rcar_gen3: drivers: avs [adaptive voltage scaling]

Signed-off-by: ldts <jramirez@baylibre.com>
diff --git a/drivers/renesas/rcar/avs/avs_driver.c b/drivers/renesas/rcar/avs/avs_driver.c
new file mode 100644
index 0000000..80a7c91
--- /dev/null
+++ b/drivers/renesas/rcar/avs/avs_driver.c
@@ -0,0 +1,623 @@
+/*
+ * Copyright (c) 2015-2018, Renesas Electronics Corporation. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <mmio.h>
+#include <debug.h>
+#include <utils_def.h>
+#include "cpg_registers.h"
+#include "avs_driver.h"
+#include "rcar_def.h"
+#include "rcar_private.h"
+
+#if (AVS_SETTING_ENABLE == 1)
+#if PMIC_ROHM_BD9571
+/* Read PMIC register for debug. 1:enable / 0:disable */
+#define AVS_READ_PMIC_REG_ENABLE	0
+/* The re-try number of times of the AVS setting. */
+#define AVS_RETRY_NUM			(1U)
+#endif /* PMIC_ROHM_BD9571 */
+
+/* Base address of Adaptive Voltage Scaling module registers*/
+#define	AVS_BASE			(0xE60A0000U)
+/* Adaptive Dynamic Voltage ADJust Parameter2 registers */
+#define	ADVADJP2			(AVS_BASE + 0x013CU)
+
+/* Mask VOLCOND bit in ADVADJP2 registers */
+#define	ADVADJP2_VOLCOND_MASK		(0x000001FFU)	/* VOLCOND[8:0] */
+
+#if PMIC_ROHM_BD9571
+/* I2C for DVFS bit in CPG registers for module standby and software reset*/
+#define CPG_SYS_DVFS_BIT		(0x04000000U)
+#endif /* PMIC_ROHM_BD9571 */
+/* ADVFS Module bit in CPG registers for module standby and software reset*/
+#define CPG_SYS_ADVFS_BIT		(0x02000000U)
+
+#if PMIC_ROHM_BD9571
+/* Base address of IICDVFS registers*/
+#define	IIC_DVFS_BASE			(0xE60B0000U)
+/* IIC bus data register */
+#define	IIC_ICDR			(IIC_DVFS_BASE + 0x0000U)
+/* IIC bus control register */
+#define	IIC_ICCR			(IIC_DVFS_BASE + 0x0004U)
+/* IIC bus status register */
+#define	IIC_ICSR			(IIC_DVFS_BASE + 0x0008U)
+/* IIC interrupt control register */
+#define	IIC_ICIC			(IIC_DVFS_BASE + 0x000CU)
+/* IIC clock control register low */
+#define	IIC_ICCL			(IIC_DVFS_BASE + 0x0010U)
+/* IIC clock control register high */
+#define	IIC_ICCH			(IIC_DVFS_BASE + 0x0014U)
+
+/* Bit in ICSR register */
+#define ICSR_BUSY			(0x10U)
+#define ICSR_AL				(0x08U)
+#define ICSR_TACK			(0x04U)
+#define ICSR_WAIT			(0x02U)
+#define ICSR_DTE			(0x01U)
+
+/* Bit in ICIC register */
+#define ICIC_TACKE			(0x04U)
+#define ICIC_WAITE			(0x02U)
+#define ICIC_DTEE			(0x01U)
+
+/* I2C bus interface enable */
+#define ICCR_ENABLE			(0x80U)
+/* Start condition */
+#define ICCR_START			(0x94U)
+/* Stop condition */
+#define ICCR_STOP			(0x90U)
+/* Restart condition with change to receive mode change */
+#define ICCR_START_RECV			(0x81U)
+/* Stop condition for receive mode */
+#define ICCR_STOP_RECV			(0xC0U)
+
+/* Low-level period of SCL */
+#define	ICCL_FREQ_8p33M			(0x07U)	/* for CP Phy 8.3333MHz */
+#define	ICCL_FREQ_10M			(0x09U)	/* for CP Phy 10MHz */
+#define	ICCL_FREQ_12p5M			(0x0BU)	/* for CP Phy 12.5MHz */
+#define	ICCL_FREQ_16p66M		(0x0EU)	/* for CP Phy 16.6666MHz */
+/* High-level period of SCL */
+#define	ICCH_FREQ_8p33M			(0x01U)	/* for CP Phy 8.3333MHz */
+#define	ICCH_FREQ_10M			(0x02U)	/* for CP Phy 10MHz */
+#define	ICCH_FREQ_12p5M			(0x03U)	/* for CP Phy 12.5MHz */
+#define	ICCH_FREQ_16p66M		(0x05U)	/* for CP Phy 16.6666MHz */
+
+/* PMIC */
+#define	PMIC_W_SLAVE_ADDRESS		(0x60U)	/* ROHM BD9571 slave address + (W) */
+#define	PMIC_R_SLAVE_ADDRESS		(0x61U)	/* ROHM BD9571 slave address + (R) */
+#define	PMIC_DVFS_SETVID		(0x54U)	/* ROHM BD9571 DVFS SetVID register */
+#endif /* PMIC_ROHM_BD9571  */
+
+/* Individual information */
+#define EFUSE_AVS0			(0U)
+#define EFUSE_AVS_NUM			ARRAY_SIZE(init_vol_tbl)
+
+typedef struct {
+	uint32_t avs;		/* AVS code */
+	uint8_t vol;		/* Voltage */
+} initial_voltage_t;
+
+static const initial_voltage_t init_vol_tbl[] = {
+	/*      AVS code,       RHOM BD9571 DVFS SetVID register */
+	{0x00U, 0x53U},		/* AVS0, 0.83V */
+	{0x01U, 0x52U},		/* AVS1, 0.82V */
+	{0x02U, 0x51U},		/* AVS2, 0.81V */
+	{0x04U, 0x50U},		/* AVS3, 0.80V */
+	{0x08U, 0x4FU},		/* AVS4, 0.79V */
+	{0x10U, 0x4EU},		/* AVS5, 0.78V */
+	{0x20U, 0x4DU},		/* AVS6, 0.77V */
+	{0x40U, 0x4CU}		/* AVS7, 0.76V */
+};
+
+#if PMIC_ROHM_BD9571
+/* Kind of AVS settings status */
+typedef enum {
+	avs_status_none = 0,
+	avs_status_init,
+	avs_status_start_condition,
+	avs_status_set_slave_addr,
+	avs_status_write_reg_addr,
+	avs_status_write_reg_data,
+	avs_status_stop_condition,
+	avs_status_end,
+	avs_status_complete,
+	avs_status_al_start,
+	avs_status_al_transfer,
+	avs_status_nack,
+	avs_status_error_stop,
+	ave_status_error_end
+} avs_status_t;
+
+/* Kind of AVS error */
+typedef enum {
+	avs_error_none = 0,
+	avs_error_al,
+	avs_error_nack
+} avs_error_t;
+
+static avs_status_t avs_status;
+static uint32_t avs_retry;
+#endif /* PMIC_ROHM_BD9571  */
+static uint32_t efuse_avs = EFUSE_AVS0;
+
+#if PMIC_ROHM_BD9571
+/* prototype */
+static avs_error_t avs_check_error(void);
+static void avs_set_iic_clock(void);
+#if AVS_READ_PMIC_REG_ENABLE == 1
+static uint8_t avs_read_pmic_reg(uint8_t addr);
+static void avs_poll(uint8_t bit_pos, uint8_t val);
+#endif
+#endif /* PMIC_ROHM_BD9571 */
+#endif /* (AVS_SETTING_ENABLE==1) */
+
+/*
+ * Initialize to enable the AVS setting.
+ */
+void rcar_avs_init(void)
+{
+#if (AVS_SETTING_ENABLE == 1)
+	uint32_t val;
+
+#if PMIC_ROHM_BD9571
+	/* Initialize AVS status */
+	avs_status = avs_status_init;
+#endif /* PMIC_ROHM_BD9571 */
+
+	/* Enable clock supply to ADVFS. */
+	mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_ADVFS_BIT);
+
+	/* Read AVS code (Initial values are derived from eFuse) */
+	val = mmio_read_32(ADVADJP2) & ADVADJP2_VOLCOND_MASK;
+
+	for (efuse_avs = 0U; efuse_avs < EFUSE_AVS_NUM; efuse_avs++) {
+		if (val == init_vol_tbl[efuse_avs].avs)
+			break;
+	}
+
+	if (efuse_avs >= EFUSE_AVS_NUM)
+		efuse_avs = EFUSE_AVS0;	/* Not applicable */
+#if PMIC_ROHM_BD9571
+	/* Enable clock supply to DVFS. */
+	mstpcr_write(CPG_SMSTPCR9, CPG_MSTPSR9, CPG_SYS_DVFS_BIT);
+
+	/* Disable I2C module and All internal registers initialized. */
+	mmio_write_8(IIC_ICCR, 0x00U);
+	while ((mmio_read_8(IIC_ICCR) & ICCR_ENABLE) != 0U) {
+		/* Disable I2C module and All internal registers initialized. */
+		mmio_write_8(IIC_ICCR, 0x00U);
+	}
+
+	/* Set next status */
+	avs_status = avs_status_start_condition;
+
+#endif /* PMIC_ROHM_BD9571 */
+#endif /* (AVS_SETTING_ENABLE==1) */
+}
+
+/*
+ * Set the value of register corresponding to the voltage
+ * by transfer of I2C to PIMC.
+ */
+void rcar_avs_setting(void)
+{
+#if (AVS_SETTING_ENABLE == 1)
+#if PMIC_ROHM_BD9571
+	avs_error_t err;
+
+	switch (avs_status) {
+	case avs_status_start_condition:
+		/* Set ICCR.ICE=1 to activate the I2C module. */
+		mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);
+		/* Set frequency of 400kHz */
+		avs_set_iic_clock();
+		/* Set ICIC.TACKE=1, ICIC.WAITE=1, ICIC.DTEE=1 to */
+		/* enable interrupt control.                      */
+		mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
+			     | ICIC_TACKE | ICIC_WAITE | ICIC_DTEE);
+		/* Write H'94 in ICCR to issue start condition */
+		mmio_write_8(IIC_ICCR, ICCR_START);
+		/* Set next status */
+		avs_status = avs_status_set_slave_addr;
+		break;
+	case avs_status_set_slave_addr:
+		/* Check error. */
+		err = avs_check_error();
+		if (err == avs_error_al) {
+			/* Recovery sequence of just after start. */
+			avs_status = avs_status_al_start;
+		} else if (err == avs_error_nack) {
+			/* Recovery sequence of detected NACK */
+			avs_status = avs_status_nack;
+		} else {
+			/* Was data transmission enabled ? */
+			if ((mmio_read_8(IIC_ICSR) & ICSR_DTE) == ICSR_DTE) {
+				/* Clear ICIC.DTEE to disable a DTE interrupt */
+				mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
+					     & (uint8_t) (~ICIC_DTEE));
+				/* Send PMIC slave address + (W) */
+				mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);
+				/* Set next status */
+				avs_status = avs_status_write_reg_addr;
+			}
+		}
+		break;
+	case avs_status_write_reg_addr:
+		/* Check error. */
+		err = avs_check_error();
+		if (err == avs_error_al) {
+			/* Recovery sequence of during data transfer. */
+			avs_status = avs_status_al_transfer;
+		} else if (err == avs_error_nack) {
+			/* Recovery sequence of detected NACK */
+			avs_status = avs_status_nack;
+		} else {
+			/* If wait state after data transmission. */
+			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
+				/* Write PMIC DVFS_SetVID address */
+				mmio_write_8(IIC_ICDR, PMIC_DVFS_SETVID);
+				/* Clear ICSR.WAIT to exit from wait state. */
+				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
+					     & (uint8_t) (~ICSR_WAIT));
+				/* Set next status */
+				avs_status = avs_status_write_reg_data;
+			}
+		}
+		break;
+	case avs_status_write_reg_data:
+		/* Check error. */
+		err = avs_check_error();
+		if (err == avs_error_al) {
+			/* Recovery sequence of during data transfer. */
+			avs_status = avs_status_al_transfer;
+		} else if (err == avs_error_nack) {
+			/* Recovery sequence of detected NACK */
+			avs_status = avs_status_nack;
+		} else {
+			/* If wait state after data transmission. */
+			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
+				/* Dose efuse_avs exceed the number of */
+				/* the tables? */
+				if (efuse_avs >= EFUSE_AVS_NUM) {
+					ERROR("AVS number of eFuse is out "
+					      "of a range. number=%u\n",
+					      efuse_avs);
+					/* Infinite loop */
+					panic();
+				}
+				/* Write PMIC DVFS_SetVID value */
+				mmio_write_8(IIC_ICDR,
+					     init_vol_tbl[efuse_avs].vol);
+				/* Clear ICSR.WAIT to exit from wait state. */
+				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
+					     & (uint8_t) (~ICSR_WAIT));
+				/* Set next status */
+				avs_status = avs_status_stop_condition;
+			}
+		}
+		break;
+	case avs_status_stop_condition:
+		err = avs_check_error();
+		if (err == avs_error_al) {
+			/* Recovery sequence of during data transfer. */
+			avs_status = avs_status_al_transfer;
+		} else if (err == avs_error_nack) {
+			/* Recovery sequence of detected NACK */
+			avs_status = avs_status_nack;
+		} else {
+			/* If wait state after data transmission. */
+			if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
+				/* Write H'90 in ICCR to issue stop condition */
+				mmio_write_8(IIC_ICCR, ICCR_STOP);
+				/* Clear ICSR.WAIT to exit from wait state. */
+				mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
+					     & (uint8_t) (~ICSR_WAIT));
+				/* Set next status */
+				avs_status = avs_status_end;
+			}
+		}
+		break;
+	case avs_status_end:
+		/* Is this module not busy?. */
+		if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
+			/* Set ICCR=H'00 to disable the I2C module. */
+			mmio_write_8(IIC_ICCR, 0x00U);
+			/* Set next status */
+			avs_status = avs_status_complete;
+		}
+		break;
+	case avs_status_al_start:
+		/* Clear ICSR.AL bit */
+		mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
+					& (uint8_t) (~ICSR_AL)));
+		/* Transmit a clock pulse */
+		mmio_write_8(IIC_ICDR, init_vol_tbl[EFUSE_AVS0].vol);
+		/* Set next status */
+		avs_status = avs_status_error_stop;
+		break;
+	case avs_status_al_transfer:
+		/* Clear ICSR.AL bit */
+		mmio_write_8(IIC_ICSR, (mmio_read_8(IIC_ICSR)
+					& (uint8_t) (~ICSR_AL)));
+		/* Set next status */
+		avs_status = avs_status_error_stop;
+		break;
+	case avs_status_nack:
+		/* Write H'90 in ICCR to issue stop condition */
+		mmio_write_8(IIC_ICCR, ICCR_STOP);
+		/* Disable a WAIT and DTEE interrupt. */
+		mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC)
+			     & (uint8_t) (~(ICIC_WAITE | ICIC_DTEE)));
+		/* Clear ICSR.TACK bit */
+		mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
+			     & (uint8_t) (~ICSR_TACK));
+		/* Set next status */
+		avs_status = ave_status_error_end;
+		break;
+	case avs_status_error_stop:
+		/* If wait state after data transmission. */
+		if ((mmio_read_8(IIC_ICSR) & ICSR_WAIT) == ICSR_WAIT) {
+			/* Write H'90 in ICCR to issue stop condition */
+			mmio_write_8(IIC_ICCR, ICCR_STOP);
+			/* Clear ICSR.WAIT to exit from wait state. */
+			mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR)
+				     & (uint8_t) (~ICSR_WAIT));
+			/* Set next status */
+			avs_status = ave_status_error_end;
+		}
+		break;
+	case ave_status_error_end:
+		/* Is this module not busy?. */
+		if ((mmio_read_8(IIC_ICSR) & ICSR_BUSY) == 0U) {
+			/* Set ICCR=H'00 to disable the I2C module. */
+			mmio_write_8(IIC_ICCR, 0x00U);
+			/* Increment the re-try number of times. */
+			avs_retry++;
+			/* Set start a re-try to status. */
+			avs_status = avs_status_start_condition;
+		}
+		break;
+	case avs_status_complete:
+		/* After "avs_status" became the "avs_status_complete", */
+		/* "avs_setting()" function may be called. */
+		break;
+	default:
+		/* This case is not possible. */
+		ERROR("AVS setting is in invalid status. status=%u\n",
+		      avs_status);
+		/* Infinite loop */
+		panic();
+		break;
+	}
+#endif /* PMIC_ROHM_BD9571 */
+#endif /* (AVS_SETTING_ENABLE==1) */
+}
+
+/*
+ * Finish the AVS setting.
+ */
+void rcar_avs_end(void)
+{
+#if (AVS_SETTING_ENABLE == 1)
+	uint32_t mstp;
+
+#if PMIC_ROHM_BD9571
+	/* While status is not completion, be repeated. */
+	while (avs_status != avs_status_complete)
+		rcar_avs_setting();
+
+	NOTICE("AVS setting succeeded. DVFS_SetVID=0x%x\n",
+	       init_vol_tbl[efuse_avs].vol);
+
+#if AVS_READ_PMIC_REG_ENABLE == 1
+	{
+		uint8_t addr = PMIC_DVFS_SETVID;
+		uint8_t value = avs_read_pmic_reg(addr);
+		NOTICE("Read PMIC register. address=0x%x value=0x%x \n",
+		       addr, value);
+	}
+#endif
+
+	/* Bit of the module which wants to disable clock supply. */
+	mstp = CPG_SYS_DVFS_BIT;
+	/* Disables the supply of clock signal to a module. */
+	cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);
+#endif /* PMIC_ROHM_BD9571 */
+
+	/* Bit of the module which wants to disable clock supply. */
+	mstp = CPG_SYS_ADVFS_BIT;
+	/* Disables the supply of clock signal to a module. */
+	cpg_write(CPG_SMSTPCR9, mmio_read_32(CPG_SMSTPCR9) | mstp);
+
+#endif /* (AVS_SETTING_ENABLE==1) */
+}
+
+#if (AVS_SETTING_ENABLE == 1)
+#if PMIC_ROHM_BD9571
+/*
+ * Check error and judge re-try.
+ */
+static avs_error_t avs_check_error(void)
+{
+	avs_error_t ret;
+
+	if ((mmio_read_8(IIC_ICSR) & ICSR_AL) == ICSR_AL) {
+		NOTICE("Loss of arbitration is detected. "
+		       "AVS status=%d Retry=%u\n", avs_status, avs_retry);
+		/* Check of retry number of times */
+		if (avs_retry >= AVS_RETRY_NUM) {
+			ERROR("AVS setting failed in retry. max=%u\n",
+			      AVS_RETRY_NUM);
+			/* Infinite loop */
+			panic();
+		}
+		/* Set the error detected to error status. */
+		ret = avs_error_al;
+	} else if ((mmio_read_8(IIC_ICSR) & ICSR_TACK) == ICSR_TACK) {
+		NOTICE("Non-acknowledge is detected. "
+		       "AVS status=%d Retry=%u\n", avs_status, avs_retry);
+		/* Check of retry number of times */
+		if (avs_retry >= AVS_RETRY_NUM) {
+			ERROR("AVS setting failed in retry. max=%u\n",
+			      AVS_RETRY_NUM);
+			/* Infinite loop */
+			panic();
+		}
+		/* Set the error detected to error status. */
+		ret = avs_error_nack;
+	} else {
+		/* Not error. */
+		ret = avs_error_none;
+	}
+	return ret;
+}
+
+/*
+ * Set I2C for DVFS clock.
+ */
+static void avs_set_iic_clock(void)
+{
+	uint32_t md_pin;
+
+	/* Read Mode pin register. */
+	md_pin = mmio_read_32(RCAR_MODEMR) & CHECK_MD13_MD14;
+	/* Set the module clock (CP phy) for the IIC-DVFS. */
+	/* CP phy is EXTAL / 2.                            */
+	switch (md_pin) {
+	case MD14_MD13_TYPE_0:	/* EXTAL = 16.6666MHz */
+		mmio_write_8(IIC_ICCL, ICCL_FREQ_8p33M);
+		mmio_write_8(IIC_ICCH, ICCH_FREQ_8p33M);
+		break;
+	case MD14_MD13_TYPE_1:	/* EXTAL = 20MHz */
+		mmio_write_8(IIC_ICCL, ICCL_FREQ_10M);
+		mmio_write_8(IIC_ICCH, ICCH_FREQ_10M);
+		break;
+	case MD14_MD13_TYPE_2:	/* EXTAL = 25MHz (H3/M3) */
+		mmio_write_8(IIC_ICCL, ICCL_FREQ_12p5M);
+		mmio_write_8(IIC_ICCH, ICCH_FREQ_12p5M);
+		break;
+	case MD14_MD13_TYPE_3:	/* EXTAL = 33.3333MHz */
+		mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
+		mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
+		break;
+	default:		/* This case is not possible. */
+		/* CP Phy frequency is to be set for the 16.66MHz */
+		mmio_write_8(IIC_ICCL, ICCL_FREQ_16p66M);
+		mmio_write_8(IIC_ICCH, ICCH_FREQ_16p66M);
+		break;
+	}
+}
+
+#if AVS_READ_PMIC_REG_ENABLE == 1
+/*
+ * Read the value of the register of PMIC.
+ */
+static uint8_t avs_read_pmic_reg(uint8_t addr)
+{
+	uint8_t reg;
+
+	/* Set ICCR.ICE=1 to activate the I2C module. */
+	mmio_write_8(IIC_ICCR, mmio_read_8(IIC_ICCR) | ICCR_ENABLE);
+
+	/* Set frequency of 400kHz */
+	avs_set_iic_clock();
+
+	/* Set ICIC.WAITE=1, ICIC.DTEE=1 to enable data transmission    */
+	/* interrupt and wait interrupt.                                */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_WAITE | ICIC_DTEE);
+
+	/* Write H'94 in ICCR to issue start condition */
+	mmio_write_8(IIC_ICCR, ICCR_START);
+
+	/* Wait for a until ICSR.DTE becomes 1. */
+	avs_poll(ICSR_DTE, 1U);
+
+	/* Clear ICIC.DTEE to disable a DTE interrupt. */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
+	/* Send slave address of PMIC */
+	mmio_write_8(IIC_ICDR, PMIC_W_SLAVE_ADDRESS);
+
+	/* Wait for a until ICSR.WAIT becomes 1. */
+	avs_poll(ICSR_WAIT, 1U);
+
+	/* write PMIC address */
+	mmio_write_8(IIC_ICDR, addr);
+	/* Clear ICSR.WAIT to exit from WAIT status. */
+	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
+
+	/* Wait for a until ICSR.WAIT becomes 1. */
+	avs_poll(ICSR_WAIT, 1U);
+
+	/* Write H'94 in ICCR to issue restart condition */
+	mmio_write_8(IIC_ICCR, ICCR_START);
+	/* Clear ICSR.WAIT to exit from WAIT status. */
+	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
+	/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);
+
+	/* Wait for a until ICSR.DTE becomes 1. */
+	avs_poll(ICSR_DTE, 1U);
+
+	/* Clear ICIC.DTEE to disable a DTE interrupt. */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
+	/* Send slave address of PMIC */
+	mmio_write_8(IIC_ICDR, PMIC_R_SLAVE_ADDRESS);
+
+	/* Wait for a until ICSR.WAIT becomes 1. */
+	avs_poll(ICSR_WAIT, 1U);
+
+	/* Write H'81 to ICCR to issue the repeated START condition     */
+	/* for changing the transmission mode to the receive mode.      */
+	mmio_write_8(IIC_ICCR, ICCR_START_RECV);
+	/* Clear ICSR.WAIT to exit from WAIT status. */
+	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
+
+	/* Wait for a until ICSR.WAIT becomes 1. */
+	avs_poll(ICSR_WAIT, 1U);
+
+	/* Set ICCR to H'C0 for the STOP condition */
+	mmio_write_8(IIC_ICCR, ICCR_STOP_RECV);
+	/* Clear ICSR.WAIT to exit from WAIT status. */
+	mmio_write_8(IIC_ICSR, mmio_read_8(IIC_ICSR) & (uint8_t) (~ICSR_WAIT));
+	/* Set ICIC.DTEE=1 to enable data transmission interrupt. */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) | ICIC_DTEE);
+
+	/* Wait for a until ICSR.DTE becomes 1. */
+	avs_poll(ICSR_DTE, 1U);
+
+	/* Receive DVFS SetVID register */
+	/* Clear ICIC.DTEE to disable a DTE interrupt. */
+	mmio_write_8(IIC_ICIC, mmio_read_8(IIC_ICIC) & (uint8_t) (~ICIC_DTEE));
+	/* Receive DVFS SetVID register */
+	reg = mmio_read_8(IIC_ICDR);
+
+	/* Wait until ICSR.BUSY is cleared. */
+	avs_poll(ICSR_BUSY, 0U);
+
+	/* Set ICCR=H'00 to disable the I2C module. */
+	mmio_write_8(IIC_ICCR, 0x00U);
+
+	return reg;
+}
+
+/*
+ * Wait processing by the polling.
+ */
+static void avs_poll(uint8_t bit_pos, uint8_t val)
+{
+	uint8_t bit_val = 0U;
+
+	if (val != 0U)
+		bit_val = bit_pos;
+
+	while (1) {
+		if ((mmio_read_8(IIC_ICSR) & bit_pos) == bit_val)
+			break;
+	}
+}
+#endif /* AVS_READ_PMIC_REG_ENABLE */
+#endif /* PMIC_ROHM_BD9571 */
+#endif /* (AVS_SETTING_ENABLE==1) */