicc_read_hppir(gicc_base);
+
+	/* Assume that all secure interrupts are S-EL1 interrupts */
+	if (id < 1022)
+		return INTR_TYPE_S_EL1;
+
+	if (id == GIC_SPURIOUS_INTERRUPT)
+		return INTR_TYPE_INVAL;
+
+	return INTR_TYPE_NS;
+}
+
+/*******************************************************************************
+ * This function returns the id of the highest priority pending interrupt at
+ * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
+ * interrupt pending.
+ ******************************************************************************/
+uint32_t ic_get_pending_interrupt_id()
+{
+	uint32_t id, gicc_base;
+
+	gicc_base = fvp_get_cfgvar(CONFIG_GICC_ADDR);
+	id = gicc_read_hppir(gicc_base);
+
+	if (id < 1022)
+		return id;
+
+	if (id == 1023)
+		return INTR_ID_UNAVAILABLE;
+
+	/*
+	 * Find out which non-secure interrupt it is under the assumption that
+	 * the GICC_CTLR.AckCtl bit is 0.
+	 */
+	return gicc_read_ahppir(gicc_base);
+}
+
+/*******************************************************************************
+ * This functions reads the GIC cpu interface Interrupt Acknowledge register
+ * to start handling the pending interrupt. It returns the contents of the IAR.
+ ******************************************************************************/
+uint32_t ic_acknowledge_interrupt()
+{
+	return gicc_read_IAR(fvp_get_cfgvar(CONFIG_GICC_ADDR));
+}
+
+/*******************************************************************************
+ * This functions writes the GIC cpu interface End Of Interrupt register with
+ * the passed value to finish handling the active interrupt
+ ******************************************************************************/
+void ic_end_of_interrupt(uint32_t id)
+{
+	gicc_write_EOIR(fvp_get_cfgvar(CONFIG_GICC_ADDR), id);
+	return;
+}
+
+/*******************************************************************************
+ * This function returns the type of the interrupt id depending upon the group
+ * this interrupt has been configured under by the interrupt controller i.e.
+ * group0 or group1.
+ ******************************************************************************/
+uint32_t ic_get_interrupt_type(uint32_t id)
+{
+	uint32_t group;
+
+	group = gicd_get_igroupr(fvp_get_cfgvar(CONFIG_GICD_ADDR), id);
+
+	/* Assume that all secure interrupts are S-EL1 interrupts */
+	if (group == GRP0)
+		return INTR_TYPE_S_EL1;
+	else
+		return INTR_TYPE_NS;
+}
+
+#else
+#error "Invalid GIC architecture version specified for FVP port"
+#endif