spi: stm32_qspi: Add QSPI support

Add QSPI support (limited to read interface).
Implements the memory map and indirect modes.
Low level driver based on SPI-MEM operations.

Change-Id: Ied698e6de3c17d977f8b497c81f2e4a0a27c0961
Signed-off-by: Lionel Debieve <lionel.debieve@st.com>
Signed-off-by: Christophe Kerello <christophe.kerello@st.com>
diff --git a/drivers/st/spi/stm32_qspi.c b/drivers/st/spi/stm32_qspi.c
new file mode 100644
index 0000000..188d2ff
--- /dev/null
+++ b/drivers/st/spi/stm32_qspi.c
@@ -0,0 +1,500 @@
+/*
+ * Copyright (c) 2019, STMicroelectronics - All Rights Reserved
+ *
+ * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+ */
+
+#include <libfdt.h>
+
+#include <platform_def.h>
+
+#include <common/debug.h>
+#include <drivers/delay_timer.h>
+#include <drivers/spi_mem.h>
+#include <drivers/st/stm32_gpio.h>
+#include <drivers/st/stm32mp_reset.h>
+#include <lib/mmio.h>
+#include <lib/utils_def.h>
+
+/* QUADSPI registers */
+#define QSPI_CR			0x00U
+#define QSPI_DCR		0x04U
+#define QSPI_SR			0x08U
+#define QSPI_FCR		0x0CU
+#define QSPI_DLR		0x10U
+#define QSPI_CCR		0x14U
+#define QSPI_AR			0x18U
+#define QSPI_ABR		0x1CU
+#define QSPI_DR			0x20U
+#define QSPI_PSMKR		0x24U
+#define QSPI_PSMAR		0x28U
+#define QSPI_PIR		0x2CU
+#define QSPI_LPTR		0x30U
+
+/* QUADSPI control register */
+#define QSPI_CR_EN		BIT(0)
+#define QSPI_CR_ABORT		BIT(1)
+#define QSPI_CR_DMAEN		BIT(2)
+#define QSPI_CR_TCEN		BIT(3)
+#define QSPI_CR_SSHIFT		BIT(4)
+#define QSPI_CR_DFM		BIT(6)
+#define QSPI_CR_FSEL		BIT(7)
+#define QSPI_CR_FTHRES_SHIFT	8U
+#define QSPI_CR_TEIE		BIT(16)
+#define QSPI_CR_TCIE		BIT(17)
+#define QSPI_CR_FTIE		BIT(18)
+#define QSPI_CR_SMIE		BIT(19)
+#define QSPI_CR_TOIE		BIT(20)
+#define QSPI_CR_APMS		BIT(22)
+#define QSPI_CR_PMM		BIT(23)
+#define QSPI_CR_PRESCALER_MASK	GENMASK_32(31, 24)
+#define QSPI_CR_PRESCALER_SHIFT	24U
+
+/* QUADSPI device configuration register */
+#define QSPI_DCR_CKMODE		BIT(0)
+#define QSPI_DCR_CSHT_MASK	GENMASK_32(10, 8)
+#define QSPI_DCR_CSHT_SHIFT	8U
+#define QSPI_DCR_FSIZE_MASK	GENMASK_32(20, 16)
+#define QSPI_DCR_FSIZE_SHIFT	16U
+
+/* QUADSPI status register */
+#define QSPI_SR_TEF		BIT(0)
+#define QSPI_SR_TCF		BIT(1)
+#define QSPI_SR_FTF		BIT(2)
+#define QSPI_SR_SMF		BIT(3)
+#define QSPI_SR_TOF		BIT(4)
+#define QSPI_SR_BUSY		BIT(5)
+
+/* QUADSPI flag clear register */
+#define QSPI_FCR_CTEF		BIT(0)
+#define QSPI_FCR_CTCF		BIT(1)
+#define QSPI_FCR_CSMF		BIT(3)
+#define QSPI_FCR_CTOF		BIT(4)
+
+/* QUADSPI communication configuration register */
+#define QSPI_CCR_DDRM		BIT(31)
+#define QSPI_CCR_DHHC		BIT(30)
+#define QSPI_CCR_SIOO		BIT(28)
+#define QSPI_CCR_FMODE_SHIFT	26U
+#define QSPI_CCR_DMODE_SHIFT	24U
+#define QSPI_CCR_DCYC_SHIFT	18U
+#define QSPI_CCR_ABSIZE_SHIFT	16U
+#define QSPI_CCR_ABMODE_SHIFT	14U
+#define QSPI_CCR_ADSIZE_SHIFT	12U
+#define QSPI_CCR_ADMODE_SHIFT	10U
+#define QSPI_CCR_IMODE_SHIFT	8U
+#define QSPI_CCR_IND_WRITE	0U
+#define QSPI_CCR_IND_READ	1U
+#define QSPI_CCR_MEM_MAP	3U
+
+#define QSPI_MAX_CHIP		2U
+
+#define QSPI_FIFO_TIMEOUT_US	30U
+#define QSPI_CMD_TIMEOUT_US	1000U
+#define QSPI_BUSY_TIMEOUT_US	100U
+#define QSPI_ABT_TIMEOUT_US	100U
+
+#define DT_QSPI_COMPAT		"st,stm32f469-qspi"
+
+#define FREQ_100MHZ		100000000U
+
+struct stm32_qspi_ctrl {
+	uintptr_t reg_base;
+	uintptr_t mm_base;
+	size_t mm_size;
+	unsigned long clock_id;
+	unsigned int reset_id;
+};
+
+static struct stm32_qspi_ctrl stm32_qspi;
+
+static uintptr_t qspi_base(void)
+{
+	return stm32_qspi.reg_base;
+}
+
+static int stm32_qspi_wait_for_not_busy(void)
+{
+	uint64_t timeout = timeout_init_us(QSPI_BUSY_TIMEOUT_US);
+
+	while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_BUSY) != 0U) {
+		if (timeout_elapsed(timeout)) {
+			ERROR("%s: busy timeout\n", __func__);
+			return -ETIMEDOUT;
+		}
+	}
+
+	return 0;
+}
+
+static int stm32_qspi_wait_cmd(const struct spi_mem_op *op)
+{
+	int ret = 0;
+	uint64_t timeout;
+
+	if (op->data.nbytes == 0U) {
+		return stm32_qspi_wait_for_not_busy();
+	}
+
+	timeout = timeout_init_us(QSPI_CMD_TIMEOUT_US);
+	while ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TCF) == 0U) {
+		if (timeout_elapsed(timeout)) {
+			ret = -ETIMEDOUT;
+			break;
+		}
+	}
+
+	if (ret == 0) {
+		if ((mmio_read_32(qspi_base() + QSPI_SR) & QSPI_SR_TEF) != 0U) {
+			ERROR("%s: transfer error\n", __func__);
+			ret = -EIO;
+		}
+	} else {
+		ERROR("%s: cmd timeout\n", __func__);
+	}
+
+	/* Clear flags */
+	mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF | QSPI_FCR_CTEF);
+
+	return ret;
+}
+
+static void stm32_qspi_read_fifo(uint8_t *val, uintptr_t addr)
+{
+	*val = mmio_read_8(addr);
+}
+
+static void stm32_qspi_write_fifo(uint8_t *val, uintptr_t addr)
+{
+	mmio_write_8(addr, *val);
+}
+
+static int stm32_qspi_poll(const struct spi_mem_op *op)
+{
+	void (*fifo)(uint8_t *val, uintptr_t addr);
+	uint32_t len = op->data.nbytes;
+	uint8_t *buf;
+	uint64_t timeout;
+
+	if (op->data.dir == SPI_MEM_DATA_IN) {
+		fifo = stm32_qspi_read_fifo;
+	} else {
+		fifo = stm32_qspi_write_fifo;
+	}
+
+	buf = (uint8_t *)op->data.buf;
+
+	for (len = op->data.nbytes; len != 0U; len--) {
+		timeout = timeout_init_us(QSPI_FIFO_TIMEOUT_US);
+		while ((mmio_read_32(qspi_base() + QSPI_SR) &
+			QSPI_SR_FTF) == 0U) {
+			if (timeout_elapsed(timeout)) {
+				ERROR("%s: fifo timeout\n", __func__);
+				return -ETIMEDOUT;
+			}
+		}
+
+		fifo(buf++, qspi_base() + QSPI_DR);
+	}
+
+	return 0;
+}
+
+static int stm32_qspi_mm(const struct spi_mem_op *op)
+{
+	memcpy(op->data.buf,
+	       (void *)(stm32_qspi.mm_base + (size_t)op->addr.val),
+	       op->data.nbytes);
+
+	return 0;
+}
+
+static int stm32_qspi_tx(const struct spi_mem_op *op, uint8_t mode)
+{
+	if (op->data.nbytes == 0U) {
+		return 0;
+	}
+
+	if (mode == QSPI_CCR_MEM_MAP) {
+		return stm32_qspi_mm(op);
+	}
+
+	return stm32_qspi_poll(op);
+}
+
+static unsigned int stm32_qspi_get_mode(uint8_t buswidth)
+{
+	if (buswidth == 4U) {
+		return 3U;
+	}
+
+	return buswidth;
+}
+
+static int stm32_qspi_exec_op(const struct spi_mem_op *op)
+{
+	uint64_t timeout;
+	uint32_t ccr;
+	size_t addr_max;
+	uint8_t mode = QSPI_CCR_IND_WRITE;
+	int ret;
+
+	VERBOSE("%s: cmd:%x mode:%d.%d.%d.%d addr:%llx len:%x\n",
+		__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
+		op->dummy.buswidth, op->data.buswidth,
+		op->addr.val, op->data.nbytes);
+
+	ret = stm32_qspi_wait_for_not_busy();
+	if (ret != 0) {
+		return ret;
+	}
+
+	addr_max = op->addr.val + op->data.nbytes + 1U;
+
+	if ((op->data.dir == SPI_MEM_DATA_IN) && (op->data.nbytes != 0U)) {
+		if ((addr_max < stm32_qspi.mm_size) &&
+		    (op->addr.buswidth != 0U)) {
+			mode = QSPI_CCR_MEM_MAP;
+		} else {
+			mode = QSPI_CCR_IND_READ;
+		}
+	}
+
+	if (op->data.nbytes != 0U) {
+		mmio_write_32(qspi_base() + QSPI_DLR, op->data.nbytes - 1U);
+	}
+
+	ccr = mode << QSPI_CCR_FMODE_SHIFT;
+	ccr |= op->cmd.opcode;
+	ccr |= stm32_qspi_get_mode(op->cmd.buswidth) << QSPI_CCR_IMODE_SHIFT;
+
+	if (op->addr.nbytes != 0U) {
+		ccr |= (op->addr.nbytes - 1U) << QSPI_CCR_ADSIZE_SHIFT;
+		ccr |= stm32_qspi_get_mode(op->addr.buswidth) <<
+			QSPI_CCR_ADMODE_SHIFT;
+	}
+
+	if ((op->dummy.buswidth != 0U) && (op->dummy.nbytes != 0U)) {
+		ccr |= (op->dummy.nbytes * 8U / op->dummy.buswidth) <<
+			QSPI_CCR_DCYC_SHIFT;
+	}
+
+	if (op->data.nbytes != 0U) {
+		ccr |= stm32_qspi_get_mode(op->data.buswidth) <<
+			QSPI_CCR_DMODE_SHIFT;
+	}
+
+	mmio_write_32(qspi_base() + QSPI_CCR, ccr);
+
+	if ((op->addr.nbytes != 0U) && (mode != QSPI_CCR_MEM_MAP)) {
+		mmio_write_32(qspi_base() + QSPI_AR, op->addr.val);
+	}
+
+	ret = stm32_qspi_tx(op, mode);
+
+	/*
+	 * Abort in:
+	 * - Error case.
+	 * - Memory mapped read: prefetching must be stopped if we read the last
+	 *   byte of device (device size - fifo size). If device size is not
+	 *   known then prefetching is always stopped.
+	 */
+	if ((ret != 0) || (mode == QSPI_CCR_MEM_MAP)) {
+		goto abort;
+	}
+
+	/* Wait end of TX in indirect mode */
+	ret = stm32_qspi_wait_cmd(op);
+	if (ret != 0) {
+		goto abort;
+	}
+
+	return 0;
+
+abort:
+	mmio_setbits_32(qspi_base() + QSPI_CR, QSPI_CR_ABORT);
+
+	/* Wait clear of abort bit by hardware */
+	timeout = timeout_init_us(QSPI_ABT_TIMEOUT_US);
+	while ((mmio_read_32(qspi_base() + QSPI_CR) & QSPI_CR_ABORT) != 0U) {
+		if (timeout_elapsed(timeout)) {
+			ret = -ETIMEDOUT;
+			break;
+		}
+	}
+
+	mmio_write_32(qspi_base() + QSPI_FCR, QSPI_FCR_CTCF);
+
+	if (ret != 0) {
+		ERROR("%s: exec op error\n", __func__);
+	}
+
+	return ret;
+}
+
+static int stm32_qspi_claim_bus(unsigned int cs)
+{
+	uint32_t cr;
+
+	if (cs >= QSPI_MAX_CHIP) {
+		return -ENODEV;
+	}
+
+	/* Set chip select and enable the controller */
+	cr = QSPI_CR_EN;
+	if (cs == 1U) {
+		cr |= QSPI_CR_FSEL;
+	}
+
+	mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_FSEL, cr);
+
+	return 0;
+}
+
+static void stm32_qspi_release_bus(void)
+{
+	mmio_clrbits_32(qspi_base() + QSPI_CR, QSPI_CR_EN);
+}
+
+static int stm32_qspi_set_speed(unsigned int hz)
+{
+	unsigned long qspi_clk = stm32mp_clk_get_rate(stm32_qspi.clock_id);
+	uint32_t prescaler = UINT8_MAX;
+	uint32_t csht;
+	int ret;
+
+	if (qspi_clk == 0U) {
+		return -EINVAL;
+	}
+
+	if (hz > 0U) {
+		prescaler = div_round_up(qspi_clk, hz) - 1U;
+		if (prescaler > UINT8_MAX) {
+			prescaler = UINT8_MAX;
+		}
+	}
+
+	csht = div_round_up((5U * qspi_clk) / (prescaler + 1U), FREQ_100MHZ);
+	csht = ((csht - 1U) << QSPI_DCR_CSHT_SHIFT) & QSPI_DCR_CSHT_MASK;
+
+	ret = stm32_qspi_wait_for_not_busy();
+	if (ret != 0) {
+		return ret;
+	}
+
+	mmio_clrsetbits_32(qspi_base() + QSPI_CR, QSPI_CR_PRESCALER_MASK,
+			   prescaler << QSPI_CR_PRESCALER_SHIFT);
+
+	mmio_clrsetbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CSHT_MASK, csht);
+
+	VERBOSE("%s: speed=%lu\n", __func__, qspi_clk / (prescaler + 1U));
+
+	return 0;
+}
+
+static int stm32_qspi_set_mode(unsigned int mode)
+{
+	int ret;
+
+	ret = stm32_qspi_wait_for_not_busy();
+	if (ret != 0) {
+		return ret;
+	}
+
+	if ((mode & SPI_CS_HIGH) != 0U) {
+		return -ENODEV;
+	}
+
+	if (((mode & SPI_CPHA) != 0U) && ((mode & SPI_CPOL) != 0U)) {
+		mmio_setbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
+	} else if (((mode & SPI_CPHA) == 0U) && ((mode & SPI_CPOL) == 0U)) {
+		mmio_clrbits_32(qspi_base() + QSPI_DCR, QSPI_DCR_CKMODE);
+	} else {
+		return -ENODEV;
+	}
+
+	VERBOSE("%s: mode=0x%x\n", __func__, mode);
+
+	if ((mode & SPI_RX_QUAD) != 0U) {
+		VERBOSE("rx: quad\n");
+	} else if ((mode & SPI_RX_DUAL) != 0U) {
+		VERBOSE("rx: dual\n");
+	} else {
+		VERBOSE("rx: single\n");
+	}
+
+	if ((mode & SPI_TX_QUAD) != 0U) {
+		VERBOSE("tx: quad\n");
+	} else if ((mode & SPI_TX_DUAL) != 0U) {
+		VERBOSE("tx: dual\n");
+	} else {
+		VERBOSE("tx: single\n");
+	}
+
+	return 0;
+}
+
+static const struct spi_bus_ops stm32_qspi_bus_ops = {
+	.claim_bus = stm32_qspi_claim_bus,
+	.release_bus = stm32_qspi_release_bus,
+	.set_speed = stm32_qspi_set_speed,
+	.set_mode = stm32_qspi_set_mode,
+	.exec_op = stm32_qspi_exec_op,
+};
+
+int stm32_qspi_init(void)
+{
+	size_t size;
+	int qspi_node;
+	struct dt_node_info info;
+	void *fdt = NULL;
+	int ret;
+
+	if (fdt_get_address(&fdt) == 0) {
+		return -FDT_ERR_NOTFOUND;
+	}
+
+	qspi_node = dt_get_node(&info, -1, DT_QSPI_COMPAT);
+	if (qspi_node < 0) {
+		ERROR("No QSPI ctrl found\n");
+		return -FDT_ERR_NOTFOUND;
+	}
+
+	if (info.status == DT_DISABLED) {
+		return -FDT_ERR_NOTFOUND;
+	}
+
+	ret = fdt_get_reg_props_by_name(qspi_node, "qspi",
+					&stm32_qspi.reg_base, &size);
+	if (ret != 0) {
+		return ret;
+	}
+
+	ret = fdt_get_reg_props_by_name(qspi_node, "qspi_mm",
+					&stm32_qspi.mm_base,
+					&stm32_qspi.mm_size);
+	if (ret != 0) {
+		return ret;
+	}
+
+	if (dt_set_pinctrl_config(qspi_node) != 0) {
+		return -FDT_ERR_BADVALUE;
+	}
+
+	if ((info.clock < 0) || (info.reset < 0)) {
+		return -FDT_ERR_BADVALUE;
+	}
+
+	stm32_qspi.clock_id = (unsigned long)info.clock;
+	stm32_qspi.reset_id = (unsigned int)info.reset;
+
+	stm32mp_clk_enable(stm32_qspi.clock_id);
+
+	stm32mp_reset_assert(stm32_qspi.reset_id);
+	stm32mp_reset_deassert(stm32_qspi.reset_id);
+
+	mmio_write_32(qspi_base() + QSPI_CR, QSPI_CR_SSHIFT);
+	mmio_write_32(qspi_base() + QSPI_DCR, QSPI_DCR_FSIZE_MASK);
+
+	return spi_mem_init_slave(fdt, qspi_node, &stm32_qspi_bus_ops);
+};