refactor(gpt): productize and refactor GPT library

This patch updates and refactors the GPT library and fixes bugs.

- Support all combinations of PGS, PPS, and L0GPTSZ parameters.
- PPS and PGS are set at runtime, L0GPTSZ is read from GPCCR_EL3.
- Use compiler definitions to simplify code.
- Renaming functions to better suit intended uses.
- MMU enabled before GPT APIs called.
- Add comments to make function usage more clear in GPT library.
- Added _rme suffix to file names to differentiate better from the
  GPT file system code.
- Renamed gpt_defs.h to gpt_rme_private.h to better separate private
  and public code.
- Renamed gpt_core.c to gpt_rme.c to better conform to TF-A precedent.

Signed-off-by: John Powell <john.powell@arm.com>
Change-Id: I4cbb23b0f81e697baa9fb23ba458aa3f7d1ed919
diff --git a/lib/gpt/gpt_core.c b/lib/gpt/gpt_core.c
deleted file mode 100644
index 8a3afd2..0000000
--- a/lib/gpt/gpt_core.c
+++ /dev/null
@@ -1,767 +0,0 @@
-/*
- * Copyright (c) 2021, Arm Limited. All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
-
-#include <assert.h>
-#include <errno.h>
-#include <stdint.h>
-
-#include <arch.h>
-#include <arch_helpers.h>
-#include <lib/gpt/gpt.h>
-#include <lib/smccc.h>
-#include <lib/spinlock.h>
-#include <lib/xlat_tables/xlat_tables_v2.h>
-
-#if !ENABLE_RME
-#error "ENABLE_RME must be enabled to use the GPT library."
-#endif
-
-typedef struct {
-	uintptr_t plat_gpt_l0_base;
-	uintptr_t plat_gpt_l1_base;
-	size_t plat_gpt_l0_size;
-	size_t plat_gpt_l1_size;
-	unsigned int plat_gpt_pps;
-	unsigned int plat_gpt_pgs;
-	unsigned int plat_gpt_l0gptsz;
-} gpt_config_t;
-
-gpt_config_t gpt_config;
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-/* Helper function that cleans the data cache only if it is enabled. */
-static inline
-	void gpt_clean_dcache_range(uintptr_t addr, size_t size)
-{
-	if ((read_sctlr_el3() & SCTLR_C_BIT) != 0U) {
-		clean_dcache_range(addr, size);
-	}
-}
-
-/* Helper function that invalidates the data cache only if it is enabled. */
-static inline
-	void gpt_inv_dcache_range(uintptr_t addr, size_t size)
-{
-	if ((read_sctlr_el3() & SCTLR_C_BIT) != 0U) {
-		inv_dcache_range(addr, size);
-	}
-}
-#endif
-
-typedef struct l1_gpt_attr_desc {
-	size_t t_sz;		/** Table size */
-	size_t g_sz;		/** Granularity size */
-	unsigned int p_val;	/** Associated P value */
-} l1_gpt_attr_desc_t;
-
-/*
- * Lookup table to find out the size in bytes of the L1 tables as well
- * as the index mask, given the Width of Physical Granule Size (PGS).
- * L1 tables are indexed by PA[29:p+4], being 'p' the width in bits of the
- * aforementioned Physical Granule Size.
- */
-static const l1_gpt_attr_desc_t l1_gpt_attr_lookup[] = {
-	[GPCCR_PGS_4K]  = {U(1) << U(17),  /* 16384B x 64bit entry = 128KB */
-			   PAGE_SIZE_4KB,  /* 4KB Granularity  */
-			   U(12)},
-	[GPCCR_PGS_64K] = {U(1) << U(13),  /* Table size = 8KB  */
-			   PAGE_SIZE_64KB, /* 64KB Granularity  */
-			  U(16)},
-	[GPCCR_PGS_16K] = {U(1) << U(15),  /* Table size = 32KB */
-			   PAGE_SIZE_16KB, /* 16KB Granularity  */
-			   U(14)}
-};
-
-typedef struct l0_gpt_attr_desc {
-	size_t sz;
-	unsigned int t_val_mask;
-} l0_gpt_attr_desc_t;
-
-/*
- * Lookup table to find out the size in bytes of the L0 table as well
- * as the index mask, given the Protected Physical Address Size (PPS).
- * L0 table is indexed by PA[t-1:30], being 't' the size in bits
- * of the aforementioned Protected Physical Address Size.
- */
-static const l0_gpt_attr_desc_t  l0_gpt_attr_lookup[] = {
-
-	[GPCCR_PPS_4GB]   = {U(1) << U(5),   /* 4 x 64 bit entry = 32 bytes */
-			     0x3},	     /* Bits[31:30]   */
-
-	[GPCCR_PPS_64GB]  = {U(1) << U(9),   /* 512 bytes     */
-			     0x3f},	     /* Bits[35:30]   */
-
-	[GPCCR_PPS_1TB]   = {U(1) << U(13),  /* 8KB	      */
-			     0x3ff},	     /* Bits[39:30]   */
-
-	[GPCCR_PPS_4TB]   = {U(1) << U(15),  /* 32KB	      */
-			     0xfff},	     /* Bits[41:30]   */
-
-	[GPCCR_PPS_16TB]  = {U(1) << U(17),  /* 128KB	      */
-			     0x3fff},	     /* Bits[43:30]   */
-
-	[GPCCR_PPS_256TB] = {U(1) << U(21),  /* 2MB	      */
-			     0x3ffff},	     /* Bits[47:30]   */
-
-	[GPCCR_PPS_4PB]   = {U(1) << U(25),  /* 32MB	      */
-			     0x3fffff},	     /* Bits[51:30]   */
-
-};
-
-static unsigned int get_l1_gpt_index(unsigned int pgs, uintptr_t pa)
-{
-	unsigned int l1_gpt_arr_idx;
-
-	/*
-	 * Mask top 2 bits to obtain the 30 bits required to
-	 * generate the L1 GPT index
-	 */
-	l1_gpt_arr_idx = (unsigned int)(pa & L1_GPT_INDEX_MASK);
-
-	/* Shift by 'p' value + 4 to obtain the index */
-	l1_gpt_arr_idx >>= (l1_gpt_attr_lookup[pgs].p_val + 4);
-
-	return l1_gpt_arr_idx;
-}
-
-unsigned int plat_is_my_cpu_primary(void);
-
-/* The granule partition tables can only be configured on BL2 */
-#ifdef IMAGE_BL2
-
-/* Global to keep track of next available index in array of L1 GPTs */
-static unsigned int l1_gpt_mem_avlbl_index;
-
-static int validate_l0_gpt_params(gpt_init_params_t *params)
-{
-	/* Only 1GB of address space per L0 entry is allowed */
-	if (params->l0gptsz != GPCCR_L0GPTSZ_30BITS) {
-		WARN("Invalid L0GPTSZ %u.\n", params->l0gptsz);
-	}
-
-	/* Only 4K granule is supported for now */
-	if (params->pgs != GPCCR_PGS_4K) {
-		WARN("Invalid GPT PGS %u.\n", params->pgs);
-		return -EINVAL;
-	}
-
-	/* Only 4GB of protected physical address space is supported for now */
-	if (params->pps != GPCCR_PPS_4GB) {
-		WARN("Invalid GPT PPS %u.\n", params->pps);
-		return -EINVAL;
-	}
-
-	/* Check if GPT base address is aligned with the system granule */
-	if (!IS_PAGE_ALIGNED(params->l0_mem_base)) {
-		ERROR("Unaligned L0 GPT base address.\n");
-		return -EFAULT;
-	}
-
-	/* Check if there is enough memory for L0 GPTs */
-	if (params->l0_mem_size < l0_gpt_attr_lookup[params->pps].sz) {
-		ERROR("Inadequate memory for L0 GPTs. ");
-		ERROR("Expected 0x%lx bytes. Got 0x%lx bytes\n",
-		     l0_gpt_attr_lookup[params->pps].sz,
-		     params->l0_mem_size);
-		return -ENOMEM;
-	}
-
-	return 0;
-}
-
-/*
- * A L1 GPT is required if any one of the following conditions is true:
- *
- * - The base address is not 1GB aligned
- * - The size of the memory region is not a multiple of 1GB
- * - A L1 GPT has been explicitly requested (attrs == PAS_REG_DESC_TYPE_TBL)
- *
- * This function:
- * - iterates over all the PAS regions to determine whether they
- *   will need a 2 stage look up (and therefore a L1 GPT will be required) or
- *   if it would be enough with a single level lookup table.
- * - Updates the attr field of the PAS regions.
- * - Returns the total count of L1 tables needed.
- *
- * In the future wwe should validate that the PAS range does not exceed the
- * configured PPS. (and maybe rename this function as it is validating PAS
- * regions).
- */
-static unsigned int update_gpt_type(pas_region_t *pas_regions,
-				    unsigned int pas_region_cnt)
-{
-	unsigned int idx, cnt = 0U;
-
-	for (idx = 0U; idx < pas_region_cnt; idx++) {
-		if (PAS_REG_DESC_TYPE(pas_regions[idx].attrs) ==
-						PAS_REG_DESC_TYPE_TBL) {
-			cnt++;
-			continue;
-		}
-		if (!(IS_1GB_ALIGNED(pas_regions[idx].base_pa) &&
-			IS_1GB_ALIGNED(pas_regions[idx].size))) {
-
-			/* Current region will need L1 GPTs. */
-			assert(PAS_REG_DESC_TYPE(pas_regions[idx].attrs)
-						== PAS_REG_DESC_TYPE_ANY);
-
-			pas_regions[idx].attrs =
-				GPT_DESC_ATTRS(PAS_REG_DESC_TYPE_TBL,
-					PAS_REG_GPI(pas_regions[idx].attrs));
-			cnt++;
-			continue;
-		}
-
-		/* The PAS can be mapped on a one stage lookup table */
-		assert(PAS_REG_DESC_TYPE(pas_regions[idx].attrs) !=
-							PAS_REG_DESC_TYPE_TBL);
-
-		pas_regions[idx].attrs = GPT_DESC_ATTRS(PAS_REG_DESC_TYPE_BLK,
-					PAS_REG_GPI(pas_regions[idx].attrs));
-	}
-
-	return cnt;
-}
-
-static int validate_l1_gpt_params(gpt_init_params_t *params,
-				  unsigned int l1_gpt_cnt)
-{
-	size_t l1_gpt_sz, l1_gpt_mem_sz;
-
-	/* Check if the granularity is supported */
-	assert(xlat_arch_is_granule_size_supported(
-					l1_gpt_attr_lookup[params->pgs].g_sz));
-
-
-	/* Check if naturally aligned L1 GPTs can be created */
-	l1_gpt_sz = l1_gpt_attr_lookup[params->pgs].g_sz;
-	if (params->l1_mem_base & (l1_gpt_sz - 1)) {
-		WARN("Unaligned L1 GPT base address.\n");
-		return -EFAULT;
-	}
-
-	/* Check if there is enough memory for L1 GPTs */
-	l1_gpt_mem_sz = l1_gpt_cnt * l1_gpt_sz;
-	if (params->l1_mem_size < l1_gpt_mem_sz) {
-		WARN("Inadequate memory for L1 GPTs. ");
-		WARN("Expected 0x%lx bytes. Got 0x%lx bytes\n",
-		     l1_gpt_mem_sz, params->l1_mem_size);
-		return -ENOMEM;
-	}
-
-	INFO("Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
-	return 0;
-}
-
-/*
- * Helper function to determine if the end physical address lies in the same GB
- * as the current physical address. If true, the end physical address is
- * returned else, the start address of the next GB is returned.
- */
-static uintptr_t get_l1_gpt_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
-{
-	uintptr_t cur_gb, end_gb;
-
-	cur_gb = cur_pa >> ONE_GB_SHIFT;
-	end_gb = end_pa >> ONE_GB_SHIFT;
-
-	assert(cur_gb <= end_gb);
-
-	if (cur_gb == end_gb) {
-		return end_pa;
-	}
-
-	return (cur_gb + 1) << ONE_GB_SHIFT;
-}
-
-static void generate_l0_blk_desc(gpt_init_params_t *params,
-				 unsigned int idx)
-{
-	uint64_t gpt_desc;
-	uintptr_t end_addr;
-	unsigned int end_idx, start_idx;
-	pas_region_t *pas = params->pas_regions + idx;
-	uint64_t *l0_gpt_arr = (uint64_t *)params->l0_mem_base;
-
-	/* Create the GPT Block descriptor for this PAS region */
-	gpt_desc = GPT_BLK_DESC;
-	gpt_desc |= PAS_REG_GPI(pas->attrs)
-		    << GPT_BLOCK_DESC_GPI_VAL_SHIFT;
-
-	/* Start index of this region in L0 GPTs */
-	start_idx = pas->base_pa >> ONE_GB_SHIFT;
-
-	/*
-	 * Determine number of L0 GPT descriptors covered by
-	 * this PAS region and use the count to populate these
-	 * descriptors.
-	 */
-	end_addr = pas->base_pa + pas->size;
-	assert(end_addr \
-	       <= (ULL(l0_gpt_attr_lookup[params->pps].t_val_mask + 1)) << 30);
-	end_idx = end_addr >> ONE_GB_SHIFT;
-
-	for (; start_idx < end_idx; start_idx++) {
-		l0_gpt_arr[start_idx] = gpt_desc;
-		INFO("L0 entry (BLOCK) index %u [%p]: GPI = 0x%llx (0x%llx)\n",
-			start_idx, &l0_gpt_arr[start_idx],
-			(gpt_desc >> GPT_BLOCK_DESC_GPI_VAL_SHIFT) &
-			GPT_L1_INDEX_MASK, l0_gpt_arr[start_idx]);
-	}
-}
-
-static void generate_l0_tbl_desc(gpt_init_params_t *params,
-				 unsigned int idx)
-{
-	uint64_t gpt_desc = 0U, *l1_gpt_arr;
-	uintptr_t start_pa, end_pa, cur_pa, next_pa;
-	unsigned int start_idx, l1_gpt_idx;
-	unsigned int p_val, gran_sz;
-	pas_region_t *pas = params->pas_regions + idx;
-	uint64_t *l0_gpt_base = (uint64_t *)params->l0_mem_base;
-	uint64_t *l1_gpt_base = (uint64_t *)params->l1_mem_base;
-
-	start_pa = pas->base_pa;
-	end_pa = start_pa + pas->size;
-	p_val = l1_gpt_attr_lookup[params->pgs].p_val;
-	gran_sz = 1 << p_val;
-
-	/*
-	 * end_pa cannot be larger than the maximum protected physical memory.
-	 */
-	assert(((1ULL<<30) << l0_gpt_attr_lookup[params->pps].t_val_mask)
-								 > end_pa);
-
-	for (cur_pa = start_pa; cur_pa < end_pa;) {
-		/*
-		 * Determine the PA range that will be covered
-		 * in this loop iteration.
-		 */
-		next_pa = get_l1_gpt_end_pa(cur_pa, end_pa);
-
-		INFO("PAS[%u]: start: 0x%lx, end: 0x%lx, next_pa: 0x%lx.\n",
-		     idx, cur_pa, end_pa, next_pa);
-
-		/* Index of this PA in L0 GPTs */
-		start_idx = cur_pa >> ONE_GB_SHIFT;
-
-		/*
-		 * If cur_pa is on a 1GB boundary then determine
-		 * the base address of next available L1 GPT
-		 * memory region
-		 */
-		if (IS_1GB_ALIGNED(cur_pa)) {
-			l1_gpt_arr = (uint64_t *)((uint64_t)l1_gpt_base +
-					(l1_gpt_attr_lookup[params->pgs].t_sz *
-					 l1_gpt_mem_avlbl_index));
-
-			assert(l1_gpt_arr <
-			       (l1_gpt_base + params->l1_mem_size));
-
-			/* Create the L0 GPT descriptor for this PAS region */
-			gpt_desc = GPT_TBL_DESC |
-				   ((uintptr_t)l1_gpt_arr
-				    & GPT_TBL_DESC_ADDR_MASK);
-
-			l0_gpt_base[start_idx] = gpt_desc;
-
-			/*
-			 * Update index to point to next available L1
-			 * GPT memory region
-			 */
-			l1_gpt_mem_avlbl_index++;
-		} else {
-			/* Use the existing L1 GPT */
-			l1_gpt_arr = (uint64_t *)(l0_gpt_base[start_idx]
-							& ~((1U<<12) - 1U));
-		}
-
-		INFO("L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%llx)\n",
-			start_idx, &l0_gpt_base[start_idx],
-			(unsigned long long)(l1_gpt_arr),
-			l0_gpt_base[start_idx]);
-
-		/*
-		 * Fill up L1 GPT entries between these two
-		 * addresses.
-		 */
-		for (; cur_pa < next_pa; cur_pa += gran_sz) {
-			unsigned int gpi_idx, gpi_idx_shift;
-
-			/* Obtain index of L1 GPT entry */
-			l1_gpt_idx = get_l1_gpt_index(params->pgs, cur_pa);
-
-			/*
-			 * Obtain index of GPI in L1 GPT entry
-			 * (i = PA[p_val+3:p_val])
-			 */
-			gpi_idx = (cur_pa >> p_val) & GPT_L1_INDEX_MASK;
-
-			/*
-			 * Shift by index * 4 to reach correct
-			 * GPI entry in L1 GPT descriptor.
-			 * GPI = gpt_desc[(4*idx)+3:(4*idx)]
-			 */
-			gpi_idx_shift = gpi_idx << 2;
-
-			gpt_desc = l1_gpt_arr[l1_gpt_idx];
-
-			/* Clear existing GPI encoding */
-			gpt_desc &= ~(GPT_L1_INDEX_MASK << gpi_idx_shift);
-
-			/* Set the GPI encoding */
-			gpt_desc |= ((uint64_t)PAS_REG_GPI(pas->attrs)
-				     << gpi_idx_shift);
-
-			l1_gpt_arr[l1_gpt_idx] = gpt_desc;
-
-			if (gpi_idx == 15U) {
-				VERBOSE("\tEntry %u [%p] = 0x%llx\n",
-					l1_gpt_idx,
-					&l1_gpt_arr[l1_gpt_idx], gpt_desc);
-			}
-		}
-	}
-}
-
-static void create_gpt(gpt_init_params_t *params)
-{
-	unsigned int idx;
-	pas_region_t *pas_regions = params->pas_regions;
-
-	INFO("pgs = 0x%x, pps = 0x%x, l0gptsz = 0x%x\n",
-	     params->pgs, params->pps, params->l0gptsz);
-	INFO("pas_region_cnt = 0x%x L1 base = 0x%lx, L1 sz = 0x%lx\n",
-	     params->pas_count, params->l1_mem_base, params->l1_mem_size);
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_inv_dcache_range(params->l0_mem_base, params->l0_mem_size);
-	gpt_inv_dcache_range(params->l1_mem_base, params->l1_mem_size);
-#endif
-
-	for (idx = 0U; idx < params->pas_count; idx++) {
-
-		INFO("PAS[%u]: base 0x%llx, sz 0x%lx, GPI 0x%x, type 0x%x\n",
-		     idx, pas_regions[idx].base_pa, pas_regions[idx].size,
-		     PAS_REG_GPI(pas_regions[idx].attrs),
-		     PAS_REG_DESC_TYPE(pas_regions[idx].attrs));
-
-		/* Check if a block or table descriptor is required */
-		if (PAS_REG_DESC_TYPE(pas_regions[idx].attrs) ==
-		     PAS_REG_DESC_TYPE_BLK) {
-			generate_l0_blk_desc(params, idx);
-
-		} else {
-			generate_l0_tbl_desc(params, idx);
-		}
-	}
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_clean_dcache_range(params->l0_mem_base, params->l0_mem_size);
-	gpt_clean_dcache_range(params->l1_mem_base, params->l1_mem_size);
-#endif
-
-	/* Make sure that all the entries are written to the memory. */
-	dsbishst();
-}
-
-#endif /* IMAGE_BL2 */
-
-int gpt_init(gpt_init_params_t *params)
-{
-#ifdef IMAGE_BL2
-	unsigned int l1_gpt_cnt;
-	int ret;
-#endif
-	/* Validate arguments */
-	assert(params != NULL);
-	assert(params->pgs <= GPCCR_PGS_16K);
-	assert(params->pps <= GPCCR_PPS_4PB);
-	assert(params->l0_mem_base != (uintptr_t)0);
-	assert(params->l0_mem_size > 0U);
-	assert(params->l1_mem_base != (uintptr_t)0);
-	assert(params->l1_mem_size > 0U);
-
-#ifdef IMAGE_BL2
-	/*
-	 * The Granule Protection Tables are initialised only in BL2.
-	 * BL31 is not allowed to initialise them again in case
-	 * these are modified by any other image loaded by BL2.
-	 */
-	assert(params->pas_regions != NULL);
-	assert(params->pas_count > 0U);
-
-	ret = validate_l0_gpt_params(params);
-	if (ret < 0) {
-
-		return ret;
-	}
-
-	/* Check if L1 GPTs are required and how many. */
-	l1_gpt_cnt = update_gpt_type(params->pas_regions,
-				     params->pas_count);
-	INFO("%u L1 GPTs requested.\n", l1_gpt_cnt);
-
-	if (l1_gpt_cnt > 0U) {
-		ret = validate_l1_gpt_params(params, l1_gpt_cnt);
-		if (ret < 0) {
-			return ret;
-		}
-	}
-
-	create_gpt(params);
-#else
-	/* If running in BL31, only primary CPU can initialise GPTs */
-	assert(plat_is_my_cpu_primary() == 1U);
-
-	/*
-	 * If the primary CPU is calling this function from BL31
-	 * we expect that the tables are aready initialised from
-	 * BL2 and GPCCR_EL3 is already configured with
-	 * Granule Protection Check Enable bit set.
-	 */
-	assert((read_gpccr_el3() & GPCCR_GPC_BIT) != 0U);
-#endif /* IMAGE_BL2 */
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_inv_dcache_range((uintptr_t)&gpt_config, sizeof(gpt_config));
-#endif
-	gpt_config.plat_gpt_l0_base = params->l0_mem_base;
-	gpt_config.plat_gpt_l1_base = params->l1_mem_base;
-	gpt_config.plat_gpt_l0_size = params->l0_mem_size;
-	gpt_config.plat_gpt_l1_size = params->l1_mem_size;
-
-	/* Backup the parameters used to configure GPCCR_EL3 on every PE. */
-	gpt_config.plat_gpt_pgs = params->pgs;
-	gpt_config.plat_gpt_pps = params->pps;
-	gpt_config.plat_gpt_l0gptsz = params->l0gptsz;
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_clean_dcache_range((uintptr_t)&gpt_config, sizeof(gpt_config));
-#endif
-
-	return 0;
-}
-
-void gpt_enable(void)
-{
-	u_register_t gpccr_el3;
-
-	/* Invalidate any stale TLB entries */
-	tlbipaallos();
-
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_inv_dcache_range((uintptr_t)&gpt_config, sizeof(gpt_config));
-#endif
-
-#ifdef IMAGE_BL2
-	/*
-	 * Granule tables must be initialised before enabling
-	 * granule protection.
-	 */
-	assert(gpt_config.plat_gpt_l0_base != (uintptr_t)NULL);
-#endif
-	write_gptbr_el3(gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT);
-
-	/* GPCCR_EL3.L0GPTSZ */
-	gpccr_el3 = SET_GPCCR_L0GPTSZ(gpt_config.plat_gpt_l0gptsz);
-
-	/* GPCCR_EL3.PPS */
-	gpccr_el3 |= SET_GPCCR_PPS(gpt_config.plat_gpt_pps);
-
-	/* GPCCR_EL3.PGS */
-	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.plat_gpt_pgs);
-
-	/* Set shareability attribute to Outher Shareable */
-	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_OS);
-
-	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
-	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
-	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
-
-	/* Enable GPT */
-	gpccr_el3 |= GPCCR_GPC_BIT;
-
-	write_gpccr_el3(gpccr_el3);
-	dsbsy();
-
-	VERBOSE("Granule Protection Checks enabled\n");
-}
-
-void gpt_disable(void)
-{
-	u_register_t gpccr_el3 = read_gpccr_el3();
-
-	write_gpccr_el3(gpccr_el3 &= ~GPCCR_GPC_BIT);
-	dsbsy();
-}
-
-#ifdef IMAGE_BL31
-
-/*
- * Each L1 descriptor is protected by 1 spinlock. The number of descriptors is
- * equal to the size of the total protected memory area divided by the size of
- * protected memory area covered by each descriptor.
- *
- * The size of memory covered by each descriptor is the 'size of the granule' x
- * 'number of granules' in a descriptor. The former is PLAT_ARM_GPT_PGS and
- * latter is always 16.
- */
-static spinlock_t gpt_lock;
-
-static unsigned int get_l0_gpt_index(unsigned int pps, uint64_t pa)
-{
-	unsigned int idx;
-
-	/* Get the index into the L0 table */
-	idx = pa >> ONE_GB_SHIFT;
-
-	/* Check if the pa lies within the PPS */
-	if (idx & ~(l0_gpt_attr_lookup[pps].t_val_mask)) {
-		WARN("Invalid address 0x%llx.\n", pa);
-		return -EINVAL;
-	}
-
-	return idx;
-}
-
-int gpt_transition_pas(uint64_t pa,
-			unsigned int src_sec_state,
-			unsigned int target_pas)
-{
-	int idx;
-	unsigned int idx_shift;
-	unsigned int gpi;
-	uint64_t gpt_l1_desc;
-	uint64_t *gpt_l1_addr, *gpt_addr;
-
-	/*
-	 * Check if caller is allowed to transition the granule's PAS.
-	 *
-	 * - Secure world caller can only request S <-> NS transitions on a
-	 *   granule that is already in either S or NS PAS.
-	 *
-	 * - Realm world caller can only request R <-> NS transitions on a
-	 *   granule that is already in either R or NS PAS.
-	 */
-	if (src_sec_state == SMC_FROM_REALM) {
-		if ((target_pas != GPI_REALM) && (target_pas != GPI_NS)) {
-			WARN("Invalid caller (%s) and PAS (%d) combination.\n",
-			     "realm world", target_pas);
-			return -EINVAL;
-		}
-	} else if (src_sec_state == SMC_FROM_SECURE) {
-		if ((target_pas != GPI_SECURE) && (target_pas != GPI_NS)) {
-			WARN("Invalid caller (%s) and PAS (%d) combination.\n",
-			     "secure world", target_pas);
-			return -EINVAL;
-		}
-	} else {
-		WARN("Invalid caller security state 0x%x\n", src_sec_state);
-		return -EINVAL;
-	}
-
-	/* Obtain the L0 GPT address. */
-	gpt_addr = (uint64_t *)gpt_config.plat_gpt_l0_base;
-
-	/* Validate physical address and obtain index into L0 GPT table */
-	idx = get_l0_gpt_index(gpt_config.plat_gpt_pps, pa);
-	if (idx < 0U) {
-		return idx;
-	}
-
-	VERBOSE("PA 0x%llx, L0 base addr 0x%llx, L0 index %u\n",
-					pa, (uint64_t)gpt_addr, idx);
-
-	/* Obtain the L0 descriptor */
-	gpt_l1_desc = gpt_addr[idx];
-
-	/*
-	 * Check if it is a table descriptor. Granule transition only applies to
-	 * memory ranges for which L1 tables were created at boot time. So there
-	 * is no possibility of splitting and coalescing tables.
-	 */
-	if ((gpt_l1_desc & GPT_L1_INDEX_MASK) != GPT_TBL_DESC) {
-		WARN("Invalid address 0x%llx.\n", pa);
-		return -EPERM;
-	}
-
-	/* Obtain the L1 table address from L0 descriptor. */
-	gpt_l1_addr = (uint64_t *)(gpt_l1_desc & ~(0xFFF));
-
-	/* Obtain the index into the L1 table */
-	idx = get_l1_gpt_index(gpt_config.plat_gpt_pgs, pa);
-
-	VERBOSE("L1 table base addr 0x%llx, L1 table index %u\n", (uint64_t)gpt_l1_addr, idx);
-
-	/* Lock access to the granule */
-	spin_lock(&gpt_lock);
-
-	/* Obtain the L1 descriptor */
-	gpt_l1_desc = gpt_l1_addr[idx];
-
-	/* Obtain the shift for GPI in L1 GPT entry */
-	idx_shift = (pa >> 12) & GPT_L1_INDEX_MASK;
-	idx_shift <<= 2;
-
-	/* Obtain the current GPI encoding for this PA */
-	gpi = (gpt_l1_desc >> idx_shift) & GPT_L1_INDEX_MASK;
-
-	if (src_sec_state == SMC_FROM_REALM) {
-		/*
-		 * Realm world is only allowed to transition a NS or Realm world
-		 * granule.
-		 */
-		if ((gpi != GPI_REALM) && (gpi != GPI_NS)) {
-			WARN("Invalid transition request from %s.\n",
-			     "realm world");
-			spin_unlock(&gpt_lock);
-			return -EPERM;
-		}
-	} else if (src_sec_state == SMC_FROM_SECURE) {
-		/*
-		 * Secure world is only allowed to transition a NS or Secure world
-		 * granule.
-		 */
-		if ((gpi != GPI_SECURE) && (gpi != GPI_NS)) {
-			WARN("Invalid transition request from %s.\n",
-			     "secure world");
-			spin_unlock(&gpt_lock);
-			return -EPERM;
-		}
-	}
-	/* We don't need an else here since we already handle that above. */
-
-	VERBOSE("L1 table desc 0x%llx before mod \n", gpt_l1_desc);
-
-	/* Clear existing GPI encoding */
-	gpt_l1_desc &= ~(GPT_L1_INDEX_MASK << idx_shift);
-
-	/* Transition the granule to the new PAS */
-	gpt_l1_desc |= ((uint64_t)target_pas << idx_shift);
-
-	/* Update the L1 GPT entry */
-	gpt_l1_addr[idx] = gpt_l1_desc;
-
-	VERBOSE("L1 table desc 0x%llx after mod \n", gpt_l1_desc);
-
-	/* Make sure change is propagated to other CPUs. */
-#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
-	gpt_clean_dcache_range((uintptr_t)&gpt_addr[idx], sizeof(uint64_t));
-#endif
-
-	gpt_tlbi_by_pa(pa, PAGE_SIZE_4KB);
-
-	/* Make sure that all the entries are written to the memory. */
-	dsbishst();
-
-	/* Unlock access to the granule */
-	spin_unlock(&gpt_lock);
-
-	return 0;
-}
-
-#endif /* IMAGE_BL31 */
diff --git a/lib/gpt_rme/gpt_rme.c b/lib/gpt_rme/gpt_rme.c
new file mode 100644
index 0000000..1f90e64
--- /dev/null
+++ b/lib/gpt_rme/gpt_rme.c
@@ -0,0 +1,1112 @@
+/*
+ * Copyright (c) 2021, Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <errno.h>
+#include <limits.h>
+#include <stdint.h>
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <common/debug.h>
+#include "gpt_rme_private.h"
+#include <lib/gpt_rme/gpt_rme.h>
+#include <lib/smccc.h>
+#include <lib/spinlock.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#if !ENABLE_RME
+#error "ENABLE_RME must be enabled to use the GPT library."
+#endif
+
+/*
+ * Lookup T from PPS
+ *
+ *   PPS    Size    T
+ *   0b000  4GB     32
+ *   0b001  64GB    36
+ *   0b010  1TB     40
+ *   0b011  4TB     42
+ *   0b100  16TB    44
+ *   0b101  256TB   48
+ *   0b110  4PB     52
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
+					   PPS_1TB_T, PPS_4TB_T,
+					   PPS_16TB_T, PPS_256TB_T,
+					   PPS_4PB_T};
+
+/*
+ * Lookup P from PGS
+ *
+ *   PGS    Size    P
+ *   0b00   4KB     12
+ *   0b10   16KB    14
+ *   0b01   64KB    16
+ *
+ * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
+
+/*
+ * This structure contains GPT configuration data.
+ */
+typedef struct {
+	uintptr_t plat_gpt_l0_base;
+	gpccr_pps_e pps;
+	gpt_t_val_e t;
+	gpccr_pgs_e pgs;
+	gpt_p_val_e p;
+} gpt_config_t;
+
+static gpt_config_t gpt_config;
+
+/* These variables are used during initialization of the L1 tables. */
+static unsigned int gpt_next_l1_tbl_idx;
+static uintptr_t gpt_l1_tbl;
+
+/*
+ * This function checks to see if a GPI value is valid.
+ *
+ * These are valid GPI values.
+ *   GPT_GPI_NO_ACCESS   U(0x0)
+ *   GPT_GPI_SECURE      U(0x8)
+ *   GPT_GPI_NS          U(0x9)
+ *   GPT_GPI_ROOT        U(0xA)
+ *   GPT_GPI_REALM       U(0xB)
+ *   GPT_GPI_ANY         U(0xF)
+ *
+ * Parameters
+ *   gpi		GPI to check for validity.
+ *
+ * Return
+ *   true for a valid GPI, false for an invalid one.
+ */
+static bool gpt_is_gpi_valid(unsigned int gpi)
+{
+	if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
+	    ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
+		return true;
+	} else {
+		return false;
+	}
+}
+
+/*
+ * This function checks to see if two PAS regions overlap.
+ *
+ * Parameters
+ *   base_1: base address of first PAS
+ *   size_1: size of first PAS
+ *   base_2: base address of second PAS
+ *   size_2: size of second PAS
+ *
+ * Return
+ *   True if PAS regions overlap, false if they do not.
+ */
+static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1,
+				  uintptr_t base_2, size_t size_2)
+{
+	if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
+		return true;
+	} else {
+		return false;
+	}
+}
+
+/*
+ * This helper function checks to see if a PAS region from index 0 to
+ * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
+ *
+ * Parameters
+ *   l0_idx:      Index of the L0 entry to check
+ *   pas_regions: PAS region array
+ *   pas_idx:     Upper bound of the PAS array index.
+ *
+ * Return
+ *   True if a PAS region occupies the L0 region in question, false if not.
+ */
+static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx,
+					     pas_region_t *pas_regions,
+					     unsigned int pas_idx)
+{
+	/* Iterate over PAS regions up to pas_idx. */
+	for (unsigned int i = 0U; i < pas_idx; i++) {
+		if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
+		    GPT_L0GPTSZ_ACTUAL_SIZE,
+		    pas_regions[i].base_pa, pas_regions[i].size)) {
+			return true;
+		}
+	}
+	return false;
+}
+
+/*
+ * This function iterates over all of the PAS regions and checks them to ensure
+ * proper alignment of base and size, that the GPI is valid, and that no regions
+ * overlap. As a part of the overlap checks, this function checks existing L0
+ * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
+ * is called multiple times to place L1 tables in different areas of memory. It
+ * also counts the number of L1 tables needed and returns it on success.
+ *
+ * Parameters
+ *   *pas_regions	Pointer to array of PAS region structures.
+ *   pas_region_cnt	Total number of PAS regions in the array.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, number of L1 regions
+ *   required when successful.
+ */
+static int gpt_validate_pas_mappings(pas_region_t *pas_regions,
+				     unsigned int pas_region_cnt)
+{
+	unsigned int idx;
+	unsigned int l1_cnt = 0U;
+	unsigned int pas_l1_cnt;
+	uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+	assert(pas_regions != NULL);
+	assert(pas_region_cnt != 0U);
+
+	for (idx = 0U; idx < pas_region_cnt; idx++) {
+		/* Check for arithmetic overflow in region. */
+		if ((ULONG_MAX - pas_regions[idx].base_pa) <
+		    pas_regions[idx].size) {
+			ERROR("[GPT] Address overflow in PAS[%u]!\n", idx);
+			return -EOVERFLOW;
+		}
+
+		/* Initial checks for PAS validity. */
+		if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
+		    GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
+		    !gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
+			ERROR("[GPT] PAS[%u] is invalid!\n", idx);
+			return -EFAULT;
+		}
+
+		/*
+		 * Make sure this PAS does not overlap with another one. We
+		 * start from idx + 1 instead of 0 since prior PAS mappings will
+		 * have already checked themselves against this one.
+		 */
+		for (unsigned int i = idx + 1; i < pas_region_cnt; i++) {
+			if (gpt_check_pas_overlap(pas_regions[idx].base_pa,
+			    pas_regions[idx].size,
+			    pas_regions[i].base_pa,
+			    pas_regions[i].size)) {
+				ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n",
+					i, idx);
+				return -EFAULT;
+			}
+		}
+
+		/*
+		 * Since this function can be called multiple times with
+		 * separate L1 tables we need to check the existing L0 mapping
+		 * to see if this PAS would fall into one that has already been
+		 * initialized.
+		 */
+		for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
+		     i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1);
+		     i++) {
+			if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
+			    (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
+				/* This descriptor is unused so continue. */
+				continue;
+			}
+
+			/*
+			 * This descriptor has been initialized in a previous
+			 * call to this function so cannot be initialized again.
+			 */
+			ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n",
+			      idx, i);
+			return -EFAULT;
+		}
+
+		/* Check for block mapping (L0) type. */
+		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
+			/* Make sure base and size are block-aligned. */
+			if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
+			    !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
+				ERROR("[GPT] PAS[%u] is not block-aligned!\n",
+				      idx);
+				return -EFAULT;
+			}
+
+			continue;
+		}
+
+		/* Check for granule mapping (L1) type. */
+		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+		    GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
+			/* Make sure base and size are granule-aligned. */
+			if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
+			    !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
+				ERROR("[GPT] PAS[%u] is not granule-aligned!\n",
+				      idx);
+				return -EFAULT;
+			}
+
+			/* Find how many L1 tables this PAS occupies. */
+			pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
+				     pas_regions[idx].size - 1) -
+				     GPT_L0_IDX(pas_regions[idx].base_pa) + 1);
+
+			/*
+			 * This creates a situation where, if multiple PAS
+			 * regions occupy the same table descriptor, we can get
+			 * an artificially high total L1 table count. The way we
+			 * handle this is by checking each PAS against those
+			 * before it in the array, and if they both occupy the
+			 * same PAS we subtract from pas_l1_cnt and only the
+			 * first PAS in the array gets to count it.
+			 */
+
+			/*
+			 * If L1 count is greater than 1 we know the start and
+			 * end PAs are in different L0 regions so we must check
+			 * both for overlap against other PAS.
+			 */
+			if (pas_l1_cnt > 1) {
+				if (gpt_does_previous_pas_exist_here(
+				    GPT_L0_IDX(pas_regions[idx].base_pa +
+				    pas_regions[idx].size - 1),
+				    pas_regions, idx)) {
+					pas_l1_cnt = pas_l1_cnt - 1;
+				}
+			}
+
+			if (gpt_does_previous_pas_exist_here(
+			    GPT_L0_IDX(pas_regions[idx].base_pa),
+			    pas_regions, idx)) {
+				pas_l1_cnt = pas_l1_cnt - 1;
+			}
+
+			l1_cnt += pas_l1_cnt;
+			continue;
+		}
+
+		/* If execution reaches this point, mapping type is invalid. */
+		ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx,
+		      GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
+		return -EINVAL;
+	}
+
+	return l1_cnt;
+}
+
+/*
+ * This function validates L0 initialization parameters.
+ *
+ * Parameters
+ *   l0_mem_base	Base address of memory used for L0 tables.
+ *   l1_mem_size	Size of memory available for L0 tables.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
+				  size_t l0_mem_size)
+{
+	size_t l0_alignment;
+
+	/*
+	 * Make sure PPS is valid and then store it since macros need this value
+	 * to work.
+	 */
+	if (pps > GPT_PPS_MAX) {
+		ERROR("[GPT] Invalid PPS: 0x%x\n", pps);
+		return -EINVAL;
+	}
+	gpt_config.pps = pps;
+	gpt_config.t = gpt_t_lookup[pps];
+
+	/* Alignment must be the greater of 4k or l0 table size. */
+	l0_alignment = PAGE_SIZE_4KB;
+	if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
+		l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
+	}
+
+	/* Check base address. */
+	if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) {
+		ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base);
+		return -EFAULT;
+	}
+
+	/* Check size. */
+	if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
+		ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n",
+		      GPT_L0_TABLE_SIZE(gpt_config.t),
+		      l0_mem_size);
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+/*
+ * In the event that L1 tables are needed, this function validates
+ * the L1 table generation parameters.
+ *
+ * Parameters
+ *   l1_mem_base	Base address of memory used for L1 table allocation.
+ *   l1_mem_size	Total size of memory available for L1 tables.
+ *   l1_gpt_cnt		Number of L1 tables needed.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
+				  unsigned int l1_gpt_cnt)
+{
+	size_t l1_gpt_mem_sz;
+
+	/* Check if the granularity is supported */
+	if (!xlat_arch_is_granule_size_supported(
+	    GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
+		return -EPERM;
+	}
+
+	/* Make sure L1 tables are aligned to their size. */
+	if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) {
+		ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n",
+		      l1_mem_base);
+		return -EFAULT;
+	}
+
+	/* Get total memory needed for L1 tables. */
+	l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
+
+	/* Check for overflow. */
+	if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
+		ERROR("[GPT] Overflow calculating L1 memory size.\n");
+		return -ENOMEM;
+	}
+
+	/* Make sure enough space was supplied. */
+	if (l1_mem_size < l1_gpt_mem_sz) {
+		ERROR("[GPT] Inadequate memory for L1 GPTs. ");
+		ERROR("      Expected 0x%lx bytes. Got 0x%lx bytes\n",
+		      l1_gpt_mem_sz, l1_mem_size);
+		return -ENOMEM;
+	}
+
+	VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
+	return 0;
+}
+
+/*
+ * This function initializes L0 block descriptors (regions that cannot be
+ * transitioned at the granule level) according to the provided PAS.
+ *
+ * Parameters
+ *   *pas		Pointer to the structure defining the PAS region to
+ *			initialize.
+ */
+static void gpt_generate_l0_blk_desc(pas_region_t *pas)
+{
+	uint64_t gpt_desc;
+	unsigned int end_idx;
+	unsigned int idx;
+	uint64_t *l0_gpt_arr;
+
+	assert(gpt_config.plat_gpt_l0_base != 0U);
+	assert(pas != NULL);
+
+	/*
+	 * Checking of PAS parameters has already been done in
+	 * gpt_validate_pas_mappings so no need to check the same things again.
+	 */
+
+	l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+	/* Create the GPT Block descriptor for this PAS region */
+	gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
+
+	/* Start index of this region in L0 GPTs */
+	idx = pas->base_pa >> GPT_L0_IDX_SHIFT;
+
+	/*
+	 * Determine number of L0 GPT descriptors covered by
+	 * this PAS region and use the count to populate these
+	 * descriptors.
+	 */
+	end_idx = (pas->base_pa + pas->size) >> GPT_L0_IDX_SHIFT;
+
+	/* Generate the needed block descriptors. */
+	for (; idx < end_idx; idx++) {
+		l0_gpt_arr[idx] = gpt_desc;
+		VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%llx (0x%llx)\n",
+			idx, &l0_gpt_arr[idx],
+			(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
+			GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
+	}
+}
+
+/*
+ * Helper function to determine if the end physical address lies in the same L0
+ * region as the current physical address. If true, the end physical address is
+ * returned else, the start address of the next region is returned.
+ *
+ * Parameters
+ *   cur_pa		Physical address of the current PA in the loop through
+ *			the range.
+ *   end_pa		Physical address of the end PA in a PAS range.
+ *
+ * Return
+ *   The PA of the end of the current range.
+ */
+static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
+{
+	uintptr_t cur_idx;
+	uintptr_t end_idx;
+
+	cur_idx = cur_pa >> GPT_L0_IDX_SHIFT;
+	end_idx = end_pa >> GPT_L0_IDX_SHIFT;
+
+	assert(cur_idx <= end_idx);
+
+	if (cur_idx == end_idx) {
+		return end_pa;
+	}
+
+	return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
+}
+
+/*
+ * Helper function to fill out GPI entries in a single L1 table. This function
+ * fills out entire L1 descriptors at a time to save memory writes.
+ *
+ * Parameters
+ *   gpi		GPI to set this range to
+ *   l1			Pointer to L1 table to fill out
+ *   first		Address of first granule in range.
+ *   last		Address of last granule in range (inclusive).
+ */
+static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
+			    uintptr_t last)
+{
+	uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
+	uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF;
+
+	assert(first <= last);
+	assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
+	assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
+	assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
+	assert(l1 != NULL);
+
+	/* Shift the mask if we're starting in the middle of an L1 entry. */
+	gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
+
+	/* Fill out each L1 entry for this region. */
+	for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
+	     i <= GPT_L1_IDX(gpt_config.p, last); i++) {
+		/* Account for stopping in the middle of an L1 entry. */
+		if (i == GPT_L1_IDX(gpt_config.p, last)) {
+			gpi_mask &= (gpi_mask >> ((15 -
+				    GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
+		}
+
+		/* Write GPI values. */
+		assert((l1[i] & gpi_mask) ==
+		       (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
+		l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);
+
+		/* Reset mask. */
+		gpi_mask = 0xFFFFFFFFFFFFFFFF;
+	}
+}
+
+/*
+ * This function finds the next available unused L1 table and initializes all
+ * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
+ * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
+ * event that a PAS region stops midway through an L1 table, thus guaranteeing
+ * that all memory not explicitly assigned is GPI_ANY. This function does not
+ * check for overflow conditions, that should be done by the caller.
+ *
+ * Return
+ *   Pointer to the next available L1 table.
+ */
+static uint64_t *gpt_get_new_l1_tbl(void)
+{
+	/* Retrieve the next L1 table. */
+	uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
+		       (GPT_L1_TABLE_SIZE(gpt_config.p) *
+		       gpt_next_l1_tbl_idx));
+
+	/* Increment L1 counter. */
+	gpt_next_l1_tbl_idx++;
+
+	/* Initialize all GPIs to GPT_GPI_ANY */
+	for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
+		l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
+	}
+
+	return l1;
+}
+
+/*
+ * When L1 tables are needed, this function creates the necessary L0 table
+ * descriptors and fills out the L1 table entries according to the supplied
+ * PAS range.
+ *
+ * Parameters
+ *   *pas		Pointer to the structure defining the PAS region.
+ */
+static void gpt_generate_l0_tbl_desc(pas_region_t *pas)
+{
+	uintptr_t end_pa;
+	uintptr_t cur_pa;
+	uintptr_t last_gran_pa;
+	uint64_t *l0_gpt_base;
+	uint64_t *l1_gpt_arr;
+	unsigned int l0_idx;
+
+	assert(gpt_config.plat_gpt_l0_base != 0U);
+	assert(pas != NULL);
+
+	/*
+	 * Checking of PAS parameters has already been done in
+	 * gpt_validate_pas_mappings so no need to check the same things again.
+	 */
+
+	end_pa = pas->base_pa + pas->size;
+	l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+	/* We start working from the granule at base PA */
+	cur_pa = pas->base_pa;
+
+	/* Iterate over each L0 region in this memory range. */
+	for (l0_idx = GPT_L0_IDX(pas->base_pa);
+	     l0_idx <= GPT_L0_IDX(end_pa - 1U);
+	     l0_idx++) {
+
+		/*
+		 * See if the L0 entry is already a table descriptor or if we
+		 * need to create one.
+		 */
+		if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
+			/* Get the L1 array from the L0 entry. */
+			l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
+		} else {
+			/* Get a new L1 table from the L1 memory space. */
+			l1_gpt_arr = gpt_get_new_l1_tbl();
+
+			/* Fill out the L0 descriptor and flush it. */
+			l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
+		}
+
+		VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%llx)\n",
+			l0_idx, &l0_gpt_base[l0_idx],
+			(unsigned long long)(l1_gpt_arr),
+			l0_gpt_base[l0_idx]);
+
+		/*
+		 * Determine the PA of the last granule in this L0 descriptor.
+		 */
+		last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) -
+			       GPT_PGS_ACTUAL_SIZE(gpt_config.p);
+
+		/*
+		 * Fill up L1 GPT entries between these two addresses. This
+		 * function needs the addresses of the first granule and last
+		 * granule in the range.
+		 */
+		gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
+				cur_pa, last_gran_pa);
+
+		/* Advance cur_pa to first granule in next L0 region. */
+		cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa);
+	}
+}
+
+/*
+ * This function flushes a range of L0 descriptors used by a given PAS region
+ * array. There is a chance that some unmodified L0 descriptors would be flushed
+ * in the case that there are "holes" in an array of PAS regions but overall
+ * this should be faster than individually flushing each modified L0 descriptor
+ * as they are created.
+ *
+ * Parameters
+ *   *pas		Pointer to an array of PAS regions.
+ *   pas_count		Number of entries in the PAS array.
+ */
+static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
+{
+	unsigned int idx;
+	unsigned int start_idx;
+	unsigned int end_idx;
+	uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+	assert(pas != NULL);
+	assert(pas_count > 0);
+
+	/* Initial start and end values. */
+	start_idx = GPT_L0_IDX(pas[0].base_pa);
+	end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1);
+
+	/* Find lowest and highest L0 indices used in this PAS array. */
+	for (idx = 1; idx < pas_count; idx++) {
+		if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
+			start_idx = GPT_L0_IDX(pas[idx].base_pa);
+		}
+		if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) {
+			end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1);
+		}
+	}
+
+	/*
+	 * Flush all covered L0 descriptors, add 1 because we need to include
+	 * the end index value.
+	 */
+	flush_dcache_range((uintptr_t)&l0[start_idx],
+			   ((end_idx + 1) - start_idx) * sizeof(uint64_t));
+}
+
+/*
+ * Public API to enable granule protection checks once the tables have all been
+ * initialized. This function is called at first initialization and then again
+ * later during warm boots of CPU cores.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_enable(void)
+{
+	u_register_t gpccr_el3;
+
+	/*
+	 * Granule tables must be initialised before enabling
+	 * granule protection.
+	 */
+	if (gpt_config.plat_gpt_l0_base == 0U) {
+		ERROR("[GPT] Tables have not been initialized!\n");
+		return -EPERM;
+	}
+
+	/* Invalidate any stale TLB entries */
+	tlbipaallos();
+	dsb();
+
+	/* Write the base address of the L0 tables into GPTBR */
+	write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
+			>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
+
+	/* GPCCR_EL3.PPS */
+	gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
+
+	/* GPCCR_EL3.PGS */
+	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
+
+	/* Set shareability attribute to Outher Shareable */
+	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_OS);
+
+	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
+	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
+	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
+
+	/* Enable GPT */
+	gpccr_el3 |= GPCCR_GPC_BIT;
+
+	/* TODO: Configure GPCCR_EL3_GPCP for Fault control. */
+	write_gpccr_el3(gpccr_el3);
+	tlbipaallos();
+	dsb();
+	isb();
+
+	return 0;
+}
+
+/*
+ * Public API to disable granule protection checks.
+ */
+void gpt_disable(void)
+{
+	u_register_t gpccr_el3 = read_gpccr_el3();
+
+	write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
+	dsbsy();
+	isb();
+}
+
+/*
+ * Public API that initializes the entire protected space to GPT_GPI_ANY using
+ * the L0 tables (block descriptors). Ideally, this function is invoked prior
+ * to DDR discovery and initialization. The MMU must be initialized before
+ * calling this function.
+ *
+ * Parameters
+ *   pps		PPS value to use for table generation
+ *   l0_mem_base	Base address of L0 tables in memory.
+ *   l0_mem_size	Total size of memory available for L0 tables.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_init_l0_tables(unsigned int pps, uintptr_t l0_mem_base,
+		       size_t l0_mem_size)
+{
+	int ret;
+	uint64_t gpt_desc;
+
+	/* Ensure that MMU and caches are enabled. */
+	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+	/* Validate other parameters. */
+	ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size);
+	if (ret < 0) {
+		return ret;
+	}
+
+	/* Create the descriptor to initialize L0 entries with. */
+	gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
+
+	/* Iterate through all L0 entries */
+	for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
+		((uint64_t *)l0_mem_base)[i] = gpt_desc;
+	}
+
+	/* Flush updated L0 tables to memory. */
+	flush_dcache_range((uintptr_t)l0_mem_base,
+			   (size_t)GPT_L0_TABLE_SIZE(gpt_config.t));
+
+	/* Stash the L0 base address once initial setup is complete. */
+	gpt_config.plat_gpt_l0_base = l0_mem_base;
+
+	return 0;
+}
+
+/*
+ * Public API that carves out PAS regions from the L0 tables and builds any L1
+ * tables that are needed. This function ideally is run after DDR discovery and
+ * initialization. The L0 tables must have already been initialized to GPI_ANY
+ * when this function is called.
+ *
+ * This function can be called multiple times with different L1 memory ranges
+ * and PAS regions if it is desirable to place L1 tables in different locations
+ * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
+ * in the DDR bank that they control)
+ *
+ * Parameters
+ *   pgs		PGS value to use for table generation.
+ *   l1_mem_base	Base address of memory used for L1 tables.
+ *   l1_mem_size	Total size of memory available for L1 tables.
+ *   *pas_regions	Pointer to PAS regions structure array.
+ *   pas_count		Total number of PAS regions.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
+			   size_t l1_mem_size, pas_region_t *pas_regions,
+			   unsigned int pas_count)
+{
+	int ret;
+	int l1_gpt_cnt;
+
+	/* Ensure that MMU and caches are enabled. */
+	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+	/* PGS is needed for gpt_validate_pas_mappings so check it now. */
+	if (pgs > GPT_PGS_MAX) {
+		ERROR("[GPT] Invalid PGS: 0x%x\n", pgs);
+		return -EINVAL;
+	}
+	gpt_config.pgs = pgs;
+	gpt_config.p = gpt_p_lookup[pgs];
+
+	/* Make sure L0 tables have been initialized. */
+	if (gpt_config.plat_gpt_l0_base == 0U) {
+		ERROR("[GPT] L0 tables must be initialized first!\n");
+		return -EPERM;
+	}
+
+	/* Check if L1 GPTs are required and how many. */
+	l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count);
+	if (l1_gpt_cnt < 0) {
+		return l1_gpt_cnt;
+	}
+
+	VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt);
+
+	/* If L1 tables are needed then validate the L1 parameters. */
+	if (l1_gpt_cnt > 0) {
+		ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size,
+		      l1_gpt_cnt);
+		if (ret < 0) {
+			return ret;
+		}
+
+		/* Set up parameters for L1 table generation. */
+		gpt_l1_tbl = l1_mem_base;
+		gpt_next_l1_tbl_idx = 0U;
+	}
+
+	INFO("[GPT] Boot Configuration\n");
+	INFO("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
+	INFO("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
+	INFO("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
+	INFO("  PAS count: 0x%x\n", pas_count);
+	INFO("  L0 base:   0x%lx\n", gpt_config.plat_gpt_l0_base);
+
+	/* Generate the tables in memory. */
+	for (unsigned int idx = 0U; idx < pas_count; idx++) {
+		INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n",
+		     idx, pas_regions[idx].base_pa, pas_regions[idx].size,
+		     GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
+		     GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
+
+		/* Check if a block or table descriptor is required */
+		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
+			gpt_generate_l0_blk_desc(&pas_regions[idx]);
+
+		} else {
+			gpt_generate_l0_tbl_desc(&pas_regions[idx]);
+		}
+	}
+
+	/* Flush modified L0 tables. */
+	flush_l0_for_pas_array(pas_regions, pas_count);
+
+	/* Flush L1 tables if needed. */
+	if (l1_gpt_cnt > 0) {
+		flush_dcache_range(l1_mem_base,
+				   GPT_L1_TABLE_SIZE(gpt_config.p) *
+				   l1_gpt_cnt);
+	}
+
+	/* Make sure that all the entries are written to the memory. */
+	dsbishst();
+
+	return 0;
+}
+
+/*
+ * Public API to initialize the runtime gpt_config structure based on the values
+ * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
+ * typically happens in a bootloader stage prior to setting up the EL3 runtime
+ * environment for the granule transition service so this function detects the
+ * initialization from a previous stage. Granule protection checks must be
+ * enabled already or this function will return an error.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_runtime_init(void)
+{
+	u_register_t reg;
+
+	/* Ensure that MMU and caches are enabled. */
+	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+	/* Ensure GPC are already enabled. */
+	if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
+		ERROR("[GPT] Granule protection checks are not enabled!\n");
+		return -EPERM;
+	}
+
+	/*
+	 * Read the L0 table address from GPTBR, we don't need the L1 base
+	 * address since those are included in the L0 tables as needed.
+	 */
+	reg = read_gptbr_el3();
+	gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
+				      GPTBR_BADDR_MASK) <<
+				      GPTBR_BADDR_VAL_SHIFT;
+
+	/* Read GPCCR to get PGS and PPS values. */
+	reg = read_gpccr_el3();
+	gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
+	gpt_config.t = gpt_t_lookup[gpt_config.pps];
+	gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
+	gpt_config.p = gpt_p_lookup[gpt_config.pgs];
+
+	VERBOSE("[GPT] Runtime Configuration\n");
+	VERBOSE("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
+	VERBOSE("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
+	VERBOSE("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
+	VERBOSE("  L0 base:   0x%lx\n", gpt_config.plat_gpt_l0_base);
+
+	return 0;
+}
+
+/*
+ * The L1 descriptors are protected by a spinlock to ensure that multiple
+ * CPUs do not attempt to change the descriptors at once. In the future it
+ * would be better to have separate spinlocks for each L1 descriptor.
+ */
+static spinlock_t gpt_lock;
+
+/*
+ * Check if caller is allowed to transition a PAS.
+ *
+ * - Secure world caller can only request S <-> NS transitions on a
+ *   granule that is already in either S or NS PAS.
+ *
+ * - Realm world caller can only request R <-> NS transitions on a
+ *   granule that is already in either R or NS PAS.
+ *
+ * Parameters
+ *   src_sec_state	Security state of the caller.
+ *   current_gpi	Current GPI of the granule.
+ *   target_gpi		Requested new GPI for the granule.
+ *
+ * Return
+ *   Negative Linux error code in the event of a failure, 0 for success.
+ */
+static int gpt_check_transition_gpi(unsigned int src_sec_state,
+				    unsigned int current_gpi,
+				    unsigned int target_gpi)
+{
+	unsigned int check_gpi;
+
+	/* Cannot transition a granule to the state it is already in. */
+	if (current_gpi == target_gpi) {
+		return -EINVAL;
+	}
+
+	/* Check security state, only secure and realm can transition. */
+	if (src_sec_state == SMC_FROM_REALM) {
+		check_gpi = GPT_GPI_REALM;
+	} else if (src_sec_state == SMC_FROM_SECURE) {
+		check_gpi = GPT_GPI_SECURE;
+	} else {
+		return -EINVAL;
+	}
+
+	/* Make sure security state is allowed to make the transition. */
+	if ((target_gpi != check_gpi) && (target_gpi != GPT_GPI_NS)) {
+		return -EINVAL;
+	}
+	if ((current_gpi != check_gpi) && (current_gpi != GPT_GPI_NS)) {
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * This function is the core of the granule transition service. When a granule
+ * transition request occurs it is routed to this function where the request is
+ * validated then fulfilled if possible.
+ *
+ * TODO: implement support for transitioning multiple granules at once.
+ *
+ * Parameters
+ *   base		Base address of the region to transition, must be
+ *			aligned to granule size.
+ *   size		Size of region to transition, must be aligned to granule
+ *			size.
+ *   src_sec_state	Security state of the caller.
+ *   target_pas		Target PAS of the specified memory region.
+ *
+ * Return
+ *    Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_transition_pas(uint64_t base, size_t size, unsigned int src_sec_state,
+	unsigned int target_pas)
+{
+	int idx;
+	unsigned int gpi_shift;
+	unsigned int gpi;
+	uint64_t gpt_l0_desc;
+	uint64_t gpt_l1_desc;
+	uint64_t *gpt_l1_addr;
+	uint64_t *gpt_l0_base;
+
+	/* Ensure that the tables have been set up before taking requests. */
+	assert(gpt_config.plat_gpt_l0_base != 0U);
+
+	/* Check for address range overflow. */
+	if ((ULONG_MAX - base) < size) {
+		VERBOSE("[GPT] Transition request address overflow!\n");
+		VERBOSE("      Base=0x%llx\n", base);
+		VERBOSE("      Size=0x%lx\n", size);
+		return -EINVAL;
+	}
+
+	/* Make sure base and size are valid. */
+	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0U) ||
+	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0U) ||
+	    (size == 0U) ||
+	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
+		VERBOSE("[GPT] Invalid granule transition address range!\n");
+		VERBOSE("      Base=0x%llx\n", base);
+		VERBOSE("      Size=0x%lx\n", size);
+		return -EINVAL;
+	}
+
+	/* See if this is a single granule transition or a range of granules. */
+	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
+		/*
+		 * TODO: Add support for transitioning multiple granules with a
+		 * single call to this function.
+		 */
+		panic();
+	}
+
+	/* Get the L0 descriptor and make sure it is for a table. */
+	gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
+	gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
+	if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
+		VERBOSE("[GPT] Granule is not covered by a table descriptor!\n");
+		VERBOSE("      Base=0x%llx\n", base);
+		return -EINVAL;
+	}
+
+	/* Get the table index and GPI shift from PA. */
+	gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
+	idx = GPT_L1_IDX(gpt_config.p, base);
+	gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
+
+	/*
+	 * Access to L1 tables is controlled by a global lock to ensure
+	 * that no more than one CPU is allowed to make changes at any
+	 * given time.
+	 */
+	spin_lock(&gpt_lock);
+	gpt_l1_desc = gpt_l1_addr[idx];
+	gpi = (gpt_l1_desc >> gpi_shift) & GPT_L1_GRAN_DESC_GPI_MASK;
+
+	/* Make sure caller state and source/target PAS are allowed. */
+	if (gpt_check_transition_gpi(src_sec_state, gpi, target_pas) < 0) {
+		spin_unlock(&gpt_lock);
+			VERBOSE("[GPT] Invalid caller state and PAS combo!\n");
+		VERBOSE("      Caller: %u, Current GPI: %u, Target GPI: %u\n",
+			src_sec_state, gpi, target_pas);
+		return -EPERM;
+	}
+
+	/* Clear existing GPI encoding and transition granule. */
+	gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
+	gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
+	gpt_l1_addr[idx] = gpt_l1_desc;
+
+	/* Ensure that the write operation happens before the unlock. */
+	dmbishst();
+
+	/* Unlock access to the L1 tables. */
+	spin_unlock(&gpt_lock);
+
+	/* Cache maintenance. */
+	clean_dcache_range((uintptr_t)&gpt_l1_addr[idx],
+			   sizeof(uint64_t));
+	gpt_tlbi_by_pa(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+	dsbishst();
+
+	VERBOSE("[GPT] Granule 0x%llx, GPI 0x%x->0x%x\n", base, gpi,
+		target_pas);
+
+	return 0;
+}
diff --git a/lib/gpt/gpt.mk b/lib/gpt_rme/gpt_rme.mk
similarity index 60%
rename from lib/gpt/gpt.mk
rename to lib/gpt_rme/gpt_rme.mk
index 611e504..60176f4 100644
--- a/lib/gpt/gpt.mk
+++ b/lib/gpt_rme/gpt_rme.mk
@@ -4,5 +4,5 @@
 # SPDX-License-Identifier: BSD-3-Clause
 #
 
-GPT_LIB_SRCS	:=	$(addprefix lib/gpt/,        \
-			gpt_core.c)
+GPT_LIB_SRCS	:=	$(addprefix lib/gpt_rme/,        \
+			gpt_rme.c)
diff --git a/lib/gpt_rme/gpt_rme_private.h b/lib/gpt_rme/gpt_rme_private.h
new file mode 100644
index 0000000..5770bf7
--- /dev/null
+++ b/lib/gpt_rme/gpt_rme_private.h
@@ -0,0 +1,228 @@
+/*
+ * Copyright (c) 2021, Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#ifndef GPT_RME_PRIVATE_H
+#define GPT_RME_PRIVATE_H
+
+#include <arch.h>
+#include <lib/gpt_rme/gpt_rme.h>
+#include <lib/utils_def.h>
+
+/******************************************************************************/
+/* GPT descriptor definitions                                                 */
+/******************************************************************************/
+
+/* GPT level 0 descriptor bit definitions. */
+#define GPT_L0_TYPE_MASK		UL(0xF)
+#define GPT_L0_TYPE_SHIFT		U(0)
+
+/* For now, we don't support contiguous descriptors, only table and block. */
+#define GPT_L0_TYPE_TBL_DESC		UL(0x3)
+#define GPT_L0_TYPE_BLK_DESC		UL(0x1)
+
+#define GPT_L0_TBL_DESC_L1ADDR_MASK	UL(0xFFFFFFFFFF)
+#define GPT_L0_TBL_DESC_L1ADDR_SHIFT	U(12)
+
+#define GPT_L0_BLK_DESC_GPI_MASK	UL(0xF)
+#define GPT_L0_BLK_DESC_GPI_SHIFT	U(4)
+
+/* GPT level 1 descriptor bit definitions */
+#define GPT_L1_GRAN_DESC_GPI_MASK	UL(0xF)
+
+/*
+ * This macro fills out every GPI entry in a granules descriptor to the same
+ * value.
+ */
+#define GPT_BUILD_L1_DESC(_gpi)		(((uint64_t)(_gpi) << 4*0) | \
+					 ((uint64_t)(_gpi) << 4*1) | \
+					 ((uint64_t)(_gpi) << 4*2) | \
+					 ((uint64_t)(_gpi) << 4*3) | \
+					 ((uint64_t)(_gpi) << 4*4) | \
+					 ((uint64_t)(_gpi) << 4*5) | \
+					 ((uint64_t)(_gpi) << 4*6) | \
+					 ((uint64_t)(_gpi) << 4*7) | \
+					 ((uint64_t)(_gpi) << 4*8) | \
+					 ((uint64_t)(_gpi) << 4*9) | \
+					 ((uint64_t)(_gpi) << 4*10) | \
+					 ((uint64_t)(_gpi) << 4*11) | \
+					 ((uint64_t)(_gpi) << 4*12) | \
+					 ((uint64_t)(_gpi) << 4*13) | \
+					 ((uint64_t)(_gpi) << 4*14) | \
+					 ((uint64_t)(_gpi) << 4*15))
+
+/******************************************************************************/
+/* GPT platform configuration                                                 */
+/******************************************************************************/
+
+/* This value comes from GPCCR_EL3 so no externally supplied definition. */
+#define GPT_L0GPTSZ		((unsigned int)((read_gpccr_el3() >> \
+				GPCCR_L0GPTSZ_SHIFT) & GPCCR_L0GPTSZ_MASK))
+
+/* The "S" value is directly related to L0GPTSZ */
+#define GPT_S_VAL		(GPT_L0GPTSZ + 30U)
+
+/*
+ * Map PPS values to T values.
+ *
+ *   PPS    Size    T
+ *   0b000  4GB     32
+ *   0b001  64GB    36
+ *   0b010  1TB     40
+ *   0b011  4TB     42
+ *   0b100  16TB    44
+ *   0b101  256TB   48
+ *   0b110  4PB     52
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+typedef enum {
+	PPS_4GB_T =	32U,
+	PPS_64GB_T =	36U,
+	PPS_1TB_T =	40U,
+	PPS_4TB_T =	42U,
+	PPS_16TB_T =	44U,
+	PPS_256TB_T =	48U,
+	PPS_4PB_T =	52U
+} gpt_t_val_e;
+
+/*
+ * Map PGS values to P values.
+ *
+ *   PGS    Size    P
+ *   0b00   4KB     12
+ *   0b10   16KB    14
+ *   0b01   64KB    16
+ *
+ * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+typedef enum {
+	PGS_4KB_P =	12U,
+	PGS_16KB_P =	14U,
+	PGS_64KB_P =	16U
+} gpt_p_val_e;
+
+/* Max valid value for PGS. */
+#define GPT_PGS_MAX			(2U)
+
+/* Max valid value for PPS. */
+#define GPT_PPS_MAX			(6U)
+
+/******************************************************************************/
+/* L0 address attribute macros                                                */
+/******************************************************************************/
+
+/*
+ * If S is greater than or equal to T then there is a single L0 region covering
+ * the entire protected space so there is no L0 index, so the width (and the
+ * derivative mask value) are both zero.  If we don't specifically handle this
+ * special case we'll get a negative width value which does not make sense and
+ * could cause a lot of problems.
+ */
+#define GPT_L0_IDX_WIDTH(_t)		(((_t) > GPT_S_VAL) ? \
+					((_t) - GPT_S_VAL) : (0U))
+
+/* Bit shift for the L0 index field in a PA. */
+#define GPT_L0_IDX_SHIFT		(GPT_S_VAL)
+
+/* Mask for the L0 index field, must be shifted. */
+#define GPT_L0_IDX_MASK(_t)		(0xFFFFFFFFFFFFFFFFUL >> \
+					(64U - (GPT_L0_IDX_WIDTH(_t))))
+
+/* Total number of L0 regions. */
+#define GPT_L0_REGION_COUNT(_t)		((GPT_L0_IDX_MASK(_t)) + 1U)
+
+/* Total size of each GPT L0 region in bytes. */
+#define GPT_L0_REGION_SIZE		(1UL << (GPT_L0_IDX_SHIFT))
+
+/* Total size in bytes of the whole L0 table. */
+#define GPT_L0_TABLE_SIZE(_t)		((GPT_L0_REGION_COUNT(_t)) << 3U)
+
+/******************************************************************************/
+/* L1 address attribute macros                                                */
+/******************************************************************************/
+
+/* Width of the L1 index field. */
+#define GPT_L1_IDX_WIDTH(_p)		((GPT_S_VAL - 1U) - ((_p) + 3U))
+
+/* Bit shift for the L1 index field. */
+#define GPT_L1_IDX_SHIFT(_p)		((_p) + 4U)
+
+/* Mask for the L1 index field, must be shifted. */
+#define GPT_L1_IDX_MASK(_p)		(0xFFFFFFFFFFFFFFFFUL >> \
+					(64U - (GPT_L1_IDX_WIDTH(_p))))
+
+/* Bit shift for the index of the L1 GPI in a PA. */
+#define GPT_L1_GPI_IDX_SHIFT(_p)	(_p)
+
+/* Mask for the index of the L1 GPI in a PA. */
+#define GPT_L1_GPI_IDX_MASK		(0xF)
+
+/* Total number of entries in each L1 table. */
+#define GPT_L1_ENTRY_COUNT(_p)		((GPT_L1_IDX_MASK(_p)) + 1U)
+
+/* Total size in bytes of each L1 table. */
+#define GPT_L1_TABLE_SIZE(_p)		((GPT_L1_ENTRY_COUNT(_p)) << 3U)
+
+/******************************************************************************/
+/* General helper macros                                                      */
+/******************************************************************************/
+
+/* Protected space actual size in bytes. */
+#define GPT_PPS_ACTUAL_SIZE(_t)	(1UL << (_t))
+
+/* Granule actual size in bytes. */
+#define GPT_PGS_ACTUAL_SIZE(_p)	(1UL << (_p))
+
+/* L0 GPT region size in bytes. */
+#define GPT_L0GPTSZ_ACTUAL_SIZE	(1UL << GPT_S_VAL)
+
+/* Get the index of the L0 entry from a physical address. */
+#define GPT_L0_IDX(_pa)		((_pa) >> GPT_L0_IDX_SHIFT)
+
+/*
+ * This definition is used to determine if a physical address lies on an L0
+ * region boundary.
+ */
+#define GPT_IS_L0_ALIGNED(_pa)	(((_pa) & (GPT_L0_REGION_SIZE - U(1))) == U(0))
+
+/* Get the type field from an L0 descriptor. */
+#define GPT_L0_TYPE(_desc)	(((_desc) >> GPT_L0_TYPE_SHIFT) & \
+				GPT_L0_TYPE_MASK)
+
+/* Create an L0 block descriptor. */
+#define GPT_L0_BLK_DESC(_gpi)	(GPT_L0_TYPE_BLK_DESC | \
+				(((_gpi) & GPT_L0_BLK_DESC_GPI_MASK) << \
+				GPT_L0_BLK_DESC_GPI_SHIFT))
+
+/* Create an L0 table descriptor with an L1 table address. */
+#define GPT_L0_TBL_DESC(_pa)	(GPT_L0_TYPE_TBL_DESC | ((uint64_t)(_pa) & \
+				(GPT_L0_TBL_DESC_L1ADDR_MASK << \
+				GPT_L0_TBL_DESC_L1ADDR_SHIFT)))
+
+/* Get the GPI from an L0 block descriptor. */
+#define GPT_L0_BLKD_GPI(_desc)	(((_desc) >> GPT_L0_BLK_DESC_GPI_SHIFT) & \
+				GPT_L0_BLK_DESC_GPI_MASK)
+
+/* Get the L1 address from an L0 table descriptor. */
+#define GPT_L0_TBLD_ADDR(_desc)	((uint64_t *)(((_desc) & \
+				(GPT_L0_TBL_DESC_L1ADDR_MASK << \
+				GPT_L0_TBL_DESC_L1ADDR_SHIFT))))
+
+/* Get the index into the L1 table from a physical address. */
+#define GPT_L1_IDX(_p, _pa)	(((_pa) >> GPT_L1_IDX_SHIFT(_p)) & \
+				GPT_L1_IDX_MASK(_p))
+
+/* Get the index of the GPI within an L1 table entry from a physical address. */
+#define GPT_L1_GPI_IDX(_p, _pa)	(((_pa) >> GPT_L1_GPI_IDX_SHIFT(_p)) & \
+				GPT_L1_GPI_IDX_MASK)
+
+/* Determine if an address is granule-aligned. */
+#define GPT_IS_L1_ALIGNED(_p, _pa) (((_pa) & (GPT_PGS_ACTUAL_SIZE(_p) - U(1))) \
+				   == U(0))
+
+#endif /* GPT_RME_PRIVATE_H */