refactor(spm_mm): reorganize secure partition manager code

In preparation for adding the EL3 SPMC configuration as defined in
the FF-A specification, restructure the existing SPM_MM code.

With this restructuring of the code, the 'spm_mm' directory is
renamed as 'spm' and the code inside has been split into two
sub-directories named 'common' and 'spm_mm'. The code in 'spm_mm'
directory contains the code that implements the MM interface.
In subsequent patches, the 'spmc' directory will be introduced
under the 'spm' directory providing the code that implements
the 'FF-A' interface.

Currently the common functionality for S-EL1 partitions is
limited to assembler functions to enter and exit an SP
synchronously.

Signed-off-by: Marc Bonnici <marc.bonnici@arm.com>
Change-Id: I37739b9b53bc68e151ab5c1c0c6a15b3ee362241
diff --git a/services/std_svc/spm/spm_mm/spm_mm_setup.c b/services/std_svc/spm/spm_mm/spm_mm_setup.c
new file mode 100644
index 0000000..04dc212
--- /dev/null
+++ b/services/std_svc/spm/spm_mm/spm_mm_setup.c
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved.
+ * Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <string.h>
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <context.h>
+#include <common/debug.h>
+#include <lib/el3_runtime/context_mgmt.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+#include <platform_def.h>
+#include <plat/common/common_def.h>
+#include <plat/common/platform.h>
+#include <services/spm_mm_partition.h>
+
+#include "spm_common.h"
+#include "spm_mm_private.h"
+#include "spm_mm_shim_private.h"
+
+/* Setup context of the Secure Partition */
+void spm_sp_setup(sp_context_t *sp_ctx)
+{
+	cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
+
+	/* Pointer to the MP information from the platform port. */
+	const spm_mm_boot_info_t *sp_boot_info =
+			plat_get_secure_partition_boot_info(NULL);
+
+	/*
+	 * Initialize CPU context
+	 * ----------------------
+	 */
+
+	entry_point_info_t ep_info = {0};
+
+	SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
+
+	/* Setup entrypoint and SPSR */
+	ep_info.pc = sp_boot_info->sp_image_base;
+	ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
+
+	/*
+	 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
+	 *     The buffer will be mapped in the Secure EL1 translation regime
+	 *     with Normal IS WBWA attributes and RO data and Execute Never
+	 *     instruction access permissions.
+	 *
+	 * X1: Size of the buffer in bytes
+	 *
+	 * X2: cookie value (Implementation Defined)
+	 *
+	 * X3: cookie value (Implementation Defined)
+	 *
+	 * X4 to X7 = 0
+	 */
+	ep_info.args.arg0 = sp_boot_info->sp_shared_buf_base;
+	ep_info.args.arg1 = sp_boot_info->sp_shared_buf_size;
+	ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
+	ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
+
+	cm_setup_context(ctx, &ep_info);
+
+	/*
+	 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
+	 * initialized the stack pointer for the current CPU through
+	 * implementation defined means. The value will be 0 otherwise.
+	 */
+	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
+			sp_boot_info->sp_stack_base + sp_boot_info->sp_pcpu_stack_size);
+
+	/*
+	 * Setup translation tables
+	 * ------------------------
+	 */
+
+#if ENABLE_ASSERTIONS
+
+	/* Get max granularity supported by the platform. */
+	unsigned int max_granule = xlat_arch_get_max_supported_granule_size();
+
+	VERBOSE("Max translation granule size supported: %u KiB\n",
+		max_granule / 1024U);
+
+	unsigned int max_granule_mask = max_granule - 1U;
+
+	/* Base must be aligned to the max granularity */
+	assert((sp_boot_info->sp_ns_comm_buf_base & max_granule_mask) == 0);
+
+	/* Size must be a multiple of the max granularity */
+	assert((sp_boot_info->sp_ns_comm_buf_size & max_granule_mask) == 0);
+
+#endif /* ENABLE_ASSERTIONS */
+
+	/* This region contains the exception vectors used at S-EL1. */
+	const mmap_region_t sel1_exception_vectors =
+		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
+				SPM_SHIM_EXCEPTIONS_SIZE,
+				MT_CODE | MT_SECURE | MT_PRIVILEGED);
+	mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
+			    &sel1_exception_vectors);
+
+	mmap_add_ctx(sp_ctx->xlat_ctx_handle,
+		     plat_get_secure_partition_mmap(NULL));
+
+	init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
+
+	/*
+	 * MMU-related registers
+	 * ---------------------
+	 */
+	xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
+
+	uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
+
+	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
+		      xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
+		      EL1_EL0_REGIME);
+
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_MAIR_EL1,
+		      mmu_cfg_params[MMU_CFG_MAIR]);
+
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TCR_EL1,
+		      mmu_cfg_params[MMU_CFG_TCR]);
+
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TTBR0_EL1,
+		      mmu_cfg_params[MMU_CFG_TTBR0]);
+
+	/* Setup SCTLR_EL1 */
+	u_register_t sctlr_el1 = read_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1);
+
+	sctlr_el1 |=
+		/*SCTLR_EL1_RES1 |*/
+		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
+		SCTLR_UCI_BIT							|
+		/* RW regions at xlat regime EL1&0 are forced to be XN. */
+		SCTLR_WXN_BIT							|
+		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
+		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT					|
+		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
+		SCTLR_UCT_BIT							|
+		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
+		SCTLR_DZE_BIT							|
+		/* Enable SP Alignment check for EL0 */
+		SCTLR_SA0_BIT							|
+		/* Don't change PSTATE.PAN on taking an exception to EL1 */
+		SCTLR_SPAN_BIT							|
+		/* Allow cacheable data and instr. accesses to normal memory. */
+		SCTLR_C_BIT | SCTLR_I_BIT					|
+		/* Enable MMU. */
+		SCTLR_M_BIT
+	;
+
+	sctlr_el1 &= ~(
+		/* Explicit data accesses at EL0 are little-endian. */
+		SCTLR_E0E_BIT							|
+		/*
+		 * Alignment fault checking disabled when at EL1 and EL0 as
+		 * the UEFI spec permits unaligned accesses.
+		 */
+		SCTLR_A_BIT							|
+		/* Accesses to DAIF from EL0 are trapped to EL1. */
+		SCTLR_UMA_BIT
+	);
+
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
+
+	/*
+	 * Setup other system registers
+	 * ----------------------------
+	 */
+
+	/* Shim Exception Vector Base Address */
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_VBAR_EL1,
+			SPM_SHIM_EXCEPTIONS_PTR);
+
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CNTKCTL_EL1,
+		      EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
+
+	/*
+	 * FPEN: Allow the Secure Partition to access FP/SIMD registers.
+	 * Note that SPM will not do any saving/restoring of these registers on
+	 * behalf of the SP. This falls under the SP's responsibility.
+	 * TTA: Enable access to trace registers.
+	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
+	 */
+	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CPACR_EL1,
+			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
+
+	/*
+	 * Prepare information in buffer shared between EL3 and S-EL0
+	 * ----------------------------------------------------------
+	 */
+
+	void *shared_buf_ptr = (void *) sp_boot_info->sp_shared_buf_base;
+
+	/* Copy the boot information into the shared buffer with the SP. */
+	assert((uintptr_t)shared_buf_ptr + sizeof(spm_mm_boot_info_t)
+	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size));
+
+	assert(sp_boot_info->sp_shared_buf_base <=
+				(UINTPTR_MAX - sp_boot_info->sp_shared_buf_size + 1));
+
+	assert(sp_boot_info != NULL);
+
+	memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
+	       sizeof(spm_mm_boot_info_t));
+
+	/* Pointer to the MP information from the platform port. */
+	spm_mm_mp_info_t *sp_mp_info =
+		((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
+
+	assert(sp_mp_info != NULL);
+
+	/*
+	 * Point the shared buffer MP information pointer to where the info will
+	 * be populated, just after the boot info.
+	 */
+	((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info =
+		(spm_mm_mp_info_t *) ((uintptr_t)shared_buf_ptr
+				+ sizeof(spm_mm_boot_info_t));
+
+	/*
+	 * Update the shared buffer pointer to where the MP information for the
+	 * payload will be populated
+	 */
+	shared_buf_ptr = ((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
+
+	/*
+	 * Copy the cpu information into the shared buffer area after the boot
+	 * information.
+	 */
+	assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
+
+	assert((uintptr_t)shared_buf_ptr
+	       <= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size -
+		       (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
+
+	memcpy(shared_buf_ptr, (const void *) sp_mp_info,
+		sp_boot_info->num_cpus * sizeof(*sp_mp_info));
+
+	/*
+	 * Calculate the linear indices of cores in boot information for the
+	 * secure partition and flag the primary CPU
+	 */
+	sp_mp_info = (spm_mm_mp_info_t *) shared_buf_ptr;
+
+	for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
+		u_register_t mpidr = sp_mp_info[index].mpidr;
+
+		sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
+		if (plat_my_core_pos() == sp_mp_info[index].linear_id)
+			sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
+	}
+}