blob: b213ffa47f7c5f68e83d1cb78928dbb0db835996 [file] [log] [blame]
/*
* Copyright (c) 2018-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/* Helper functions to offer easier navigation of Device Tree Blob */
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>
#include <libfdt.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <common/uuid.h>
/*
* Read cells from a given property of the given node. Any number of 32-bit
* cells of the property can be read. Returns 0 on success, or a negative
* FDT error value otherwise.
*/
int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name,
unsigned int cells, uint32_t *value)
{
const fdt32_t *prop;
int value_len;
assert(dtb != NULL);
assert(prop_name != NULL);
assert(value != NULL);
assert(node >= 0);
/* Access property and obtain its length (in bytes) */
prop = fdt_getprop(dtb, node, prop_name, &value_len);
if (prop == NULL) {
VERBOSE("Couldn't find property %s in dtb\n", prop_name);
return -FDT_ERR_NOTFOUND;
}
/* Verify that property length can fill the entire array. */
if (NCELLS((unsigned int)value_len) < cells) {
WARN("Property length mismatch\n");
return -FDT_ERR_BADVALUE;
}
for (unsigned int i = 0U; i < cells; i++) {
value[i] = fdt32_to_cpu(prop[i]);
}
return 0;
}
int fdt_read_uint32(const void *dtb, int node, const char *prop_name,
uint32_t *value)
{
return fdt_read_uint32_array(dtb, node, prop_name, 1, value);
}
uint32_t fdt_read_uint32_default(const void *dtb, int node,
const char *prop_name, uint32_t dflt_value)
{
uint32_t ret = dflt_value;
int err = fdt_read_uint32(dtb, node, prop_name, &ret);
if (err < 0) {
return dflt_value;
}
return ret;
}
int fdt_read_uint64(const void *dtb, int node, const char *prop_name,
uint64_t *value)
{
uint32_t array[2] = {0, 0};
int ret;
ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array);
if (ret < 0) {
return ret;
}
*value = ((uint64_t)array[0] << 32) | array[1];
return 0;
}
uint64_t fdt_read_uint64_default(const void *dtb, int node,
const char *prop_name, uint64_t dflt_value)
{
uint64_t ret = dflt_value;
int err = fdt_read_uint64(dtb, node, prop_name, &ret);
if (err < 0) {
return dflt_value;
}
return ret;
}
/*
* Read bytes from a given property of the given node. Any number of
* bytes of the property can be read. The fdt pointer is updated.
* Returns 0 on success, and -1 on error.
*/
int fdtw_read_bytes(const void *dtb, int node, const char *prop,
unsigned int length, void *value)
{
const void *ptr;
int value_len;
assert(dtb != NULL);
assert(prop != NULL);
assert(value != NULL);
assert(node >= 0);
/* Access property and obtain its length (in bytes) */
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop),
&value_len);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
/* Verify that property length is not less than number of bytes */
if ((unsigned int)value_len < length) {
WARN("Property length mismatch\n");
return -1;
}
(void)memcpy(value, ptr, length);
return 0;
}
/*
* Read string from a given property of the given node. Up to 'size - 1'
* characters are read, and a NUL terminator is added. Returns 0 on success,
* and -1 upon error.
*/
int fdtw_read_string(const void *dtb, int node, const char *prop,
char *str, size_t size)
{
const char *ptr;
size_t len;
assert(dtb != NULL);
assert(node >= 0);
assert(prop != NULL);
assert(str != NULL);
assert(size > 0U);
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
len = strlcpy(str, ptr, size);
if (len >= size) {
WARN("String of property %s in dtb has been truncated\n", prop);
return -1;
}
return 0;
}
/*
* Read UUID from a given property of the given node. Returns 0 on success,
* and a negative value upon error.
*/
int fdtw_read_uuid(const void *dtb, int node, const char *prop,
unsigned int length, uint8_t *uuid)
{
/* Buffer for UUID string (plus NUL terminator) */
char uuid_string[UUID_STRING_LENGTH + 1U];
int err;
assert(dtb != NULL);
assert(prop != NULL);
assert(uuid != NULL);
assert(node >= 0);
if (length < UUID_BYTES_LENGTH) {
return -EINVAL;
}
err = fdtw_read_string(dtb, node, prop, uuid_string,
UUID_STRING_LENGTH + 1U);
if (err != 0) {
return err;
}
if (read_uuid(uuid, uuid_string) != 0) {
return -FDT_ERR_BADVALUE;
}
return 0;
}
/*
* Write cells in place to a given property of the given node. At most 2 cells
* of the property are written. Returns 0 on success, and -1 upon error.
*/
int fdtw_write_inplace_cells(void *dtb, int node, const char *prop,
unsigned int cells, void *value)
{
int err, len;
assert(dtb != NULL);
assert(prop != NULL);
assert(value != NULL);
assert(node >= 0);
/* We expect either 1 or 2 cell property */
assert(cells <= 2U);
if (cells == 2U)
*(fdt64_t *)value = cpu_to_fdt64(*(uint64_t *)value);
else
*(fdt32_t *)value = cpu_to_fdt32(*(uint32_t *)value);
len = (int)cells * 4;
/* Set property value in place */
err = fdt_setprop_inplace(dtb, node, prop, value, len);
if (err != 0) {
WARN("Modify property %s failed with error %d\n", prop, err);
return -1;
}
return 0;
}
/*
* Write bytes in place to a given property of the given node.
* Any number of bytes of the property can be written.
* Returns 0 on success, and < 0 on error.
*/
int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop,
unsigned int length, const void *data)
{
const void *ptr;
int namelen, value_len, err;
assert(dtb != NULL);
assert(prop != NULL);
assert(data != NULL);
assert(node >= 0);
namelen = (int)strlen(prop);
/* Access property and obtain its length in bytes */
ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len);
if (ptr == NULL) {
WARN("Couldn't find property %s in dtb\n", prop);
return -1;
}
/* Verify that property length is not less than number of bytes */
if ((unsigned int)value_len < length) {
WARN("Property length mismatch\n");
return -1;
}
/* Set property value in place */
err = fdt_setprop_inplace_namelen_partial(dtb, node, prop,
namelen, 0,
data, (int)length);
if (err != 0) {
WARN("Set property %s failed with error %d\n", prop, err);
}
return err;
}
static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells)
{
uint64_t reg = fdt32_to_cpu(prop[0]);
if (nr_cells > 1) {
reg = (reg << 32) | fdt32_to_cpu(prop[1]);
}
return reg;
}
int fdt_get_reg_props_by_index(const void *dtb, int node, int index,
uintptr_t *base, size_t *size)
{
const fdt32_t *prop;
int parent, len;
int ac, sc;
int cell;
parent = fdt_parent_offset(dtb, node);
if (parent < 0) {
return -FDT_ERR_BADOFFSET;
}
ac = fdt_address_cells(dtb, parent);
sc = fdt_size_cells(dtb, parent);
cell = index * (ac + sc);
prop = fdt_getprop(dtb, node, "reg", &len);
if (prop == NULL) {
WARN("Couldn't find \"reg\" property in dtb\n");
return -FDT_ERR_NOTFOUND;
}
if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) {
return -FDT_ERR_BADVALUE;
}
if (base != NULL) {
*base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac);
}
if (size != NULL) {
*size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc);
}
return 0;
}
/*******************************************************************************
* This function fills reg node info (base & size) with an index found by
* checking the reg-names node.
* Returns 0 on success and a negative FDT error code on failure.
******************************************************************************/
int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
uintptr_t *base, size_t *size)
{
int index;
index = fdt_stringlist_search(dtb, node, "reg-names", name);
if (index < 0) {
return index;
}
return fdt_get_reg_props_by_index(dtb, node, index, base, size);
}
/*******************************************************************************
* This function gets the stdout path node.
* It reads the value indicated inside the device tree.
* Returns node offset on success and a negative FDT error code on failure.
******************************************************************************/
int fdt_get_stdout_node_offset(const void *dtb)
{
int node;
const char *prop, *path;
int len;
/* The /secure-chosen node takes precedence over the standard one. */
node = fdt_path_offset(dtb, "/secure-chosen");
if (node < 0) {
node = fdt_path_offset(dtb, "/chosen");
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
}
prop = fdt_getprop(dtb, node, "stdout-path", NULL);
if (prop == NULL) {
return -FDT_ERR_NOTFOUND;
}
/* Determine the actual path length, as a colon terminates the path. */
path = strchr(prop, ':');
if (path == NULL) {
len = strlen(prop);
} else {
len = path - prop;
}
/* Aliases cannot start with a '/', so it must be the actual path. */
if (prop[0] == '/') {
return fdt_path_offset_namelen(dtb, prop, len);
}
/* Lookup the alias, as this contains the actual path. */
path = fdt_get_alias_namelen(dtb, prop, len);
if (path == NULL) {
return -FDT_ERR_NOTFOUND;
}
return fdt_path_offset(dtb, path);
}
/*******************************************************************************
* Only devices which are direct children of root node use CPU address domain.
* All other devices use addresses that are local to the device node and cannot
* directly used by CPU. Device tree provides an address translation mechanism
* through "ranges" property which provides mappings from local address space to
* parent address space. Since a device could be a child of a child node to the
* root node, there can be more than one level of address translation needed to
* map the device local address space to CPU address space.
* fdtw_translate_address() API performs address translation of a local address
* to a global address with help of various helper functions.
******************************************************************************/
static bool fdtw_xlat_hit(const fdt32_t *value, int child_addr_size,
int parent_addr_size, int range_size, uint64_t base_address,
uint64_t *translated_addr)
{
uint64_t local_address, parent_address, addr_range;
local_address = fdt_read_prop_cells(value, child_addr_size);
parent_address = fdt_read_prop_cells(value + child_addr_size,
parent_addr_size);
addr_range = fdt_read_prop_cells(value + child_addr_size +
parent_addr_size,
range_size);
VERBOSE("DT: Address %" PRIx64 " mapped to %" PRIx64 " with range %" PRIx64 "\n",
local_address, parent_address, addr_range);
/* Perform range check */
if ((base_address < local_address) ||
(base_address >= local_address + addr_range)) {
return false;
}
/* Found hit for the addr range that needs to be translated */
*translated_addr = parent_address + (base_address - local_address);
VERBOSE("DT: child address %" PRIx64 "mapped to %" PRIx64 " in parent bus\n",
local_address, parent_address);
return true;
}
#define ILLEGAL_ADDR ULL(~0)
static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
const struct fdt_property *ranges_prop,
int local_bus, uint64_t base_address)
{
uint64_t translated_addr;
const fdt32_t *next_entry;
int parent_bus_node, nxlat_entries, length;
int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;
/*
* The number of cells in one translation entry in ranges is the sum of
* the following values:
* self#address-cells + parent#address-cells + self#size-cells
* Ex: the iofpga ranges property has one translation entry with 4 cells
* They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
* = 1 + 2 + 1
*/
parent_bus_node = fdt_parent_offset(dtb, local_bus);
self_addr_cells = fdt_address_cells(dtb, local_bus);
self_size_cells = fdt_size_cells(dtb, local_bus);
parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);
/* Number of cells per translation entry i.e., mapping */
ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;
assert(ncells_xlat > 0);
/*
* Find the number of translations(mappings) specified in the current
* `ranges` property. Note that length represents number of bytes and
* is stored in big endian mode.
*/
length = fdt32_to_cpu(ranges_prop->len);
nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;
assert(nxlat_entries > 0);
next_entry = (const fdt32_t *)ranges_prop->data;
/* Iterate over the entries in the "ranges" */
for (int i = 0; i < nxlat_entries; i++) {
if (fdtw_xlat_hit(next_entry, self_addr_cells,
parent_addr_cells, self_size_cells, base_address,
&translated_addr)){
return translated_addr;
}
next_entry = next_entry + ncells_xlat;
}
INFO("DT: No translation found for address %" PRIx64 " in node %s\n",
base_address, fdt_get_name(dtb, local_bus, NULL));
return ILLEGAL_ADDR;
}
/*******************************************************************************
* address mapping needs to be done recursively starting from current node to
* root node through all intermediate parent nodes.
* Sample device tree is shown here:
smb@0,0 {
compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges = <0 0 0 0x08000000 0x04000000>,
<1 0 0 0x14000000 0x04000000>,
<2 0 0 0x18000000 0x04000000>,
<3 0 0 0x1c000000 0x04000000>,
<4 0 0 0x0c000000 0x04000000>,
<5 0 0 0x10000000 0x04000000>;
motherboard {
arm,v2m-memory-map = "rs1";
compatible = "arm,vexpress,v2m-p1", "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges;
iofpga@3,00000000 {
compatible = "arm,amba-bus", "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 3 0 0x200000>;
v2m_serial1: uart@a0000 {
compatible = "arm,pl011", "arm,primecell";
reg = <0x0a0000 0x1000>;
interrupts = <0 6 4>;
clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
clock-names = "uartclk", "apb_pclk";
};
};
};
* As seen above, there are 3 levels of address translations needed. An empty
* `ranges` property denotes identity mapping (as seen in `motherboard` node).
* Each ranges property can map a set of child addresses to parent bus. Hence
* there can be more than 1 (translation) entry in the ranges property as seen
* in the `smb` node which has 6 translation entries.
******************************************************************************/
/* Recursive implementation */
uint64_t fdtw_translate_address(const void *dtb, int node,
uint64_t base_address)
{
int length, local_bus_node;
const char *node_name;
uint64_t global_address;
local_bus_node = fdt_parent_offset(dtb, node);
node_name = fdt_get_name(dtb, local_bus_node, NULL);
/*
* In the example given above, starting from the leaf node:
* uart@a000 represents the current node
* iofpga@3,00000000 represents the local bus
* motherboard represents the parent bus
*/
/* Read the ranges property */
const struct fdt_property *property = fdt_get_property(dtb,
local_bus_node, "ranges", &length);
if (property == NULL) {
if (local_bus_node == 0) {
/*
* root node doesn't have range property as addresses
* are in CPU address space.
*/
return base_address;
}
INFO("DT: Couldn't find ranges property in node %s\n",
node_name);
return ILLEGAL_ADDR;
} else if (length == 0) {
/* empty ranges indicates identity map to parent bus */
return fdtw_translate_address(dtb, local_bus_node, base_address);
}
VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
local_bus_node);
global_address = fdtw_search_all_xlat_entries(dtb, property,
local_bus_node, base_address);
if (global_address == ILLEGAL_ADDR) {
return ILLEGAL_ADDR;
}
/* Translate the local device address recursively */
return fdtw_translate_address(dtb, local_bus_node, global_address);
}
/*
* For every CPU node (`/cpus/cpu@n`) in an FDT, execute a callback passing a
* pointer to the FDT and the offset of the CPU node. If the return value of the
* callback is negative, it is treated as an error and the loop is aborted. In
* this situation, the value of the callback is returned from the function.
*
* Returns `0` on success, or a negative integer representing an error code.
*/
int fdtw_for_each_cpu(const void *dtb,
int (*callback)(const void *dtb, int node, uintptr_t mpidr))
{
int ret = 0;
int parent, node = 0;
parent = fdt_path_offset(dtb, "/cpus");
if (parent < 0) {
return parent;
}
fdt_for_each_subnode(node, dtb, parent) {
const char *name;
int len;
uintptr_t mpidr = 0U;
name = fdt_get_name(dtb, node, &len);
if (strncmp(name, "cpu@", 4) != 0) {
continue;
}
ret = fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL);
if (ret < 0) {
break;
}
ret = callback(dtb, node, mpidr);
if (ret < 0) {
break;
}
}
return ret;
}
/*
* Find a given node in device tree. If not present, add it.
* Returns offset of node found/added on success, and < 0 on error.
*/
int fdtw_find_or_add_subnode(void *fdt, int parentoffset, const char *name)
{
int offset;
offset = fdt_subnode_offset(fdt, parentoffset, name);
if (offset == -FDT_ERR_NOTFOUND) {
offset = fdt_add_subnode(fdt, parentoffset, name);
}
if (offset < 0) {
ERROR("%s: %s: %s\n", __func__, name, fdt_strerror(offset));
}
return offset;
}