blob: c3f767eed44e7d5666167590666ecf76e46afe10 [file] [log] [blame]
/*
* Copyright (c) 2016-2024, Arm Limited and Contributors. All rights reserved.
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef UTILS_DEF_H
#define UTILS_DEF_H
#include <export/lib/utils_def_exp.h>
/* Compute the number of elements in the given array */
#define ARRAY_SIZE(a) \
(sizeof(a) / sizeof((a)[0]))
#define IS_POWER_OF_TWO(x) \
(((x) & ((x) - 1)) == 0)
#define SIZE_FROM_LOG2_WORDS(n) (U(4) << (n))
#if defined(__LINKER__) || defined(__ASSEMBLER__)
#define BIT_32(nr) (U(1) << (nr))
#define BIT_64(nr) (ULL(1) << (nr))
#else
#define BIT_32(nr) (((uint32_t)(1U)) << (nr))
#define BIT_64(nr) (((uint64_t)(1ULL)) << (nr))
#endif
#ifdef __aarch64__
#define BIT BIT_64
#else
#define BIT BIT_32
#endif
/*
* Create a contiguous bitmask starting at bit position @low and ending at
* position @high. For example
* GENMASK_64(39, 21) gives us the 64bit vector 0x000000ffffe00000.
*/
#if defined(__LINKER__) || defined(__ASSEMBLER__)
#define GENMASK_32(high, low) \
(((0xFFFFFFFF) << (low)) & (0xFFFFFFFF >> (32 - 1 - (high))))
#define GENMASK_64(high, low) \
((~0 << (low)) & (~0 >> (64 - 1 - (high))))
#else
#define GENMASK_32(high, low) \
((~UINT32_C(0) >> (32U - 1U - (high))) ^ ((BIT_32(low) - 1U)))
#define GENMASK_64(high, low) \
((~UINT64_C(0) >> (64U - 1U - (high))) ^ ((BIT_64(low) - 1U)))
#endif
#ifdef __aarch64__
#define GENMASK GENMASK_64
#else
#define GENMASK GENMASK_32
#endif
#define HI(addr) (addr >> 32)
#define LO(addr) (addr & 0xffffffff)
/*
* This variant of div_round_up can be used in macro definition but should not
* be used in C code as the `div` parameter is evaluated twice.
*/
#define DIV_ROUND_UP_2EVAL(n, d) (((n) + (d) - 1) / (d))
#define div_round_up(val, div) __extension__ ({ \
__typeof__(div) _div = (div); \
((val) + _div - (__typeof__(div)) 1) / _div; \
})
#define MIN(x, y) __extension__ ({ \
__typeof__(x) _x = (x); \
__typeof__(y) _y = (y); \
(void)(&_x == &_y); \
(_x < _y) ? _x : _y; \
})
#define MAX(x, y) __extension__ ({ \
__typeof__(x) _x = (x); \
__typeof__(y) _y = (y); \
(void)(&_x == &_y); \
(_x > _y) ? _x : _y; \
})
#define CLAMP(x, min, max) __extension__ ({ \
__typeof__(x) _x = (x); \
__typeof__(min) _min = (min); \
__typeof__(max) _max = (max); \
(void)(&_x == &_min); \
(void)(&_x == &_max); \
((_x > _max) ? _max : ((_x < _min) ? _min : _x)); \
})
/*
* The round_up() macro rounds up a value to the given boundary in a
* type-agnostic yet type-safe manner. The boundary must be a power of two.
* In other words, it computes the smallest multiple of boundary which is
* greater than or equal to value.
*
* round_down() is similar but rounds the value down instead.
*/
#define round_boundary(value, boundary) \
((__typeof__(value))((boundary) - 1))
#define round_up(value, boundary) \
((((value) - 1) | round_boundary(value, boundary)) + 1)
#define round_down(value, boundary) \
((value) & ~round_boundary(value, boundary))
/* add operation together with checking whether the operation overflowed
* The result is '*res',
* return 0 on success and 1 on overflow
*/
#define add_overflow(a, b, res) __builtin_add_overflow((a), (b), (res))
/*
* Round up a value to align with a given size and
* check whether overflow happens.
* The rounduped value is '*res',
* return 0 on success and 1 on overflow
*/
#define round_up_overflow(v, size, res) (__extension__({ \
typeof(res) __res = res; \
typeof(*(__res)) __roundup_tmp = 0; \
typeof(v) __roundup_mask = (typeof(v))(size) - 1; \
\
add_overflow((v), __roundup_mask, &__roundup_tmp) ? 1 : \
(void)(*(__res) = __roundup_tmp & ~__roundup_mask), 0; \
}))
/*
* Add a with b, then round up the result to align with a given size and
* check whether overflow happens.
* The rounduped value is '*res',
* return 0 on success and 1 on overflow
*/
#define add_with_round_up_overflow(a, b, size, res) (__extension__({ \
typeof(a) __a = (a); \
typeof(__a) __add_res = 0; \
\
add_overflow((__a), (b), &__add_res) ? 1 : \
round_up_overflow(__add_res, (size), (res)) ? 1 : 0; \
}))
/**
* Helper macro to ensure a value lies on a given boundary.
*/
#define is_aligned(value, boundary) \
(round_up((uintptr_t) value, boundary) == \
round_down((uintptr_t) value, boundary))
/*
* Evaluates to 1 if (ptr + inc) overflows, 0 otherwise.
* Both arguments must be unsigned pointer values (i.e. uintptr_t).
*/
#define check_uptr_overflow(_ptr, _inc) \
((_ptr) > (UINTPTR_MAX - (_inc)))
/*
* Evaluates to 1 if (u32 + inc) overflows, 0 otherwise.
* Both arguments must be 32-bit unsigned integers (i.e. effectively uint32_t).
*/
#define check_u32_overflow(_u32, _inc) \
((_u32) > (UINT32_MAX - (_inc)))
/* Register size of the current architecture. */
#ifdef __aarch64__
#define REGSZ U(8)
#else
#define REGSZ U(4)
#endif
/*
* Test for the current architecture version to be at least the version
* expected.
*/
#define ARM_ARCH_AT_LEAST(_maj, _min) \
((ARM_ARCH_MAJOR > (_maj)) || \
((ARM_ARCH_MAJOR == (_maj)) && (ARM_ARCH_MINOR >= (_min))))
/*
* Import an assembly or linker symbol as a C expression with the specified
* type
*/
#define IMPORT_SYM(type, sym, name) \
extern char sym[];\
static const __attribute__((unused)) type name = (type) sym;
/*
* When the symbol is used to hold a pointer, its alignment can be asserted
* with this macro. For example, if there is a linker symbol that is going to
* be used as a 64-bit pointer, the value of the linker symbol must also be
* aligned to 64 bit. This macro makes sure this is the case.
*/
#define ASSERT_SYM_PTR_ALIGN(sym) assert(((size_t)(sym) % __alignof__(*(sym))) == 0)
#define COMPILER_BARRIER() __asm__ volatile ("" ::: "memory")
/* Compiler builtin of GCC >= 9 and planned in llvm */
#ifdef __HAVE_SPECULATION_SAFE_VALUE
# define SPECULATION_SAFE_VALUE(var) __builtin_speculation_safe_value(var)
#else
# define SPECULATION_SAFE_VALUE(var) var
#endif
/*
* Ticks elapsed in one second with a signal of 1 MHz
*/
#define MHZ_TICKS_PER_SEC U(1000000)
/*
* Ticks elapsed in one second with a signal of 1 KHz
*/
#define KHZ_TICKS_PER_SEC U(1000)
#endif /* UTILS_DEF_H */