Migrate FVP port to use common code

Major update to the FVP platform port to use the common platform code
in (include/)plat/arm/* and (include/)plat/common/*. This mainly
consists of removing duplicated code but also introduces some small
behavioural changes where there was unnecessary variation between the
FVP and Juno ports. See earlier commit titled `Add common ARM and CSS
platform code` for details.

Also add support for Foundation FVP version 9.1 during FVP config
setup to prevent a warning being emitted in the console.

Change-Id: I254ca854987642ce09d1b924c9fd410a6e13e3bc
diff --git a/plat/fvp/bl31_fvp_setup.c b/plat/fvp/bl31_fvp_setup.c
index 3874413..b50ae55 100644
--- a/plat/fvp/bl31_fvp_setup.c
+++ b/plat/fvp/bl31_fvp_setup.c
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
+ * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions are met:
@@ -28,225 +28,30 @@
  * POSSIBILITY OF SUCH DAMAGE.
  */
 
-#include <arch.h>
-#include <arch_helpers.h>
-#include <arm_gic.h>
-#include <assert.h>
-#include <bl_common.h>
-#include <bl31.h>
-#include <console.h>
-#include <mmio.h>
-#include <platform.h>
-#include <stddef.h>
-#include "drivers/pwrc/fvp_pwrc.h"
-#include "fvp_def.h"
+#include <plat_arm.h>
 #include "fvp_private.h"
 
-/*******************************************************************************
- * Declarations of linker defined symbols which will help us find the layout
- * of trusted SRAM
- ******************************************************************************/
-extern unsigned long __RO_START__;
-extern unsigned long __RO_END__;
-extern unsigned long __BL31_END__;
 
-#if USE_COHERENT_MEM
-extern unsigned long __COHERENT_RAM_START__;
-extern unsigned long __COHERENT_RAM_END__;
-#endif
-
-/*
- * The next 3 constants identify the extents of the code, RO data region and the
- * limit of the BL3-1 image.  These addresses are used by the MMU setup code and
- * therefore they must be page-aligned.  It is the responsibility of the linker
- * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
- * refer to page-aligned addresses.
- */
-#define BL31_RO_BASE (unsigned long)(&__RO_START__)
-#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
-#define BL31_END (unsigned long)(&__BL31_END__)
-
-#if USE_COHERENT_MEM
-/*
- * The next 2 constants identify the extents of the coherent memory region.
- * These addresses are used by the MMU setup code and therefore they must be
- * page-aligned.  It is the responsibility of the linker script to ensure that
- * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
- * refer to page-aligned addresses.
- */
-#define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
-#define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
-#endif
-
-#if RESET_TO_BL31
-static entry_point_info_t bl32_image_ep_info;
-static entry_point_info_t bl33_image_ep_info;
-#else
-/*******************************************************************************
- * Reference to structure which holds the arguments that have been passed to
- * BL31 from BL2.
- ******************************************************************************/
-static bl31_params_t *bl2_to_bl31_params;
-#endif
-
-/*******************************************************************************
- * Return a pointer to the 'entry_point_info' structure of the next image for the
- * security state specified. BL33 corresponds to the non-secure image type
- * while BL32 corresponds to the secure image type. A NULL pointer is returned
- * if the image does not exist.
- ******************************************************************************/
-entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
-{
-#if RESET_TO_BL31
-	assert(sec_state_is_valid(type));
-
-	if (type == NON_SECURE)
-		return &bl33_image_ep_info;
-	else
-		return &bl32_image_ep_info;
-#else
-	entry_point_info_t *next_image_info;
-
-	assert(sec_state_is_valid(type));
-
-	next_image_info = (type == NON_SECURE) ?
-		bl2_to_bl31_params->bl33_ep_info :
-		bl2_to_bl31_params->bl32_ep_info;
-
-	/* None of the images on this platform can have 0x0 as the entrypoint */
-	if (next_image_info->pc)
-		return next_image_info;
-	else
-		return NULL;
-#endif
-}
-
-/*******************************************************************************
- * Perform any BL31 specific platform actions. Here is an opportunity to copy
- * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they
- * are lost (potentially). This needs to be done before the MMU is initialized
- * so that the memory layout can be used while creating page tables. On the FVP
- * we know that BL2 has populated the parameters in secure DRAM. So we just use
- * the reference passed in 'from_bl2' instead of copying. The 'data' parameter
- * is not used since all the information is contained in 'from_bl2'. Also, BL2
- * has flushed this information to memory, so we are guaranteed to pick up good
- * data
- ******************************************************************************/
 void bl31_early_platform_setup(bl31_params_t *from_bl2,
 				void *plat_params_from_bl2)
 {
-	/* Initialize the console to provide early debug support */
-	console_init(PL011_UART0_BASE, PL011_UART0_CLK_IN_HZ, PL011_BAUDRATE);
+	arm_bl31_early_platform_setup(from_bl2, plat_params_from_bl2);
 
 	/* Initialize the platform config for future decision making */
 	fvp_config_setup();
 
-#if RESET_TO_BL31
-	/* There are no parameters from BL2 if BL31 is a reset vector */
-	assert(from_bl2 == NULL);
-	assert(plat_params_from_bl2 == NULL);
-
-	/*
-	 * Do initial security configuration to allow DRAM/device access. On
-	 * Base FVP only DRAM security is programmable (via TrustZone), but
-	 * other platforms might have more programmable security devices
-	 * present.
-	 */
-	fvp_security_setup();
-
-	/* Populate entry point information for BL3-2 and BL3-3 */
-	SET_PARAM_HEAD(&bl32_image_ep_info,
-				PARAM_EP,
-				VERSION_1,
-				0);
-	SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
-	bl32_image_ep_info.pc = BL32_BASE;
-	bl32_image_ep_info.spsr = fvp_get_spsr_for_bl32_entry();
-
-	SET_PARAM_HEAD(&bl33_image_ep_info,
-				PARAM_EP,
-				VERSION_1,
-				0);
 	/*
-	 * Tell BL31 where the non-trusted software image
-	 * is located and the entry state information
+	 * Initialize CCI for this cluster during cold boot.
+	 * No need for locks as no other CPU is active.
 	 */
-	bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
-	bl33_image_ep_info.spsr = fvp_get_spsr_for_bl33_entry();
-	SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
-
-#else
-	/* Check params passed from BL2 should not be NULL,
-	 * We are not checking plat_params_from_bl2 as NULL as we are not
-	 * using it on FVP
-	 */
-	assert(from_bl2 != NULL);
-	assert(from_bl2->h.type == PARAM_BL31);
-	assert(from_bl2->h.version >= VERSION_1);
-
-	bl2_to_bl31_params = from_bl2;
-	assert(((unsigned long)plat_params_from_bl2) == FVP_BL31_PLAT_PARAM_VAL);
-#endif
-}
-
-/*******************************************************************************
- * Initialize the gic, configure the CLCD and zero out variables needed by the
- * secondaries to boot up correctly.
- ******************************************************************************/
-void bl31_platform_setup(void)
-{
-	unsigned int reg_val;
-
-	/* Initialize the gic cpu and distributor interfaces */
-	fvp_gic_init();
-	arm_gic_setup();
-
-	/*
-	 * TODO: Configure the CLCD before handing control to
-	 * linux. Need to see if a separate driver is needed
-	 * instead.
-	 */
-	mmio_write_32(VE_SYSREGS_BASE + V2M_SYS_CFGDATA, 0);
-	mmio_write_32(VE_SYSREGS_BASE + V2M_SYS_CFGCTRL,
-		      (1ull << 31) | (1 << 30) | (7 << 20) | (0 << 16));
-
-	/* Enable and initialize the System level generic timer */
-	mmio_write_32(SYS_CNTCTL_BASE + CNTCR_OFF, CNTCR_FCREQ(0) | CNTCR_EN);
-
-	/* Allow access to the System counter timer module */
-	reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
-	reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
-	reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
-	mmio_write_32(SYS_TIMCTL_BASE + CNTACR_BASE(0), reg_val);
-	mmio_write_32(SYS_TIMCTL_BASE + CNTACR_BASE(1), reg_val);
-
-	reg_val = (1 << CNTNSAR_NS_SHIFT(0)) | (1 << CNTNSAR_NS_SHIFT(1));
-	mmio_write_32(SYS_TIMCTL_BASE + CNTNSAR, reg_val);
-
-	/* Intialize the power controller */
-	fvp_pwrc_setup();
-
-	/* Topologies are best known to the platform. */
-	fvp_setup_topology();
-}
-
-/*******************************************************************************
- * Perform the very early platform specific architectural setup here. At the
- * moment this is only intializes the mmu in a quick and dirty way.
- ******************************************************************************/
-void bl31_plat_arch_setup(void)
-{
 	fvp_cci_init();
 #if RESET_TO_BL31
+	/*
+	 * Enable CCI coherency for the primary CPU's cluster
+	 * (if earlier BL has not already done so).
+	 * FVP PSCI code will enable coherency for other clusters.
+	 */
 	fvp_cci_enable();
-#endif
-	fvp_configure_mmu_el3(BL31_RO_BASE,
-			      (BL31_END - BL31_RO_BASE),
-			      BL31_RO_BASE,
-			      BL31_RO_LIMIT
-#if USE_COHERENT_MEM
-			      , BL31_COHERENT_RAM_BASE,
-			      BL31_COHERENT_RAM_LIMIT
-#endif
-			      );
+
+#endif /* RESET_TO_BL31 */
 }