blob: e47b0821f0ed8ae6820b61f9f8e9e4e82cd679d3 [file] [log] [blame]
/*
* Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <platform_def.h>
#include <arch.h>
#include <asm_macros.S>
#include <bl31/ea_handle.h>
#include <bl31/interrupt_mgmt.h>
#include <bl31/sync_handle.h>
#include <common/runtime_svc.h>
#include <context.h>
#include <cpu_macros.S>
#include <el3_common_macros.S>
#include <lib/el3_runtime/cpu_data.h>
#include <lib/smccc.h>
.globl runtime_exceptions
.globl sync_exception_sp_el0
.globl irq_sp_el0
.globl fiq_sp_el0
.globl serror_sp_el0
.globl sync_exception_sp_elx
.globl irq_sp_elx
.globl fiq_sp_elx
.globl serror_sp_elx
.globl sync_exception_aarch64
.globl irq_aarch64
.globl fiq_aarch64
.globl serror_aarch64
.globl sync_exception_aarch32
.globl irq_aarch32
.globl fiq_aarch32
.globl serror_aarch32
/*
* Save LR and make x30 available as most of the routines in vector entry
* need a free register
*/
.macro save_x30
str x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
.endm
.macro restore_x30
ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
.endm
/*
* Macro that synchronizes errors (EA) and checks for pending SError.
* On detecting a pending SError it either reflects it back to lower
* EL (KFH) or handles it in EL3 (FFH) based on EA routing model.
*/
.macro sync_and_handle_pending_serror
synchronize_errors
mrs x30, ISR_EL1
tbz x30, #ISR_A_SHIFT, 2f
#if FFH_SUPPORT
mrs x30, scr_el3
tst x30, #SCR_EA_BIT
b.eq 1f
bl handle_pending_async_ea
b 2f
#endif
1:
/* This function never returns, but need LR for decision making */
bl reflect_pending_async_ea_to_lower_el
2:
.endm
/* ---------------------------------------------------------------------
* This macro handles Synchronous exceptions.
* Only SMC exceptions are supported.
* ---------------------------------------------------------------------
*/
.macro handle_sync_exception
#if ENABLE_RUNTIME_INSTRUMENTATION
/*
* Read the timestamp value and store it in per-cpu data. The value
* will be extracted from per-cpu data by the C level SMC handler and
* saved to the PMF timestamp region.
*/
mrs x30, cntpct_el0
str x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
mrs x29, tpidr_el3
str x30, [x29, #CPU_DATA_PMF_TS0_OFFSET]
ldr x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
#endif
mrs x30, esr_el3
ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH
/* Handle SMC exceptions separately from other synchronous exceptions */
cmp x30, #EC_AARCH32_SMC
b.eq smc_handler32
cmp x30, #EC_AARCH64_SMC
b.eq sync_handler64
cmp x30, #EC_AARCH64_SYS
b.eq sync_handler64
cmp x30, #EC_IMP_DEF_EL3
b.eq imp_def_el3_handler
/* If FFH Support then try to handle lower EL EA exceptions. */
#if FFH_SUPPORT
mrs x30, scr_el3
tst x30, #SCR_EA_BIT
b.eq 1f
b handle_lower_el_sync_ea
#endif
1:
/* Synchronous exceptions other than the above are unhandled */
b report_unhandled_exception
.endm
vector_base runtime_exceptions
/* ---------------------------------------------------------------------
* Current EL with SP_EL0 : 0x0 - 0x200
* ---------------------------------------------------------------------
*/
vector_entry sync_exception_sp_el0
#ifdef MONITOR_TRAPS
stp x29, x30, [sp, #-16]!
mrs x30, esr_el3
ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH
/* Check for BRK */
cmp x30, #EC_BRK
b.eq brk_handler
ldp x29, x30, [sp], #16
#endif /* MONITOR_TRAPS */
/* We don't expect any synchronous exceptions from EL3 */
b report_unhandled_exception
end_vector_entry sync_exception_sp_el0
vector_entry irq_sp_el0
/*
* EL3 code is non-reentrant. Any asynchronous exception is a serious
* error. Loop infinitely.
*/
b report_unhandled_interrupt
end_vector_entry irq_sp_el0
vector_entry fiq_sp_el0
b report_unhandled_interrupt
end_vector_entry fiq_sp_el0
vector_entry serror_sp_el0
no_ret plat_handle_el3_ea
end_vector_entry serror_sp_el0
/* ---------------------------------------------------------------------
* Current EL with SP_ELx: 0x200 - 0x400
* ---------------------------------------------------------------------
*/
vector_entry sync_exception_sp_elx
/*
* This exception will trigger if anything went wrong during a previous
* exception entry or exit or while handling an earlier unexpected
* synchronous exception. There is a high probability that SP_EL3 is
* corrupted.
*/
b report_unhandled_exception
end_vector_entry sync_exception_sp_elx
vector_entry irq_sp_elx
b report_unhandled_interrupt
end_vector_entry irq_sp_elx
vector_entry fiq_sp_elx
b report_unhandled_interrupt
end_vector_entry fiq_sp_elx
vector_entry serror_sp_elx
#if FFH_SUPPORT
/*
* This will trigger if the exception was taken due to SError in EL3 or
* because of pending asynchronous external aborts from lower EL that got
* triggered due to implicit/explicit synchronization in EL3 (SCR_EL3.EA=1)
* during EL3 entry. For the former case we continue with "plat_handle_el3_ea".
* The later case will occur when PSTATE.A bit is cleared in
* "handle_pending_async_ea". This means we are doing a nested
* exception in EL3. Call the handler for async EA which will eret back to
* original el3 handler if it is nested exception. Also, unmask EA so that we
* catch any further EA arise when handling this nested exception at EL3.
*/
save_x30
ldr x30, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG]
cbz x30, 1f
/*
* This is nested exception handling, clear the flag to avoid taking this
* path for further exceptions caused by EA handling
*/
str xzr, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG]
unmask_async_ea
b handle_lower_el_async_ea
1:
restore_x30
#endif
no_ret plat_handle_el3_ea
end_vector_entry serror_sp_elx
/* ---------------------------------------------------------------------
* Lower EL using AArch64 : 0x400 - 0x600
* ---------------------------------------------------------------------
*/
vector_entry sync_exception_aarch64
/*
* This exception vector will be the entry point for SMCs and traps
* that are unhandled at lower ELs most commonly. SP_EL3 should point
* to a valid cpu context where the general purpose and system register
* state can be saved.
*/
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
handle_sync_exception
end_vector_entry sync_exception_aarch64
vector_entry irq_aarch64
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_interrupt_exception
end_vector_entry irq_aarch64
vector_entry fiq_aarch64
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_interrupt_exception
end_vector_entry fiq_aarch64
/*
* Need to synchronize any outstanding SError since we can get a burst of errors.
* So reuse the sync mechanism to catch any further errors which are pending.
*/
vector_entry serror_aarch64
#if FFH_SUPPORT
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_lower_el_async_ea
#else
b report_unhandled_exception
#endif
end_vector_entry serror_aarch64
/* ---------------------------------------------------------------------
* Lower EL using AArch32 : 0x600 - 0x800
* ---------------------------------------------------------------------
*/
vector_entry sync_exception_aarch32
/*
* This exception vector will be the entry point for SMCs and traps
* that are unhandled at lower ELs most commonly. SP_EL3 should point
* to a valid cpu context where the general purpose and system register
* state can be saved.
*/
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
handle_sync_exception
end_vector_entry sync_exception_aarch32
vector_entry irq_aarch32
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_interrupt_exception
end_vector_entry irq_aarch32
vector_entry fiq_aarch32
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_interrupt_exception
end_vector_entry fiq_aarch32
/*
* Need to synchronize any outstanding SError since we can get a burst of errors.
* So reuse the sync mechanism to catch any further errors which are pending.
*/
vector_entry serror_aarch32
#if FFH_SUPPORT
save_x30
apply_at_speculative_wa
sync_and_handle_pending_serror
unmask_async_ea
b handle_lower_el_async_ea
#else
b report_unhandled_exception
#endif
end_vector_entry serror_aarch32
#ifdef MONITOR_TRAPS
.section .rodata.brk_string, "aS"
brk_location:
.asciz "Error at instruction 0x"
brk_message:
.asciz "Unexpected BRK instruction with value 0x"
#endif /* MONITOR_TRAPS */
/* ---------------------------------------------------------------------
* The following code handles secure monitor calls.
* Depending upon the execution state from where the SMC has been
* invoked, it frees some general purpose registers to perform the
* remaining tasks. They involve finding the runtime service handler
* that is the target of the SMC & switching to runtime stacks (SP_EL0)
* before calling the handler.
*
* Note that x30 has been explicitly saved and can be used here
* ---------------------------------------------------------------------
*/
func sync_exception_handler
smc_handler32:
/* Check whether aarch32 issued an SMC64 */
tbnz x0, #FUNCID_CC_SHIFT, smc_prohibited
sync_handler64:
/* NOTE: The code below must preserve x0-x4 */
/*
* Save general purpose and ARMv8.3-PAuth registers (if enabled).
* Also save PMCR_EL0 and set the PSTATE to a known state.
*/
bl prepare_el3_entry
#if ENABLE_PAUTH
/* Load and program APIAKey firmware key */
bl pauth_load_bl31_apiakey
#endif
/*
* Populate the parameters for the SMC handler.
* We already have x0-x4 in place. x5 will point to a cookie (not used
* now). x6 will point to the context structure (SP_EL3) and x7 will
* contain flags we need to pass to the handler.
*/
mov x5, xzr
mov x6, sp
/*
* Restore the saved C runtime stack value which will become the new
* SP_EL0 i.e. EL3 runtime stack. It was saved in the 'cpu_context'
* structure prior to the last ERET from EL3.
*/
ldr x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]
/* Switch to SP_EL0 */
msr spsel, #MODE_SP_EL0
/*
* Save the SPSR_EL3 and ELR_EL3 in case there is a world
* switch during SMC handling.
* TODO: Revisit if all system registers can be saved later.
*/
mrs x16, spsr_el3
mrs x17, elr_el3
stp x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
/* Load SCR_EL3 */
mrs x18, scr_el3
/* check for system register traps */
mrs x16, esr_el3
ubfx x17, x16, #ESR_EC_SHIFT, #ESR_EC_LENGTH
cmp x17, #EC_AARCH64_SYS
b.eq sysreg_handler64
/* Clear flag register */
mov x7, xzr
#if ENABLE_RME
/* Copy SCR_EL3.NSE bit to the flag to indicate caller's security */
ubfx x7, x18, #SCR_NSE_SHIFT, #1
/*
* Shift copied SCR_EL3.NSE bit by 5 to create space for
* SCR_EL3.NS bit. Bit 5 of the flag corresponds to
* the SCR_EL3.NSE bit.
*/
lsl x7, x7, #5
#endif /* ENABLE_RME */
/* Copy SCR_EL3.NS bit to the flag to indicate caller's security */
bfi x7, x18, #0, #1
mov sp, x12
/*
* Per SMCCC documentation, bits [23:17] must be zero for Fast
* SMCs. Other values are reserved for future use. Ensure that
* these bits are zeroes, if not report as unknown SMC.
*/
tbz x0, #FUNCID_TYPE_SHIFT, 2f /* Skip check if its a Yield Call*/
tst x0, #(FUNCID_FC_RESERVED_MASK << FUNCID_FC_RESERVED_SHIFT)
b.ne smc_unknown
/*
* Per SMCCCv1.3 a caller can set the SVE hint bit in the SMC FID
* passed through x0. Copy the SVE hint bit to flags and mask the
* bit in smc_fid passed to the standard service dispatcher.
* A service/dispatcher can retrieve the SVE hint bit state from
* flags using the appropriate helper.
*/
2:
and x16, x0, #(FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT)
orr x7, x7, x16
bic x0, x0, #(FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT)
/* Get the unique owning entity number */
ubfx x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH
ubfx x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH
orr x16, x16, x15, lsl #FUNCID_OEN_WIDTH
/* Load descriptor index from array of indices */
adrp x14, rt_svc_descs_indices
add x14, x14, :lo12:rt_svc_descs_indices
ldrb w15, [x14, x16]
/* Any index greater than 127 is invalid. Check bit 7. */
tbnz w15, 7, smc_unknown
/*
* Get the descriptor using the index
* x11 = (base + off), w15 = index
*
* handler = (base + off) + (index << log2(size))
*/
adr_l x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE)
lsl w10, w15, #RT_SVC_SIZE_LOG2
ldr x15, [x11, w10, uxtw]
/*
* Call the Secure Monitor Call handler and then drop directly into
* el3_exit() which will program any remaining architectural state
* prior to issuing the ERET to the desired lower EL.
*/
#if DEBUG
cbz x15, rt_svc_fw_critical_error
#endif
blr x15
b el3_exit
sysreg_handler64:
mov x0, x16 /* ESR_EL3, containing syndrome information */
mov x1, x6 /* lower EL's context */
mov x19, x6 /* save context pointer for after the call */
mov sp, x12 /* EL3 runtime stack, as loaded above */
/* int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx); */
bl handle_sysreg_trap
/*
* returns:
* -1: unhandled trap, UNDEF injection into lower EL
* 0: handled trap, return to the trapping instruction (repeating it)
* 1: handled trap, return to the next instruction
*/
tst w0, w0
b.mi 2f /* negative: undefined exception injection */
b.eq 1f /* zero: do not change ELR_EL3 */
/* positive: advance the PC to continue after the instruction */
ldr x1, [x19, #CTX_EL3STATE_OFFSET + CTX_ELR_EL3]
add x1, x1, #4
str x1, [x19, #CTX_EL3STATE_OFFSET + CTX_ELR_EL3]
1:
b el3_exit
2:
/*
* UNDEF injection to lower EL, the support is only provided for lower
* EL in AArch64 mode, for AArch32 mode it will do elx_panic as before.
*/
mrs x0, spsr_el3
tst x0, #(SPSR_M_MASK << SPSR_M_SHIFT)
b.ne elx_panic
/* Pass context pointer as an argument to inject_undef64 */
mov x0, x19
bl inject_undef64
b el3_exit
smc_unknown:
/*
* Unknown SMC call. Populate return value with SMC_UNK and call
* el3_exit() which will restore the remaining architectural state
* i.e., SYS, GP and PAuth registers(if any) prior to issuing the ERET
* to the desired lower EL.
*/
mov x0, #SMC_UNK
str x0, [x6, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
b el3_exit
smc_prohibited:
restore_ptw_el1_sys_regs
ldp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28]
ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
mov x0, #SMC_UNK
exception_return
#if DEBUG
rt_svc_fw_critical_error:
/* Switch to SP_ELx */
msr spsel, #MODE_SP_ELX
no_ret report_unhandled_exception
#endif
endfunc sync_exception_handler
/* ---------------------------------------------------------------------
* This function handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS
* interrupts.
*
* Note that x30 has been explicitly saved and can be used here
* ---------------------------------------------------------------------
*/
func handle_interrupt_exception
/*
* Save general purpose and ARMv8.3-PAuth registers (if enabled).
* Also save PMCR_EL0 and set the PSTATE to a known state.
*/
bl prepare_el3_entry
#if ENABLE_PAUTH
/* Load and program APIAKey firmware key */
bl pauth_load_bl31_apiakey
#endif
/* Save the EL3 system registers needed to return from this exception */
mrs x0, spsr_el3
mrs x1, elr_el3
stp x0, x1, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3]
/* Switch to the runtime stack i.e. SP_EL0 */
ldr x2, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP]
mov x20, sp
msr spsel, #MODE_SP_EL0
mov sp, x2
/*
* Find out whether this is a valid interrupt type.
* If the interrupt controller reports a spurious interrupt then return
* to where we came from.
*/
bl plat_ic_get_pending_interrupt_type
cmp x0, #INTR_TYPE_INVAL
b.eq interrupt_exit
/*
* Get the registered handler for this interrupt type.
* A NULL return value could be 'cause of the following conditions:
*
* a. An interrupt of a type was routed correctly but a handler for its
* type was not registered.
*
* b. An interrupt of a type was not routed correctly so a handler for
* its type was not registered.
*
* c. An interrupt of a type was routed correctly to EL3, but was
* deasserted before its pending state could be read. Another
* interrupt of a different type pended at the same time and its
* type was reported as pending instead. However, a handler for this
* type was not registered.
*
* a. and b. can only happen due to a programming error. The
* occurrence of c. could be beyond the control of Trusted Firmware.
* It makes sense to return from this exception instead of reporting an
* error.
*/
bl get_interrupt_type_handler
cbz x0, interrupt_exit
mov x21, x0
mov x0, #INTR_ID_UNAVAILABLE
/* Set the current security state in the 'flags' parameter */
mrs x2, scr_el3
ubfx x1, x2, #0, #1
/* Restore the reference to the 'handle' i.e. SP_EL3 */
mov x2, x20
/* x3 will point to a cookie (not used now) */
mov x3, xzr
/* Call the interrupt type handler */
blr x21
interrupt_exit:
/* Return from exception, possibly in a different security state */
b el3_exit
endfunc handle_interrupt_exception
func imp_def_el3_handler
/* Save GP registers */
stp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
stp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2]
stp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4]
/* Get the cpu_ops pointer */
bl get_cpu_ops_ptr
/* Get the cpu_ops exception handler */
ldr x0, [x0, #CPU_E_HANDLER_FUNC]
/*
* If the reserved function pointer is NULL, this CPU does not have an
* implementation defined exception handler function
*/
cbz x0, el3_handler_exit
mrs x1, esr_el3
ubfx x1, x1, #ESR_EC_SHIFT, #ESR_EC_LENGTH
blr x0
el3_handler_exit:
ldp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0]
ldp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2]
ldp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4]
restore_x30
no_ret report_unhandled_exception
endfunc imp_def_el3_handler
/*
* Handler for async EA from lower EL synchronized at EL3 entry in KFH mode.
*
* This scenario may arise when there is an error (EA) in the system which is not
* yet signaled to PE while executing in lower EL. During entry into EL3, the errors
* are synchronized either implicitly or explicitly causing async EA to pend at EL3.
*
* On detecting the pending EA (via ISR_EL1.A) and if the EA routing model is
* KFH (SCR_EL3.EA = 1) this handler reflects ther error back to lower EL.
*
* This function assumes x30 has been saved.
*/
func reflect_pending_async_ea_to_lower_el
/*
* As the original exception was not handled we need to ensure that we return
* back to the instruction which caused the exception. To acheive that, eret
* to "elr-4" (Label "subtract_elr_el3") for SMC or simply eret otherwise
* (Label "skip_smc_check").
*
* LIMITATION: It could be that async EA is masked at the target exception level
* or the priority of async EA wrt to the EL3/secure interrupt is lower, which
* causes back and forth between lower EL and EL3. In case of back and forth between
* lower EL and EL3, we can track the loop count in "CTX_NESTED_EA_FLAG" and leverage
* previous ELR in "CTX_SAVED_ELR_EL3" to detect this cycle and further panic
* to indicate a problem here (Label "check_loop_ctr"). If we are in this cycle, loop
* counter retains its value but if we do a normal el3_exit this flag gets cleared.
* However, setting SCR_EL3.IESB = 1, should give priority to SError handling
* as per AArch64.TakeException pseudo code in Arm ARM.
*
* TODO: In future if EL3 gets a capability to inject a virtual SError to lower
* ELs, we can remove the el3_panic and handle the original exception first and
* inject SError to lower EL before ereting back.
*/
stp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28]
ldr x29, [sp, #CTX_EL3STATE_OFFSET + CTX_SAVED_ELR_EL3]
mrs x28, elr_el3
cmp x29, x28
b.eq check_loop_ctr
str x28, [sp, #CTX_EL3STATE_OFFSET + CTX_SAVED_ELR_EL3]
/* Zero the loop counter */
str xzr, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG]
b skip_loop_ctr
check_loop_ctr:
ldr x29, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG]
add x29, x29, #1
str x29, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG]
cmp x29, #ASYNC_EA_REPLAY_COUNTER
b.ge el3_panic
skip_loop_ctr:
/*
* Logic to distinguish if we came from SMC or any other exception.
* Use offsets in vector entry to get which exception we are handling.
* In each vector entry of size 0x200, address "0x0-0x80" is for sync
* exception and "0x80-0x200" is for async exceptions.
* Use vector base address (vbar_el3) and exception offset (LR) to
* calculate whether the address we came from is any of the following
* "0x0-0x80", "0x200-0x280", "0x400-0x480" or "0x600-0x680"
*/
mrs x29, vbar_el3
sub x30, x30, x29
and x30, x30, #0x1ff
cmp x30, #0x80
b.ge skip_smc_check
/* Its a synchronous exception, Now check if it is SMC or not? */
mrs x30, esr_el3
ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH
cmp x30, #EC_AARCH32_SMC
b.eq subtract_elr_el3
cmp x30, #EC_AARCH64_SMC
b.eq subtract_elr_el3
b skip_smc_check
subtract_elr_el3:
sub x28, x28, #4
skip_smc_check:
msr elr_el3, x28
ldp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28]
ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR]
exception_return
endfunc reflect_pending_async_ea_to_lower_el
/* ---------------------------------------------------------------------
* The following code handles exceptions caused by BRK instructions.
* Following a BRK instruction, the only real valid cause of action is
* to print some information and panic, as the code that caused it is
* likely in an inconsistent internal state.
*
* This is initially intended to be used in conjunction with
* __builtin_trap.
* ---------------------------------------------------------------------
*/
#ifdef MONITOR_TRAPS
func brk_handler
/* Extract the ISS */
mrs x10, esr_el3
ubfx x10, x10, #ESR_ISS_SHIFT, #ESR_ISS_LENGTH
/* Ensure the console is initialized */
bl plat_crash_console_init
adr x4, brk_location
bl asm_print_str
mrs x4, elr_el3
bl asm_print_hex
bl asm_print_newline
adr x4, brk_message
bl asm_print_str
mov x4, x10
mov x5, #28
bl asm_print_hex_bits
bl asm_print_newline
no_ret plat_panic_handler
endfunc brk_handler
#endif /* MONITOR_TRAPS */