nxp: ddr driver enablement for nxp layerscape soc

DDR driver for NXP layerscape SoC(s):
 - lx2160aqds
 - lx2162aqds
 - lx2160ardb
 - Other Board with SoC(s) like ls1046a, ls1043a etc;
	-- These other boards are not verified yet.

Signed-off-by: Rajesh Bhagat <rajesh.bhagat@nxp.com>
Signed-off-by: York Sun <york.sun@nxp.com>
Signed-off-by: Udit Agarwal <udit.agarwal@nxp.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Change-Id: Ic84a63cb30eba054f432d479862cd4d1097cbbaf
diff --git a/drivers/nxp/ddr/nxp-ddr/ddr.c b/drivers/nxp/ddr/nxp-ddr/ddr.c
new file mode 100644
index 0000000..216e05c
--- /dev/null
+++ b/drivers/nxp/ddr/nxp-ddr/ddr.c
@@ -0,0 +1,930 @@
+/*
+ * Copyright 2021 NXP
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <errno.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <common/debug.h>
+#include <ddr.h>
+#ifndef CONFIG_DDR_NODIMM
+#include <i2c.h>
+#endif
+#include <nxp_timer.h>
+
+struct dynamic_odt {
+	unsigned int odt_rd_cfg;
+	unsigned int odt_wr_cfg;
+	unsigned int odt_rtt_norm;
+	unsigned int odt_rtt_wr;
+};
+
+#ifndef CONFIG_STATIC_DDR
+#if defined(PHY_GEN2_FW_IMAGE_BUFFER) && !defined(NXP_DDR_PHY_GEN2)
+#error Missing NXP_DDR_PHY_GEN2
+#endif
+#ifdef NXP_DDR_PHY_GEN2
+static const struct dynamic_odt single_D[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs1 */
+		DDR_ODT_NEVER,
+		DDR_ODT_NEVER,
+		DDR4_RTT_OFF,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{}
+};
+
+static const struct dynamic_odt single_S[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{},
+	{},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+	{	/* cs0 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_60_OHM,
+		DDR4_RTT_WR_240_OHM
+	},
+	{	/* cs1 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_60_OHM,
+		DDR4_RTT_WR_240_OHM
+	},
+	{	/* cs2 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_60_OHM,
+		DDR4_RTT_WR_240_OHM
+	},
+	{	/* cs3 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_60_OHM,
+		DDR4_RTT_WR_240_OHM
+	}
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{	/* cs2 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_SAME_DIMM,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs1 */
+		DDR_ODT_NEVER,
+		DDR_ODT_NEVER,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{}
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_CS,
+		DDR4_RTT_80_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{},
+	{}
+};
+#else
+static const struct dynamic_odt single_D[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_40_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs1 */
+		DDR_ODT_NEVER,
+		DDR_ODT_NEVER,
+		DDR4_RTT_OFF,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{}
+};
+
+static const struct dynamic_odt single_S[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_ALL,
+		DDR4_RTT_40_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{},
+	{},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_SAME_DIMM,
+		DDR4_RTT_120_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs1 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_OTHER_DIMM,
+		DDR4_RTT_34_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs2 */
+		DDR_ODT_NEVER,
+		DDR_ODT_SAME_DIMM,
+		DDR4_RTT_120_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs3 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_OTHER_DIMM,
+		DDR4_RTT_34_OHM,
+		DDR4_RTT_WR_OFF
+	}
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+	{	/* cs0 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_34_OHM,
+		DDR4_RTT_WR_120_OHM
+	},
+	{},
+	{	/* cs2 */
+		DDR_ODT_OTHER_DIMM,
+		DDR_ODT_ALL,
+		DDR4_RTT_34_OHM,
+		DDR4_RTT_WR_120_OHM
+	},
+	{}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_SAME_DIMM,
+		DDR4_RTT_40_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{	/* cs1 */
+		DDR_ODT_NEVER,
+		DDR_ODT_NEVER,
+		DDR4_RTT_OFF,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{}
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+	{	/* cs0 */
+		DDR_ODT_NEVER,
+		DDR_ODT_CS,
+		DDR4_RTT_40_OHM,
+		DDR4_RTT_WR_OFF
+	},
+	{},
+	{},
+	{}
+};
+#endif /* NXP_DDR_PHY_GEN2 */
+
+/*
+ * Automatically select bank interleaving mode based on DIMMs
+ * in this order: cs0_cs1_cs2_cs3, cs0_cs1, null.
+ * This function only deal with one or two slots per controller.
+ */
+static inline unsigned int auto_bank_intlv(const int cs_in_use,
+					   const struct dimm_params *pdimm)
+{
+	switch (cs_in_use) {
+	case 0xf:
+		return DDR_BA_INTLV_CS0123;
+	case 0x3:
+		return DDR_BA_INTLV_CS01;
+	case 0x1:
+		return DDR_BA_NONE;
+	case 0x5:
+		return DDR_BA_NONE;
+	default:
+		break;
+	}
+
+	return 0U;
+}
+
+static int cal_odt(const unsigned int clk,
+		   struct memctl_opt *popts,
+		   struct ddr_conf *conf,
+		   struct dimm_params *pdimm,
+		   const int dimm_slot_per_ctrl)
+
+{
+	unsigned int i;
+	const struct dynamic_odt *pdodt = NULL;
+
+	const static struct dynamic_odt *table[2][5] = {
+		{single_S, single_D, NULL, NULL},
+		{dual_SS, dual_DD, NULL, NULL},
+	};
+
+	if (dimm_slot_per_ctrl != 1 && dimm_slot_per_ctrl != 2) {
+		ERROR("Unsupported number of DIMMs\n");
+		return -EINVAL;
+	}
+
+	pdodt = table[dimm_slot_per_ctrl - 1][pdimm->n_ranks - 1];
+	if (pdodt == dual_SS) {
+		pdodt = (conf->cs_in_use == 0x5) ? dual_SS :
+			((conf->cs_in_use == 0x1) ? dual_S0 : NULL);
+	} else if (pdodt == dual_DD) {
+		pdodt = (conf->cs_in_use == 0xf) ? dual_DD :
+			((conf->cs_in_use == 0x3) ? dual_D0 : NULL);
+	}
+	if (pdodt == dual_DD && pdimm->package_3ds) {
+		ERROR("Too many 3DS DIMMs.\n");
+		return -EINVAL;
+	}
+
+	if (pdodt == NULL) {
+		ERROR("Error determing ODT.\n");
+		return -EINVAL;
+	}
+
+	/* Pick chip-select local options. */
+	for (i = 0U; i < DDRC_NUM_CS; i++) {
+		debug("cs %d\n", i);
+		popts->cs_odt[i].odt_rd_cfg = pdodt[i].odt_rd_cfg;
+		debug("     odt_rd_cfg 0x%x\n",
+			  popts->cs_odt[i].odt_rd_cfg);
+		popts->cs_odt[i].odt_wr_cfg = pdodt[i].odt_wr_cfg;
+		debug("     odt_wr_cfg 0x%x\n",
+			  popts->cs_odt[i].odt_wr_cfg);
+		popts->cs_odt[i].odt_rtt_norm = pdodt[i].odt_rtt_norm;
+		debug("     odt_rtt_norm 0x%x\n",
+			  popts->cs_odt[i].odt_rtt_norm);
+		popts->cs_odt[i].odt_rtt_wr = pdodt[i].odt_rtt_wr;
+		debug("     odt_rtt_wr 0x%x\n",
+			  popts->cs_odt[i].odt_rtt_wr);
+		popts->cs_odt[i].auto_precharge = 0;
+		debug("     auto_precharge %d\n",
+			  popts->cs_odt[i].auto_precharge);
+	}
+
+	return 0;
+}
+
+static int cal_opts(const unsigned int clk,
+		    struct memctl_opt *popts,
+		    struct ddr_conf *conf,
+		    struct dimm_params *pdimm,
+		    const int dimm_slot_per_ctrl,
+		    const unsigned int ip_rev)
+{
+	popts->rdimm = pdimm->rdimm;
+	popts->mirrored_dimm = pdimm->mirrored_dimm;
+#ifdef CONFIG_DDR_ECC_EN
+	popts->ecc_mode = pdimm->edc_config == 0x02 ? 1 : 0;
+#endif
+	popts->ctlr_init_ecc = popts->ecc_mode;
+	debug("ctlr_init_ecc %d\n", popts->ctlr_init_ecc);
+	popts->self_refresh_in_sleep = 1;
+	popts->dynamic_power = 0;
+
+	/*
+	 * check sdram width, allow platform override
+	 * 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
+	 */
+	if (pdimm->primary_sdram_width == 64) {
+		popts->data_bus_dimm = DDR_DBUS_64;
+		popts->otf_burst_chop_en = 1;
+	} else if (pdimm->primary_sdram_width == 32) {
+		popts->data_bus_dimm = DDR_DBUS_32;
+		popts->otf_burst_chop_en = 0;
+	} else if (pdimm->primary_sdram_width == 16) {
+		popts->data_bus_dimm = DDR_DBUS_16;
+		popts->otf_burst_chop_en = 0;
+	} else {
+		ERROR("primary sdram width invalid!\n");
+		return -EINVAL;
+	}
+	popts->data_bus_used = popts->data_bus_dimm;
+	popts->x4_en = (pdimm->device_width == 4) ? 1 : 0;
+	debug("x4_en %d\n", popts->x4_en);
+
+	/* for RDIMM and DDR4 UDIMM/discrete memory, address parity enable */
+	if (popts->rdimm != 0) {
+		popts->ap_en = 1; /* 0 = disable,  1 = enable */
+	} else {
+		popts->ap_en = 0; /* disabled for DDR4 UDIMM/discrete default */
+	}
+
+	if (ip_rev == 0x50500) {
+		popts->ap_en = 0;
+	}
+
+	debug("ap_en %d\n", popts->ap_en);
+
+	/* BSTTOPRE precharge interval uses 1/4 of refint value. */
+	popts->bstopre = picos_to_mclk(clk, pdimm->refresh_rate_ps) >> 2;
+	popts->tfaw_ps = pdimm->tfaw_ps;
+
+	return 0;
+}
+
+static void cal_intlv(const int num_ctlrs,
+		      struct memctl_opt *popts,
+		      struct ddr_conf *conf,
+		      struct dimm_params *pdimm)
+{
+#ifdef NXP_DDR_INTLV_256B
+	if (num_ctlrs == 2) {
+		popts->ctlr_intlv = 1;
+		popts->ctlr_intlv_mode = DDR_256B_INTLV;
+	}
+#endif
+	debug("ctlr_intlv %d\n", popts->ctlr_intlv);
+	debug("ctlr_intlv_mode %d\n", popts->ctlr_intlv_mode);
+
+	popts->ba_intlv = auto_bank_intlv(conf->cs_in_use, pdimm);
+	debug("ba_intlv 0x%x\n", popts->ba_intlv);
+}
+
+static int update_burst_length(struct memctl_opt *popts)
+{
+	/* Choose burst length. */
+	if ((popts->data_bus_used == DDR_DBUS_32) ||
+	    (popts->data_bus_used == DDR_DBUS_16)) {
+		/* 32-bit or 16-bit bus */
+		popts->otf_burst_chop_en = 0;
+		popts->burst_length = DDR_BL8;
+	} else if (popts->otf_burst_chop_en != 0) { /* on-the-fly burst chop */
+		popts->burst_length = DDR_OTF;	/* on-the-fly BC4 and BL8 */
+	} else {
+		popts->burst_length = DDR_BL8;
+	}
+	debug("data_bus_used %d\n", popts->data_bus_used);
+	debug("otf_burst_chop_en %d\n", popts->otf_burst_chop_en);
+	debug("burst_length 0x%x\n", popts->burst_length);
+	/*
+	 * If a reduced data width is requested, but the SPD
+	 * specifies a physically wider device, adjust the
+	 * computed dimm capacities accordingly before
+	 * assigning addresses.
+	 * 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
+	 */
+	if (popts->data_bus_dimm > popts->data_bus_used) {
+		ERROR("Data bus configuration error\n");
+		return -EINVAL;
+	}
+	popts->dbw_cap_shift = popts->data_bus_used - popts->data_bus_dimm;
+	debug("dbw_cap_shift %d\n", popts->dbw_cap_shift);
+
+	return 0;
+}
+
+int cal_board_params(struct ddr_info *priv,
+		     const struct board_timing *dimm,
+		     int len)
+{
+	const unsigned long speed = priv->clk / 1000000;
+	const struct dimm_params *pdimm = &priv->dimm;
+	struct memctl_opt *popts = &priv->opt;
+	struct rc_timing const *prt = NULL;
+	struct rc_timing const *chosen = NULL;
+	int i;
+
+	for (i = 0; i < len; i++) {
+		if (pdimm->rc == dimm[i].rc) {
+			prt = dimm[i].p;
+			break;
+		}
+	}
+	if (prt == NULL) {
+		ERROR("Board parameters no match.\n");
+		return -EINVAL;
+	}
+	while (prt->speed_bin != 0) {
+		if (speed <= prt->speed_bin) {
+			chosen = prt;
+			break;
+		}
+		prt++;
+	}
+	if (chosen == NULL) {
+		ERROR("timing no match for speed %lu\n", speed);
+		return -EINVAL;
+	}
+	popts->clk_adj = prt->clk_adj;
+	popts->wrlvl_start = prt->wrlvl;
+	popts->wrlvl_ctl_2 = (prt->wrlvl * 0x01010101 + dimm[i].add1) &
+			     0xFFFFFFFF;
+	popts->wrlvl_ctl_3 = (prt->wrlvl * 0x01010101 + dimm[i].add2) &
+			     0xFFFFFFFF;
+
+	return 0;
+}
+
+static int synthesize_ctlr(struct ddr_info *priv)
+{
+	int ret;
+
+	ret = cal_odt(priv->clk,
+		      &priv->opt,
+		      &priv->conf,
+		      &priv->dimm,
+		      priv->dimm_on_ctlr);
+	if (ret != 0) {
+		return ret;
+	}
+
+	ret = cal_opts(priv->clk,
+		       &priv->opt,
+		       &priv->conf,
+		       &priv->dimm,
+		       priv->dimm_on_ctlr,
+		       priv->ip_rev);
+
+	if (ret != 0) {
+		return ret;
+	}
+
+	cal_intlv(priv->num_ctlrs, &priv->opt, &priv->conf, &priv->dimm);
+	ret = ddr_board_options(priv);
+	if (ret != 0) {
+		ERROR("Failed matching board timing.\n");
+	}
+
+	ret = update_burst_length(&priv->opt);
+
+	return ret;
+}
+
+/* Return the bit mask of valid DIMMs found */
+static int parse_spd(struct ddr_info *priv)
+{
+	struct ddr_conf *conf = &priv->conf;
+	struct dimm_params *dimm = &priv->dimm;
+	int j, valid_mask = 0;
+
+#ifdef CONFIG_DDR_NODIMM
+	valid_mask = ddr_get_ddr_params(dimm, conf);
+	if (valid_mask < 0) {
+		ERROR("DDR params error\n");
+		return valid_mask;
+	}
+#else
+	const int *spd_addr = priv->spd_addr;
+	const int num_ctlrs = priv->num_ctlrs;
+	const int num_dimm = priv->dimm_on_ctlr;
+	struct ddr4_spd spd[2];
+	unsigned int spd_checksum[2];
+	int addr_idx = 0;
+	int spd_idx = 0;
+	int ret, addr, i;
+
+	/* Scan all DIMMs */
+	for (i = 0; i < num_ctlrs; i++) {
+		debug("Controller %d\n", i);
+		for (j = 0; j < num_dimm; j++, addr_idx++) {
+			debug("DIMM %d\n", j);
+			addr = spd_addr[addr_idx];
+			if (addr == 0) {
+				if (j == 0) {
+					ERROR("First SPD addr wrong.\n");
+					return -EINVAL;
+				}
+				continue;
+			}
+			debug("addr 0x%x\n", addr);
+			ret = read_spd(addr, &spd[spd_idx],
+				       sizeof(struct ddr4_spd));
+			if (ret != 0) {	/* invalid */
+				debug("Invalid SPD at address 0x%x\n", addr);
+				continue;
+			}
+
+			spd_checksum[spd_idx] =
+				(spd[spd_idx].crc[1] << 24) |
+				(spd[spd_idx].crc[0] << 16) |
+				(spd[spd_idx].mod_section.uc[127] << 8) |
+				(spd[spd_idx].mod_section.uc[126] << 0);
+			debug("checksum 0x%x\n", spd_checksum[spd_idx]);
+			if (spd_checksum[spd_idx] == 0) {
+				debug("Bad checksum, ignored.\n");
+				continue;
+			}
+			if (spd_idx == 0) {
+				/* first valid SPD */
+				ret = cal_dimm_params(&spd[0], dimm);
+				if (ret != 0) {
+					ERROR("SPD calculation error\n");
+					return -EINVAL;
+				}
+			}
+
+			if (spd_idx != 0 && spd_checksum[0] !=
+			    spd_checksum[spd_idx]) {
+				ERROR("Not identical DIMMs.\n");
+				return -EINVAL;
+			}
+			conf->dimm_in_use[j] = 1;
+			valid_mask |= 1 << addr_idx;
+			spd_idx = 1;
+		}
+		debug("done with controller %d\n", i);
+	}
+	switch (num_ctlrs) {
+	case 1:
+		if ((valid_mask & 0x1) == 0) {
+			ERROR("First slot cannot be empty.\n");
+			return -EINVAL;
+		}
+		break;
+	case 2:
+		switch (num_dimm) {
+		case 1:
+			if (valid_mask == 0) {
+				ERROR("Both slot empty\n");
+				return -EINVAL;
+			}
+			break;
+		case 2:
+			if (valid_mask != 0x5 &&
+			    valid_mask != 0xf &&
+			    (valid_mask & 0x7) != 0x4 &&
+			    (valid_mask & 0xd) != 0x1) {
+				ERROR("Invalid DIMM combination.\n");
+				return -EINVAL;
+			}
+			break;
+		default:
+			ERROR("Invalid number of DIMMs.\n");
+			return -EINVAL;
+		}
+		break;
+	default:
+		ERROR("Invalid number of controllers.\n");
+		return -EINVAL;
+	}
+	/* now we have valid and identical DIMMs on controllers */
+#endif	/* CONFIG_DDR_NODIMM */
+
+	debug("cal cs\n");
+	conf->cs_in_use = 0;
+	for (j = 0; j < DDRC_NUM_DIMM; j++) {
+		if (conf->dimm_in_use[j] == 0) {
+			continue;
+		}
+		switch (dimm->n_ranks) {
+		case 4:
+			ERROR("Quad-rank DIMM not supported\n");
+			return -EINVAL;
+		case 2:
+			conf->cs_on_dimm[j] = 0x3 << (j * CONFIG_CS_PER_SLOT);
+			conf->cs_in_use |= conf->cs_on_dimm[j];
+			break;
+		case 1:
+			conf->cs_on_dimm[j] = 0x1 << (j * CONFIG_CS_PER_SLOT);
+			conf->cs_in_use |= conf->cs_on_dimm[j];
+			break;
+		default:
+			ERROR("SPD error with n_ranks\n");
+			return -EINVAL;
+		}
+		debug("cs_in_use = %x\n", conf->cs_in_use);
+		debug("cs_on_dimm[%d] = %x\n", j, conf->cs_on_dimm[j]);
+	}
+#ifndef CONFIG_DDR_NODIMM
+	if (priv->dimm.rdimm != 0) {
+		NOTICE("RDIMM %s\n", priv->dimm.mpart);
+	} else {
+		NOTICE("UDIMM %s\n", priv->dimm.mpart);
+	}
+#else
+	NOTICE("%s\n", priv->dimm.mpart);
+#endif
+
+	return valid_mask;
+}
+
+static unsigned long long assign_intlv_addr(
+	const struct dimm_params *pdimm,
+	const struct memctl_opt *opt,
+	struct ddr_conf *conf,
+	const unsigned long long current_mem_base)
+{
+	int i;
+	int ctlr_density_mul = 0;
+	const unsigned long long rank_density = pdimm->rank_density >>
+						opt->dbw_cap_shift;
+	unsigned long long total_ctlr_mem;
+
+	debug("rank density 0x%llx\n", rank_density);
+	switch (opt->ba_intlv & DDR_BA_INTLV_CS0123) {
+	case DDR_BA_INTLV_CS0123:
+		ctlr_density_mul = 4;
+		break;
+	case DDR_BA_INTLV_CS01:
+		ctlr_density_mul = 2;
+		break;
+	default:
+		ctlr_density_mul = 1;
+		break;
+	}
+	debug("ctlr density mul %d\n", ctlr_density_mul);
+	switch (opt->ctlr_intlv_mode) {
+	case DDR_256B_INTLV:
+		total_ctlr_mem = 2 * ctlr_density_mul * rank_density;
+		break;
+	default:
+		ERROR("Unknown interleaving mode");
+		return 0;
+	}
+	conf->base_addr = current_mem_base;
+	conf->total_mem = total_ctlr_mem;
+
+	/* overwrite cs_in_use bitmask with controller interleaving */
+	conf->cs_in_use = (1 << ctlr_density_mul) - 1;
+	debug("Overwrite cs_in_use as %x\n", conf->cs_in_use);
+
+	/* Fill addr with each cs in use */
+	for (i = 0; i < ctlr_density_mul; i++) {
+		conf->cs_base_addr[i] = current_mem_base;
+		conf->cs_size[i] = total_ctlr_mem;
+		debug("CS %d\n", i);
+		debug("    base_addr 0x%llx\n", conf->cs_base_addr[i]);
+		debug("    size 0x%llx\n", conf->cs_size[i]);
+	}
+
+	return total_ctlr_mem;
+}
+
+static unsigned long long assign_non_intlv_addr(
+	const struct dimm_params *pdimm,
+	const struct memctl_opt *opt,
+	struct ddr_conf *conf,
+	unsigned long long current_mem_base)
+{
+	int i;
+	const unsigned long long rank_density = pdimm->rank_density >>
+						opt->dbw_cap_shift;
+	unsigned long long total_ctlr_mem = 0ULL;
+
+	debug("rank density 0x%llx\n", rank_density);
+	conf->base_addr = current_mem_base;
+
+	/* assign each cs */
+	switch (opt->ba_intlv & DDR_BA_INTLV_CS0123) {
+	case DDR_BA_INTLV_CS0123:
+		for (i = 0; i < DDRC_NUM_CS; i++) {
+			conf->cs_base_addr[i] = current_mem_base;
+			conf->cs_size[i] = rank_density << 2;
+			total_ctlr_mem += rank_density;
+		}
+		break;
+	case DDR_BA_INTLV_CS01:
+		for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) && i < 2; i++) {
+			conf->cs_base_addr[i] = current_mem_base;
+			conf->cs_size[i] = rank_density << 1;
+			total_ctlr_mem += rank_density;
+		}
+		current_mem_base += total_ctlr_mem;
+		for (; ((conf->cs_in_use & (1 << i)) != 0) && i < DDRC_NUM_CS;
+		     i++) {
+			conf->cs_base_addr[i] = current_mem_base;
+			conf->cs_size[i] = rank_density;
+			total_ctlr_mem += rank_density;
+			current_mem_base += rank_density;
+		}
+		break;
+	case DDR_BA_NONE:
+		for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) &&
+			     (i < DDRC_NUM_CS); i++) {
+			conf->cs_base_addr[i] = current_mem_base;
+			conf->cs_size[i] = rank_density;
+			current_mem_base += rank_density;
+			total_ctlr_mem += rank_density;
+		}
+		break;
+	default:
+		ERROR("Unsupported bank interleaving\n");
+		return 0;
+	}
+	for (i = 0; ((conf->cs_in_use & (1 << i)) != 0) &&
+		     (i < DDRC_NUM_CS); i++) {
+		debug("CS %d\n", i);
+		debug("    base_addr 0x%llx\n", conf->cs_base_addr[i]);
+		debug("    size 0x%llx\n", conf->cs_size[i]);
+	}
+
+	return total_ctlr_mem;
+}
+
+unsigned long long assign_addresses(struct ddr_info *priv)
+		   __attribute__ ((weak));
+
+unsigned long long assign_addresses(struct ddr_info *priv)
+{
+	struct memctl_opt *opt = &priv->opt;
+	const struct dimm_params *dimm = &priv->dimm;
+	struct ddr_conf *conf = &priv->conf;
+	unsigned long long current_mem_base = priv->mem_base;
+	unsigned long long total_mem;
+
+	total_mem = 0ULL;
+	debug("ctlr_intlv %d\n", opt->ctlr_intlv);
+	if (opt->ctlr_intlv != 0) {
+		total_mem = assign_intlv_addr(dimm, opt, conf,
+					      current_mem_base);
+	} else {
+		/*
+		 * Simple linear assignment if memory controllers are not
+		 * interleaved. This is only valid for SoCs with single DDRC.
+		 */
+		total_mem = assign_non_intlv_addr(dimm, opt, conf,
+						  current_mem_base);
+	}
+	conf->total_mem = total_mem;
+	debug("base 0x%llx\n", current_mem_base);
+	debug("Total mem by assignment is 0x%llx\n", total_mem);
+
+	return total_mem;
+}
+
+static int cal_ddrc_regs(struct ddr_info *priv)
+{
+	int ret;
+
+	ret = compute_ddrc(priv->clk,
+			   &priv->opt,
+			   &priv->conf,
+			   &priv->ddr_reg,
+			   &priv->dimm,
+			   priv->ip_rev);
+	if (ret != 0) {
+		ERROR("Calculating DDR registers failed\n");
+	}
+
+	return ret;
+}
+
+#endif /* CONFIG_STATIC_DDR */
+
+static int write_ddrc_regs(struct ddr_info *priv)
+{
+	int i;
+	int ret;
+
+	for (i = 0; i < priv->num_ctlrs; i++) {
+		ret = ddrc_set_regs(priv->clk, &priv->ddr_reg, priv->ddr[i], 0);
+		if (ret != 0) {
+			ERROR("Writing DDR register(s) failed\n");
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+long long dram_init(struct ddr_info *priv
+#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
+		    , uintptr_t nxp_ccn_hn_f0_addr
+#endif
+		)
+{
+	uint64_t time __unused;
+	long long dram_size;
+	int ret;
+	const uint64_t time_base = get_timer_val(0);
+	unsigned int ip_rev = get_ddrc_version(priv->ddr[0]);
+
+	int valid_spd_mask __unused;
+	int scratch = 0x0;
+
+	priv->ip_rev = ip_rev;
+
+#ifndef CONFIG_STATIC_DDR
+	INFO("time base %llu ms\n", time_base);
+	debug("Parse DIMM SPD(s)\n");
+	valid_spd_mask = parse_spd(priv);
+
+	if (valid_spd_mask < 0) {
+		ERROR("Parsing DIMM Error\n");
+		return valid_spd_mask;
+	}
+
+#if defined(NXP_HAS_CCN504) || defined(NXP_HAS_CCN508)
+	if (priv->num_ctlrs == 2 || priv->num_ctlrs == 1) {
+		ret = disable_unused_ddrc(priv, valid_spd_mask,
+					  nxp_ccn_hn_f0_addr);
+		if (ret != 0) {
+			return ret;
+		}
+	}
+#endif
+
+	time = get_timer_val(time_base);
+	INFO("Time after parsing SPD %llu ms\n", time);
+	debug("Synthesize configurations\n");
+	ret = synthesize_ctlr(priv);
+	if (ret != 0) {
+		ERROR("Synthesize config error\n");
+		return ret;
+	}
+
+	debug("Assign binding addresses\n");
+	dram_size = assign_addresses(priv);
+	if (dram_size == 0) {
+		ERROR("Assigning address error\n");
+		return -EINVAL;
+	}
+
+	debug("Calculate controller registers\n");
+	ret = cal_ddrc_regs(priv);
+	if (ret != 0) {
+		ERROR("Calculate register error\n");
+		return ret;
+	}
+
+	ret = compute_ddr_phy(priv);
+	if (ret != 0)
+		ERROR("Calculating DDR PHY registers failed.\n");
+
+#else
+	dram_size = board_static_ddr(priv);
+	if (dram_size == 0) {
+		ERROR("Error getting static DDR settings.\n");
+		return -EINVAL;
+	}
+#endif
+
+	if (priv->warm_boot_flag == DDR_WARM_BOOT) {
+		scratch = (priv->ddr_reg).sdram_cfg[1];
+		scratch = scratch & ~(SDRAM_CFG2_D_INIT);
+		priv->ddr_reg.sdram_cfg[1] = scratch;
+	}
+
+	time = get_timer_val(time_base);
+	INFO("Time before programming controller %llu ms\n", time);
+	debug("Program controller registers\n");
+	ret = write_ddrc_regs(priv);
+	if (ret != 0) {
+		ERROR("Programing DDRC error\n");
+		return ret;
+	}
+
+	puts("");
+	NOTICE("%lld GB ", dram_size >> 30);
+	print_ddr_info(priv->ddr[0]);
+
+	time = get_timer_val(time_base);
+	INFO("Time used by DDR driver %llu ms\n", time);
+
+	return dram_size;
+}