blob: 122a0d4b8e24619532651a0190ccf69354a26f46 [file] [log] [blame]
/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <bl31.h>
#include <context.h>
#include <context_mgmt.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <platform_def.h>
#include <runtime_svc.h>
/*******************************************************************************
* Data structure which holds the pointers to non-secure and secure security
* state contexts for each cpu. It is aligned to the cache line boundary to
* allow efficient concurrent manipulation of these pointers on different cpus
******************************************************************************/
typedef struct {
void *ptr[2];
} __aligned (CACHE_WRITEBACK_GRANULE) context_info_t;
static context_info_t cm_context_info[PLATFORM_CORE_COUNT];
/* The per_cpu_ptr_cache_t space allocation */
static per_cpu_ptr_cache_t per_cpu_ptr_cache_space[PLATFORM_CORE_COUNT];
/*******************************************************************************
* Context management library initialisation routine. This library is used by
* runtime services to share pointers to 'cpu_context' structures for the secure
* and non-secure states. Management of the structures and their associated
* memory is not done by the context management library e.g. the PSCI service
* manages the cpu context used for entry from and exit to the non-secure state.
* The Secure payload dispatcher service manages the context(s) corresponding to
* the secure state. It also uses this library to get access to the non-secure
* state cpu context pointers.
* Lastly, this library provides the api to make SP_EL3 point to the cpu context
* which will used for programming an entry into a lower EL. The same context
* will used to save state upon exception entry from that EL.
******************************************************************************/
void cm_init()
{
/*
* The context management library has only global data to intialize, but
* that will be done when the BSS is zeroed out
*/
}
/*******************************************************************************
* This function returns a pointer to the most recent 'cpu_context' structure
* for the CPU identified by MPIDR that was set as the context for the specified
* security state. NULL is returned if no such structure has been specified.
******************************************************************************/
void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state)
{
uint32_t linear_id = platform_get_core_pos(mpidr);
assert(security_state <= NON_SECURE);
return cm_context_info[linear_id].ptr[security_state];
}
/*******************************************************************************
* This function returns a pointer to the most recent 'cpu_context' structure
* for the calling CPU that was set as the context for the specified security
* state. NULL is returned if no such structure has been specified.
******************************************************************************/
void *cm_get_context(uint32_t security_state)
{
uint32_t linear_id = platform_get_core_pos(read_mpidr());
assert(security_state <= NON_SECURE);
return cm_context_info[linear_id].ptr[security_state];
}
/*******************************************************************************
* This function sets the pointer to the current 'cpu_context' structure for the
* specified security state for the CPU identified by MPIDR
******************************************************************************/
void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state)
{
uint32_t linear_id = platform_get_core_pos(mpidr);
assert(security_state <= NON_SECURE);
cm_context_info[linear_id].ptr[security_state] = context;
}
/*******************************************************************************
* This function sets the pointer to the current 'cpu_context' structure for the
* specified security state for the calling CPU
******************************************************************************/
void cm_set_context(void *context, uint32_t security_state)
{
cm_set_context_by_mpidr(read_mpidr(), context, security_state);
}
/*******************************************************************************
* The next four functions are used by runtime services to save and restore EL3
* and EL1 contexts on the 'cpu_context' structure for the specified security
* state.
******************************************************************************/
void cm_el3_sysregs_context_save(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx);
el3_sysregs_context_save(get_el3state_ctx(ctx));
}
void cm_el3_sysregs_context_restore(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx);
el3_sysregs_context_restore(get_el3state_ctx(ctx));
}
void cm_el1_sysregs_context_save(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx);
el1_sysregs_context_save(get_sysregs_ctx(ctx));
}
void cm_el1_sysregs_context_restore(uint32_t security_state)
{
cpu_context_t *ctx;
ctx = cm_get_context(security_state);
assert(ctx);
el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}
/*******************************************************************************
* This function populates 'cpu_context' pertaining to the given security state
* with the entrypoint, SPSR and SCR values so that an ERET from this security
* state correctly restores corresponding values to drop the CPU to the next
* exception level
******************************************************************************/
void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint,
uint32_t spsr, uint32_t scr)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx);
/* Program the interrupt routing model for this security state */
scr &= ~SCR_FIQ_BIT;
scr &= ~SCR_IRQ_BIT;
scr |= get_scr_el3_from_routing_model(security_state);
/* Populate EL3 state so that we've the right context before doing ERET */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
write_ctx_reg(state, CTX_SCR_EL3, scr);
}
/*******************************************************************************
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
* given security state with the given entrypoint
******************************************************************************/
void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}
/*******************************************************************************
* This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
* pertaining to the given security state using the value and bit position
* specified in the parameters. It preserves all other bits.
******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
uint32_t bit_pos,
uint32_t value)
{
cpu_context_t *ctx;
el3_state_t *state;
uint32_t scr_el3;
ctx = cm_get_context(security_state);
assert(ctx);
/* Ensure that the bit position is a valid one */
assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
/* Ensure that the 'value' is only a bit wide */
assert(value <= 1);
/*
* Get the SCR_EL3 value from the cpu context, clear the desired bit
* and set it to its new value.
*/
state = get_el3state_ctx(ctx);
scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
scr_el3 &= ~(1 << bit_pos);
scr_el3 |= value << bit_pos;
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}
/*******************************************************************************
* This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
* given security state.
******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
cpu_context_t *ctx;
el3_state_t *state;
ctx = cm_get_context(security_state);
assert(ctx);
/* Populate EL3 state so that ERET jumps to the correct entry */
state = get_el3state_ctx(ctx);
return read_ctx_reg(state, CTX_SCR_EL3);
}
/*******************************************************************************
* This function is used to program the context that's used for exception
* return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
* the required security state
******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
cpu_context_t *ctx;
#if DEBUG
uint64_t sp_mode;
#endif
ctx = cm_get_context(security_state);
assert(ctx);
#if DEBUG
/*
* Check that this function is called with SP_EL0 as the stack
* pointer
*/
__asm__ volatile("mrs %0, SPSel\n"
: "=r" (sp_mode));
assert(sp_mode == MODE_SP_EL0);
#endif
__asm__ volatile("msr spsel, #1\n"
"mov sp, %0\n"
"msr spsel, #0\n"
: : "r" (ctx));
}
/************************************************************************
* The following function is used to populate the per cpu pointer cache.
* The pointer will be stored in the tpidr_el3 register.
*************************************************************************/
void cm_init_pcpu_ptr_cache()
{
unsigned long mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr);
per_cpu_ptr_cache_t *pcpu_ptr_cache;
pcpu_ptr_cache = &per_cpu_ptr_cache_space[linear_id];
assert(pcpu_ptr_cache);
#if CRASH_REPORTING
pcpu_ptr_cache->crash_stack = get_crash_stack(mpidr);
#endif
cm_set_pcpu_ptr_cache(pcpu_ptr_cache);
}
void cm_set_pcpu_ptr_cache(const void *pcpu_ptr)
{
write_tpidr_el3((unsigned long)pcpu_ptr);
}
void *cm_get_pcpu_ptr_cache(void)
{
return (void *)read_tpidr_el3();
}