Support PSCI SYSTEM SUSPEND on Juno

This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.

According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.

A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.

Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
9 files changed
tree: 6886d140f0b3bf04abecbb452d4007d6c08e0eaf
  1. bl1/
  2. bl2/
  3. bl31/
  4. bl32/
  5. common/
  6. docs/
  7. drivers/
  8. fdts/
  9. include/
  10. lib/
  11. make_helpers/
  12. plat/
  13. services/
  14. tools/
  15. .gitignore
  16. acknowledgements.md
  17. contributing.md
  18. license.md
  19. Makefile
  20. readme.md
readme.md

ARM Trusted Firmware - version 1.1

ARM Trusted Firmware provides a reference implementation of secure world software for ARMv8-A, including Exception Level 3 (EL3) software. This release provides complete support for version 0.2 of the PSCI specification, initial support for the new version 1.0 of that specification, and prototype support for the Trusted Board Boot Requirements specification.

The intent is to provide a reference implementation of various ARM interface standards, such as the Power State Coordination Interface (PSCI), Trusted Board Boot Requirements (TBBR) and [Secure Monitor] TEE-SMC code. As far as possible the code is designed for reuse or porting to other ARMv8-A model and hardware platforms.

ARM will continue development in collaboration with interested parties to provide a full reference implementation of PSCI, TBBR and Secure Monitor code to the benefit of all developers working with ARMv8-A TrustZone technology.

License

The software is provided under a BSD 3-Clause license. Certain source files are derived from FreeBSD code: the original license is included in these source files.

This Release

This release is a limited functionality implementation of the Trusted Firmware. It provides a suitable starting point for productization. Future versions will contain new features, optimizations and quality improvements.

Functionality

  • Prototype implementation of a subset of the Trusted Board Boot Requirements Platform Design Document (PDD). This includes packaging the various firmware images into a Firmware Image Package (FIP) to be loaded from non-volatile storage, and a prototype of authenticated boot using key certificates stored in the FIP.

  • Initializes the secure world (for example, exception vectors, control registers, GIC and interrupts for the platform), before transitioning into the normal world.

  • Supports both GICv2 and GICv3 initialization for use by normal world software.

  • Starts the normal world at the Exception Level and Register Width specified by the platform port. Typically this is AArch64 EL2 if available.

  • Handles SMCs (Secure Monitor Calls) conforming to the [SMC Calling Convention PDD] SMCCC using an EL3 runtime services framework.

  • Handles SMCs relating to the [Power State Coordination Interface PDD] PSCI for the Secondary CPU Boot, CPU Hotplug, CPU Idle and System Shutdown/Reset use-cases.

  • A Test Secure-EL1 Payload and Dispatcher to demonstrate Secure Monitor functionality such as world switching, EL1 context management and interrupt routing. This also demonstrates Secure-EL1 interaction with PSCI. Some of this functionality is provided in library form for re-use by other Secure-EL1 Payload Dispatchers.

  • Support for alternative Trusted Boot Firmware. Some platforms have their own Trusted Boot implementation and only require the Secure Monitor functionality provided by ARM Trusted Firmware.

  • Isolation of memory accessible by the secure world from the normal world through programming of a TrustZone controller.

  • Support for CPU specific reset sequences, power down sequences and register dumping during crash reporting. The CPU specific reset sequences include support for errata workarounds.

For a full description of functionality and implementation details, please see the Firmware Design and supporting documentation. The Change Log provides details of changes made since the last release.

Platforms

This release of the Trusted Firmware has been tested on Revision B of the [Juno ARM Development Platform] Juno with Version r0p0-00rel7 of the [ARM SCP Firmware] SCP download.

The Trusted Firmware has also been tested on the 64-bit Linux versions of the following ARM FVPs:

  • Foundation_Platform (Version 9.1, Build 9.1.33)
  • FVP_Base_AEMv8A-AEMv8A (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x4-A53x4 (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x1-A53x1 (Version 6.2, Build 0.8.6202)
  • FVP_Base_Cortex-A57x2-A53x4 (Version 6.2, Build 0.8.6202)

The Foundation FVP can be downloaded free of charge. The Base FVPs can be licensed from ARM: see [www.arm.com/fvp] FVP.

Still to Come

  • Complete and more flexible Trusted Board Boot implementation.

  • Complete implementation of the PSCI v1.0 specification.

  • Support for alternative types of Secure-EL1 Payloads.

  • Extending the GICv3 support to the secure world.

  • Support for new System IP devices.

For a full list of detailed issues in the current code, please see the Change Log and the GitHub issue tracker.

Getting Started

Get the Trusted Firmware source code from GitHub.

See the User Guide for instructions on how to install, build and use the Trusted Firmware with the ARM FVPs.

See the Firmware Design for information on how the ARM Trusted Firmware works.

See the Porting Guide as well for information about how to use this software on another ARMv8-A platform.

See the Contributing Guidelines for information on how to contribute to this project and the Acknowledgments file for a list of contributors to the project.

Feedback and support

ARM welcomes any feedback on the Trusted Firmware. Please send feedback using the GitHub issue tracker.

ARM licensees may contact ARM directly via their partner managers.


Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.